The Annals of Statistics
1983, Vol. 11, No. 1, 86-94

THE GEOMETRY OF MIXTURE LIKELIHOODS:
A GENERAL THEORY'

By BRUCE G. LINDsAY

The Pennsylvania State University

In this paper certain fundamental properties of the maximum likelihood
estimator of a mixing distribution are shown to be geometric properties of the
likelihood set. The existence, support size, likelihood equations, and unique-
ness of the estimator are revealed to be directly related to the properties of
the convex hull of the likelihood set and the support hyperplanes of that hull.
It is shown using geometric techniques that the estimator exists under quite
general conditions, with a support size no larger than the number of distinct
observations. Analysis of the convex dual of the likelihood set leads to a dual
maximization problem. A convergent algorithm is described. The defining
equations for the estimator are compared with the usuakparametric likelihood
equations for finite mixtures. Sufficient conditions for uniqueness are given.
Part II will deal with a special theory for exponential family mixtures.

1. Introduction. Although the principal subject of this paper is the existence and
uniqueness of the maximum likelihood estimator of a mixing distribution, the results arise
from a study of the convex geometry of the likelihood when it is viewed as a curve in
Euclidean space. Statistical problems such as existence, discreteness, support size charac-
terization, and uniqueness are transformed into geometrical problems concerning support
hyperplanes of the convex hull of the likelihood curve. This approach throws new light on
what were considered to be difficult problems. The sequel to this paper, which considers
mixtures of exponential family densities, will draw, in addition, on results from differential
geometry and the study of totally positive kernels (Karlin, 1968).

The problem may be formulated as follows. Let {f;: § € Q} be a parametric family of
densities with respect to some sigma-finite measure. Let the parameter space & have a
sigma field of measurable sets which contains all atomic sets {6}. Let .# be the class of all
probability measures on €. Define the function

falx) = f fo(x) dQ©6), Q€ A,

to be the mixture density corresponding to mixing distribution Q. Since the densities f,
correspond to the atomic mixing distributions §(6), which assign probability one to any set
containing 6, they will be called the atomic densities. A finite discrete mixing distribution
with support size JJ will be expressed as @ = Y 7;6(6;), where it will be understood that j
runs from 1 to.J/ and that

(1.1)  (a) the 6, are distinct elements of 2, (b) w; > 0 for allj, ©Ym=1.

Given a random sample Xi, - - - , X,, from the mixture density fo, the objective will be
to estimate the mixing distribution @ by ., a maximizer of the likelihood

L(Q) = th=l fQ(xi)-

(The modifications necessary when f depends on i will be discussed in Section 2.) Of
course, the mixture problem is poorly specified unless one can identify the mixing
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distribution @ from the distribution of the random variable X under the density function
fo. It will be seen later, however, that there are identifiable functions of @ which will
always be uniquely estimated by the method of maximum likelihood. Pertinent references
for identifiability are Teicher (1963), Barndorff-Nielsen (1965), and Chandra (1977).

Under a fairly general set of assumptions, including identifiability, Kiefer and Wolfowitz
(1956) identified consistency properties of the maximum likelihood estimator @, . The first
extensive examination of the structure of the estimator was by Simar (1976), who dealt
exclusively with the case where the atomic densities are Poisson with mean 6. In this case,
he showed consistency, and provided an algorithm for computation. Laird (1978) discussed
the case of arbitrary atomic densities and gave firm conclusions about discreteness under
regularity conditions on these densities. Lindsay (1981) presented some general structural
properties, including an analogy to the usual likelihood equation and some moment
properties of the estimator. Hill, et. al. (1980) consider a special case in where there are
only a countable number of distinct 6 in Q. Jewell (1982) discusses mixtures of exponential
densities, giving results analogous to Simar’s. .

2. Geometry and the likelihood. The geometric perspective is now introduced and
the main results summarized. Suppose the observation vector (xi, - - - , x,) has K distinct
data points y1, yz, - - - , Y. Let n; be the number of x’s which equal y:. Define the atomic
and mixture likelihood vectors to be f5 = (fy(y1), -+, fo(yx)) and fo = (fo(y1), -~ ,
fo(yk)) respectively. The likelihood curve is the function from £ to R defined by 8 — f;.
The trace of this curve, given by I"' = {f;: § € Q}, represents all possible fitted values of the
atomic likelihood vector. The key to the geometric approach is that an arbitrary convex
combination of elements of I" can be written as ), ijyj, with restrictions as in (1.1), and so
is equal to tlie mixture likelihood vector fy, where @ = Y, 7;6(6;).

