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COHERENT AND CONTINUOUS INFERENCE

By DaAviD A. LANE AND WiLLIAM D. SUDDERTH!

University of Minnesota

If the sampling model is a continuous function of the parameter and if
either the parameter space or the observation space is compact, then a
coherent inference which is a continuous function of the observation must be
the posterior of a proper, countably additive prior.

1. Introduction. An experiment is to be performed, whose possible outcomes are the
elements of a set X. The parameter space ® indexes a family of probability distributions
on X; each element @ in © corresponds to a possible state of nature, and the distribution p,
indexed by @ describes the stochastic structure of the experiment, if § obtains. An inference
g is a function, which assigns to every x in X a probability distribution g, on ©. An
inference might correspond to a system of confidence intervals, a posterior distribution, or
a fiducial distribution.

An inference g can be given an operational interpretation, as follows: ¢, may be viewed
as a conditional odds function, which the inferrer uses to post odds on subsets of © after
seeing x. Following Freedman and Purves (1969) and Cornfield (1969), the inferrer or his
inference g is called coherent if it is impossible for a gambler to devise a system based
upon g, which consists of placing a finite number of bets on subsets of © after x is observed
and which attains an expected payoff greater than some positive constant for every possible
state of nature 6. See Heath and Sudderth (1978) for a precise definition of coherence.

Heath and Sudderth (1978) showed that coherent inferences correspond to posterior
distributions of proper, finitely additive priors on ©. Now there are technical difficulties
involved in employing finitely additive distributions which are not countably additive. For
example, such priors may fail to yield posteriors; and even if posteriors exist for a finitely
additive prior, there may be no available algorithm, corresponding to Bayes’s Theorem,
for computing them. The setting in which Heath and Sudderth worked was very general:
© and X are arbitrary sets, and no compatibility or continuity conditions are imposed upon
the py’s or the g.’s. Most common inferential problems have much more structure than
this. Thus, it is natural to ask: in the kind of problems usually encountered in statistical
practice, is every coherent inference available as the posterior calculated from a proper,
countably additive prior? The answer to this question is evidently no: for example, if © =
X =R', psis N, 1), and q. is N(x, 1), then the inference ¢ is coherent (Heath and
Sudderth, 1978, Example 4.1), but it is not derivable from any proper countably additive
prior on 0.

The main purpose of this paper is to describe a fairly general inferential setting in which
all coherent inferences can be obtained as posteriors from proper, countably additive
priors. First, suppose both © and X are separable metric spaces. Second, suppose each p
and each g, are countably additive. Third, suppose the p,’s and the q.’s are both weakly
continuous. These three conditions are not enough, as the example of the preceding
paragraph shows; note, however, that virtually all the classical problems of statistical
inference satisfy them. Finally suppose © or X is compact: Corollary 3.1 asserts that this,
together with the three previous conditions, assures that all coherent inferences are
posteriors from proper, countably additive priors. Many standard inferential settings
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satisfy the four conditions. For example, suppose © is the closed unit interval, and the
experiment consists of one of the usual ways of repeating Bernoulli trials (n repetitions,
perhaps, or sampling until the mth success): see examples 3.1 and 3.2 for a discussion. Or
again, suppose the experiment consists of observing a collection of uniformly truncated
survival times, with any standard life-testing parametric model: the uniform truncation
gives a compact X.

The next section contains some preliminary material and introduces a notion of
consistency of a sampling model with an inference. It turns out that consistency is
equivalent to coherence (Proposition 2.1) and is also equivalent to an absence of “strong
inconsistency” in the sense of Stone (1976) (Proposition 2.3). The study of consistency
may be of independent interest giving, as it does, conditions for the existence of a joint
distribution with given conditional distributions.

The major mathematical tool used throughout is the separating hyperplane theorem
which was first used in a similar context by Freedman and Purves (1969) and subsequently
by Buehler (1965), Heath and Sudderth (1972, 1978), and Quiring (1972).

2. Coherence and consistency. For any set S, P(S) denotes the collection of finitely
additive probability measures defined on all subsets of S. If ¢ is a bounded, real-valued
function defined on S and y € P(S), then the y-integral of ¢ will be written y(¢), [ ¢dy, or
[ o(s)y(ds).

Let © and X be nonempty sets to be regarded as the sets of possible states of nature and
possible observations. A sampling model p is a mapping which assigns to each § € ©® an
element py of P(X), and an inference q assigns to each x € X an element g, of P(®). Thus
P is a conditional distribution on X given © and ¢ is a conditional distribution on ® given
X.

Let r € P(® X X) and define the marginals = and m of r by

m(A) =r(AxX), for ACO, m(B)=r(® X B), for BCX.

Let B(®) and B(X) be o-fields of subsets of ® and X, respectively, and let B = B(0) X
B (X) be the product o-field.