If the observations X;, Xz, ---, X, are independent but X; has a density fiy(x) which
depends on i in a known fashion, as would be the case if there were covariates or varying
sample sizes, then geometric analysis of the likelihood vector f5 = (fig(x1), « + + , fro (x2)) Will
yield conclusions as stated hereafter, but with 7 substituted for K in the theorems.

This interpretation of the likelihood allows one to draw on results from convex geometry
such as to be found in Roberts and Varberg (1973), hereafter referenced as R&V. The
convex hull of the set I, written conv(I), is the intersection of all convex sets containing
T; it is itself a convex set. It is a fundamental result of convex geometry (R&V, page 76)
that conv(T") is precisely the set of convex combinations of elements of I and so conv(I")
= {fg: @ € A, @ has finite support}. If " is compact, as will be generally assumed, we have
the stronger result that conv(T’) = { fo: @ € #} (Phelps, 1966, Proposition 1.2), under the
measurability of the map # — f;. As such the maximization problem can now be refor-
mulated. Maximizing L (@) over @ € ./ may be accomplished by maximizing the concave
functional ¢(f) = ¥, n: log f over f in the K-dimensional set conv(T).

If f € conv(I') maximizes ¢(p), then there will exist @ €  such that fg = fand @
maximizes L (Q). Our approach will be to focus mainly on the geometric problem of
determining f. This brings the general mixture theory close to those results from the
theory of optimal design which arise from maximizing a concave functional such as log
determinant on the convex set of possible design matrices. Many of the key references for
this paper are thus from the design literature.

The following two examples illustrate the geometric approach and demonstrate the
broad scope of the mixture model.

ExaMPLE 1. Define the atomic densities on R by

1 if 6=x,
fo(x) = {O otherwise.

These functions are densities with respect to counting measure on R. Although counting
measure is not sigma-finite, if one restricts attention to those mixing distributions P which
are discrete, then the mixture function fp will also be a density with respect to counting
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Fi6. 1. In Example 1 with K = 2 conv(T") is the closed triangular region generated by extreme
points {0, u;, uz}.

/ TJ)T‘\

F1G. 2. In Example 2 with K = 2 the set I is the union of 0 = {f,: € (0, 1)}, T'1 = {fs: 0 € [ y2,
)} and 'z = (£5: 0 € [ y1, y2)}. Again conv(T) is a closed triangular region.

o

measure, and the mixture density will be a density for P itself. The likelihood curve I
consists of the origin 0 plus the unit vectors u; = (1,0, --- ,0),uz=(0,1,0 ..+ 0) --- ,ug
= (0,0, ---, 1), where the point u; corresponds to the atomic likelihood vector evaluated
at @ = y;. The convex hull of I' is the K-dimensional solid figure with points of I as vertices.
The maximum likelihood estimator for the mixing distribution is well known, being the
empirical distribution function. It puts mass n./n at yx, for k=1, , K. In Figure 1, the
sets I' and conv(I') are illustrated for the case K = 2, along with the correspondmg fitted
likelihood vector f and the supporting hyperplane H which contains f

ExaMPLE 2. Suppose that the atomic densities are uniform on (0, 8]: fy(x) = 1/ if
x € (0, 8]. Let the parameter space Q2 be (0, «), with the Borel measurable sets. The family
of mixture densities is now equivalent to the family of all nonincreasing density functions
of (0, ). The set I" consists of K half-open line segments in K-space, plus the origin 0,
which correspond respectively to values of # in the intervals (0, y1), [ ¥1, ¥2), - -+, [ ¥&, ®).
In Figure 2, the sets I'" and conv(I") are illustrated for y; = 1, y» = 4, n; = 1, n, = 1. Once
again the maximum likelihood estimator @ is known. It is a discrete measure with support
on a subset of { yi, - -+ , ¥k }. The weights are such that the resulting estimated distribution
function F§ is the least concave majorant to the empirical distribution function of the
sample. See, for example, Barlow, et al (1972, page 223).