Roughly speaking, p and q are called consistent if they are the conditional distributions
corresponding to some joint distribution r. Here is the precise definition.

DEFINITION. p and q are consistent if there exists r € P(® X X) such that, for every
bounded, B-measurable function ¢: ® X X — R,

(2.1) r(p) = J’Po(tpo)‘”((w) = J’ 2:(p*)m(dx).

Here, @s(x) = @ (0, x) and ¢™(0) = ¢ (0, x) for all (4, x) € ® X X. If no such r exists, p and
q are inconsisteht.

NoTE. The primary reason for introducing o-fields is that, very often, p and g are
naturally given as countably additive probabilities on some particular o-field (as when ps
is N (6, 1) on the Borels of R'): it is then reasonable to ask for consistency relative only to
the naturally defined parts of these distributions, rather than to the more or less arbitrary
extensions to all subsets.

Notice that, if r, p, g satisfy (2.1), then the marginals 7 and m satisfy

(2.2) m(¥) = f a:(¥)m(dx), m¥)= f Po(¥')m(dl)
when ¥: ® — R is bounded, B (0©)-measurable and ¥’: X — R is bounded, B (X)-measurable.

The proposition below states that coherence as defined in Heath and Sudderth (1978)
and consistency are essentially the same concepts.
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PROPOSITION 2.1. q is coherent for a given p if and only if p and q are consistent.

Proor. If g is coherent for p, then (Heath and Sudderth, 1978, Corollary 1) there is a
7 € P(0) such that g is the posterior corresponding to 7. Take r to be the measure defined
by the first equality of (2.1).

Conversely, if p and ¢ are consistent and r is as in the definition of consistency, then ¢
is clearly the posterior of 7, the marginal of r on ©. [

The next proposition gives several conditions equivalent to consistency which will be
used in the sequel.

ProPoSITION 2.2. The conditions below are equivalent. (In (b), (c), and (d), ¢: § X X
— R is assumed to be bounded and B-measurable.)

(a) p and q are consistent.

(b) For all ¢, infs{ ps(ps) — [ g (@*)pe(dx)} < 0.

(c) For all @, inf, {q.(¢*) — [ pe(ps)q:(df)} = O.

(d) There existm € P(0), m € P(X) such that, for all ¢, [ pe(pe)7(df) = [ q.(p*)m (dx).

Proor. It will be shown that (a) = (b) = (d) = (a). There is no difficulty in replacing
condition b by the symmetric condition c.
(a) = (b). Let r be as in the definition of consistency and let 7, m be its marginals. Set

2.3) ¥ (8) = polps) — f e (@")po(dx).
By (2.2) and (2.1),
7(¥) = fpo(lpv)'ﬂ(do) — f g (" )m(dx) = r(p) —r(p) =0.

Thus, inf ¥ cannot be positive.

(b) = (d). Let ¥ be the collection of all functions ¥ as in (2.3). Because % is convex, it
follows from a standard separation theorem (Dunford and Schwartz, 1958, page 417) or
more directly from Lemma 1 of Heath and Sudderth (1978), that there is a 7 in P(®) such
that 7(¥) =0forall ¥ € 4. But ¥ € ¥= —V¥ € . So #(¥) = 0 for ¥ € & that is, for all
bounded B-measurable 6,

(*) fpa(tpo)W(dﬂ) =ijx(¢x)po(dx)W(d0).

Now define m by the second equality of (2.2). So (*) is (d).

(d) = (a). Define r by the first equality of (2.1) for every bounded ¢: ® X X — R. By
(d), the X-marginal of r is m. That the second equality of (2.1) holds for all ¢ also follows
from (d). O N

Following Stone (1976), define p and g to be strongly inconsistent if there is a bounded,
B-measurable function ¢: ® X X — R such that

(2.4) infype(pe) > sup.q:(¢”).

This condition states that the conditional expectations of ¢ given § are uniformly larger
than those given x.

PRrROPOSITION 2.3. p and q are strongly inconsistent if and only if p and q are
inconsistent.

ProOOF. Suppose p and g are not strongly inconsistent and let & be the collection of all
functions ¥ on © X X defined by



COHERENT AND CONTINUOUS INFERENCE 117

¥ (0, x) = po(@s) — q= (¢
for some bounded, B-measurable ¢: @ X X — R. Since (2.4) does not hold,
infy ¥ (6, x) = infypy(ps) — sup.q.(¢*) <0,

for every ¥ € 4. By Lemma 1 of Heath and Sudderth (1978), there is a measure y € P(
X X) such that y(¥) =0 for all ¥ € . But ¥ € ¥= —¥ € ¥ and so y(¥) = 0 for all ¥
€ %. Thus, for every ¥,

y(¥) = fpa(tpo)vr(d@ - f q:(p)m(dx) = 0,

where 7 and m are the marginals of y on 4 and X, respectively. Hence, the second equality
of (2.1) holds for all bounded, measurable ¢, and r can be defined by the first equality of
(2.1) for all bounded ¢. This proves that p and q are consistent.

For the converse, notice that (2.4) implies that the second equality of (2.1) fails for
every w and m. [ *

Several interesting examples of strong inconsistency and, therefore, of inconsistency and
incoherence are in Stone (1976).

3. Continuous inferences. For the rest of the paper, ® and X are assumed to be
separable metric spaces with B(0) and B(X) their o-fields of Borel subsets. Hence, the
product o-field B = B(0) X B(X) is the o-field of Borel subsets of ® X X (Parthasarathy,
1967, Theorem 1.10). Let M (©) and M (X) denote the sets of countably additive probability
measures on B(0) and B (X), respectively. A measure ¢ in P(0) (respectively P (X)) whose
restriction to B(®) (resp. B(X)) is countably additive, will, for simplicity, be identified
with that restriction.

It will also be assumed from now on that p and g are continuous mappings from © to
M(X) and X to M(0), respectively, when M(X) and M(®) are given the usual weak
topology, as defined in Section II. 6 of Parthasarathy (1967). This assumption of continuity
seems quite mild since, to our knowledge, all of the classical likelihoods and inferences
satisfy it. Notice that p and g are, in particular, regular conditional distributions, which is
equivalent to saying they are Borel measurable mappings.

Two technical lemmas are needed. In the first lemma, the metric d on ® X X is taken
to satisfy

(3.1) d((0, x), @, x)) =p(0,6)
where p is the metric on ©. For example, one could take

d((, x), (0, x')) =p(8, 0') + 7(x, x')
where 7 is the metric on X.

LeMMA 3.1. Let ¢: ® X X — R be bounded and uniformly continuous. Then the
functions 8 — pe(@y) and x — q.(p*) are continuous too.

Proor. Let 6, — 6. It sufficies to show Pa,(ps,) = po(@s). By (3.1), (0., x) — (0, x)
uniformly in x and, hence, ¢ (., x) — @ (6, x) uniformly in x.
Now write

Do (9s,) — po(pg) = {f @ (0, x)pg, (dx) — f«p(é’, X)pg, (dx)}

+ {f 9 (0, x)ps, (dx) — f o, x)po(dx)} .



118 D. A. LANE AND W. D. SUDDERTH

The first bracketed expression on the right converges to zero because ¢ (8., x) — ¢(, x)
uniformly in x; the second expression converges to zero because Pg, — pg weakly. O

Let 4(©) be the collection of bounded, real-valued continuous functions defined on the
metric space 0, and give (@) its sup norm topology.

LEMMA 3.2. Assume © is compact and let € be a convex subset of 4(©). Then the
following are equivalent: (i) inf ¥ < 0 for all ¥ € 4. (ii) There exists a = in M (®) such
that n(¥) =0 forall Vv € 4.

Proor. The proof is similar to that of Lemma 1 in Heath and Sudderth (1978) and
uses a separating hyperplane theorem (Dunford and Schwartz, 1958, page 417) together
with Riesz’s Theorem (Parthasarathy, 1967, Theorem II 5.8) which characterizes the
nonnegative, normed linear functionals on %(®) as the elements of M (©).

ProrosITION 8.1.  Ifp and q are continuous and © is compact, then the following are
equivalent:

(a) p and q are consistent.

(b) For every bounded, uniformly continuous function ¢: ® X X - R,

info { po(ps) — J Q- (@ )pe(dx)} < 0.

(c) There exist m € M(0), m € M(X) such that, for every bounded, Borel measurable
function ¢: ® X X — R,

(3.2) f Ds(po)m(dl) = f q:(p*)m (dx).

Furthermore, (a) and (c) remain equivalent if the hypothesis that © is compact is
replaced by one that X is compact.

Proor. That (a) = (b) and (c) = (a) follows from Proposition 2.2.

(b) = (c). The proof is similar to the proof that (b) = (d) in Proposition 2.2. Use Lemma
3.1 to show that, for bounded uniformly continuous ¢, the ¥ defined by (2.3) is in %(®©)
and then use Lemma 3.2 to find 7 € M (@) so that #(¥) < 0 and, hence, #(¥) = 0 for all
¥ corresponding to a bounded, uniformly continuous ¢. If m is defined by (2.2), then (3.2)
holds for all such ¢. But two countably additive probability measures which agree on the
bounded, uniformly continuous functions must agree on all bounded Borel functions
(Parthasarathy, 1967, Theorem I1.5.9).

The final assertion of the proposition is obvious because of the symmetry of conditions
(a) and (c¢) in § and x. O

CoroLLARY 3.1. Suppose p and q are continuous and either © or X is compact. Then
q is coherent for p if and only if q is the posterior of a prior m € M(0) (i.e. a proper,
countably additive prior).

PROOF. Suppose g is coherent for p. By Proposition 2.1, p and ¢ are consistent. By
Proposition 3.1(c), q is the posterior for a = € M (0).
The opposite implication is immediate from Proposition 2.1. 0

Here are two examples, both concerning inference about the probability of success in
Bernoulli trials, which illustrate the application of Corollary 3.1.

ExAMPLE 3.1. Suppose x represents the number of successes in n Bernoulli trials, and
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0 is the probability of success in a single trial. Thus
X={01,-..--,n},

and
po{x} = 4(0) = (Z)G"(l —-6)" "

For each x, 4 is a polynomial of degree n, and so p is certainly weakly continuous. Since
X has the discrete topology, any inference g is weakly continuous. And since X is finite, it
is compact, so Corollary 3.1 applies.

Suppose O is the open interval (0, 1): this choice of parameter space reflects the
judgement that the experiment is not purely deterministic, and both success and failure
may be observed. With this choice of parameter space, each x in X receives positive
probability under each 4 in ®. By Corollary 3.1 and Bayes’s Theorem, then, every coherent
inference for this problem can be expressed as .

(3.3) q:(df) = 4. (0)u(d0)/[ 4.dp

for some countably additive probability measure p on 0.

A consequence of this result is that improper Bayesian inferences are incoherent for
this problem. Here, improper Bayesian inference refers to the following procedure: select
a countably additive measure p on the Borel subsets of ® with infinite total mass; define
g by Bayes’s formula (3.3) when the denominator is finite and define g. to be an arbitrary
element of M (®) otherwise. Such a g cannot be the inference corresponding to any proper,
countably additive » unless [ 4dp is infinite for all x. For suppose that integral is finite.
Then q. is given by (3.3) and cannot be the measure 4 (6)»(d6) /[ 4 dv because, for example,
¢:! has finite integral for this measure but not for g.. By Corollary 3.1 then, this improper
inference must be incoherent. A common choice of p is

1
o1 -6

see, for example Jeffreys (1961) or Jaynes (1968). Now an actual improper Bayesian, like
Jeffreys, would not, if he chose the prior in (3.4), select any measure in M(®) as his
inference if x were 0 or n. Rather, he would declare an improper posterior. The point we
are making here is that he could not modify the formal posterior computed from such
improper priors as those in (3.4) by selecting go and g, from M (®), so as to produce a
coherent inference.

(3.4) de,

EXAMPLE 3.2. x and p, the same as in example 3.1; but O is the closed interval [0, 1].
Suppose the improper Bayesian selects (3.4) as his “prior”, and uses its formal posterior,
modified as follows:

c(x)0* '@ —-0)" 1! for 1=sx=<n-—1,
q:(0) =< & for x=0,
o1 for x=n.
This inference is now coherent, as it is a posterior for the proper, countably additive prior
p(db) = %(8 + 81),

or any prior concentrated on {0, 1}.

This example illustrates the fact that coherence may provide a necessary condition for
reasonable inference, but is not sufficient. The inferrer with prior concentrated on {0, 1}
is free to be stupid should at least one success and one failure occur.

If neither 6 nor X is compact, but the other hypotheses of this section remain in force,
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then a continuous q is coherent for a continuous p if and only if ¢ is the posterior of a
finitely additive 7 which is regular on the field = generated by the closed subsets of ©.
(The proof is similar to that given above. However, the crucial separation argument of
Lemma 3.2 uses the fact that the nonnegative, normed linear functionals on #(®) are the
regular 7’s (Dunford and Schwartz, 1958, page 262).) Such a 7, i.e. one regular on the field
3, is countably additive when restricted to subsets of a compact set. Thus any failure of
a to be countably additive must occur on unbounded sets and is linked to the tail behavior
of .

One of the hypotheses of this section, which has not been emphasized, is that all of the
measures g, are countably additive. If, instead, they are allowed to be finitely additive and
if the space P(®) is given an appropriate topology, a purely finitely additive prior = can
lead to a continuous g. Here is a trivial example: let ® = [0, 1], and suppose yo is a diffuse
point mass at 0, and v, is a diffuse point mass at 1. (That is, yo(A) = 1 for A any interval
containing 0, but {0} = 0; and similarly for y;.) Let 7 = % yo + % v:. Now, suppose X =
{0, 1}, and py({0}) = 1 — py({1}) = 6. Finally, suppose go = yo and ¢ = y;. Trivially, q is
a continuous inference. Also, g is a posterior for the purely finitely additive prior =, but ¢
is not the posterior for any countably additive prior.
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