GEOMETRY OF MIXTURE LIKELIHOODS 89

3. Existence and discreteness. A famous theorem of Caratheodory (R&V, page 76)
ensures that each element f of conv (I') has a representation as fy, where @ has no more
than K + 1 points of support. The following theorem presents results concerning the
existence and support size of the estimator f,

THEOREM 3.1. If T is closed and bounded (compact), then there exists a unique
vector £ on the boundary of conv(T') which maximizes the log likelihood ¢(-) on that set.
The point f can be expressed as fg, where @ has K or fewer points of support.

This theorem is very similar to theorems from design. The proof is elementary: see
Silvey (1980, page 72). In regard to the necessity of the conditions, we note that if T is
unbounded in the positive orthant, then no maximum to ¢(-) exists. If " is not closed, the
theorem can be applied to the closure; one must then determine if the limit points show up
in the maximizing mixture and, if so, how to interpret them. This theorem settles an issue
raised by Laird (1978) as to conditions necessitating the existence of maximizing mixtures
with support size no greater than the sample size.

We note that while the uniqueness of f will guarantee that some functions of Q are
uniquely estimated, there may be more than one mixture @ which satisfies fo = f. The
uniqueness of @ is discussed in Section 8.

4. Differentiation of the log likelihood. In this section the maximization problem
is recast by means of differentiation into a more useful form. In particular, the function
D(6; Q) defined below (4.1) will be repeatedly useful for determining properties of the

estimator.
Viewed as a function of K variables, the function ¢(p) = ¥ n, log p; is differentiable in
the positive orthant, with the directional derivative of ¢ at fo, towards f, being

D(fy,; fo,) = lim e {p((1 — e)fg, + efg,) — ¢(faq,)}
=Y me{fo,(yr) — fo, (3:)}/fasiom -

We write

4.1) D; Q) = d(fy; o) =Y nk{

folye) 1}
fa(ye) ’

and note that [ D(6; @) d@.(6) = @ (fy; fo,).
By analogy to the equivalence theorems of design optimality (see Whittle, 1973,
Theorem 1), we have the following fundamental theorem of mixture estimation.

THEOREM 4.1. A. The measure § which maximizes log L(Q) can be equivalently
characterized by three conditions: (a) Q maximizes L(Q), (b) Q minimizes supyD(6; @),
(c) sup D(6, @) = 0.

B. The point & f) is a saddle point of D, in the sense that

O(fe, B =0=0d ) <od o)

fOI' Qo, Ql (/A . .
C. The support of Q is contained in the set of 8 for which D(0, @) = 0.

This theorem may be given the following geometric interpretation. For fg in conv(I),
let £5 be the vector (n1/fo(y1), -« - , nx/fo(yx)). With this notation D (4, Q) = (5, f;) —
n. The equation (f}, z) = n defines a hyperplane of points in R*; the measure @ is
maximal if and only if {z: (f*, z) = n} is a support hyperplane of the set conv(T);
moreover, since (fg, fy) = n for all 4 in the support of Q, the supporting vectors fy lie in
that hyperplane.
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5. Inequalities; duality. In this section several inequalities are derived which will
be needed in the discussion of algorithms in Section 6. Along the way a dual maximization
problem is presented. The setting is as follows: suppose at stage m of a maximization
algorithm we have obtained estimator @, or equivalently, fy. Given the maximal gradient
8 =sup{D(0; @):0 € 2} and the value log L (@), what can be said about the residual A
=log L(Q) — log L(Q)? We derive the best possible upper and lower bounds for A given
knowledge only of 8.

We first state and prove a duality result for the mixture problem whose design
counterpart can be found in Silvey and Titterington (1973, 1974) and Pukelsheim (1980).
The method of proof was also used in a duality result of Bohning and Hoffmann (1981).
There are two equivalent forms for the dual problem, which we call Problems 1 and 2.

PROBLEM 1. Minimize ¢(p) subject to p € (R*)¥ and ®(f;; p) =0 for all § € Q.
PROBLEM 2. Maximize ¢(w) subject to w € (R*)¥ and (f;, w) = nforall § € Q.

THEOREM 5.1. Suppose that T is compact and that the mixture maximum likelihood
estimator is T. Then T is the solution to Problem 1; W = t* is the solution to Problem 2.

ProoF. Problems 1 and 2 are shown equivalent by the change of variable (p;, ---,
Pk) = (ni/wy, - - -, ng/wg). To solve Problem 1, note that ¢’s concavity implies

o(p) + (F; p) = o(P).

For feasible values of p the second summand is nonpositive, so ¢(p) = ¢(f'). But f is
feasible, so it is the solution. [0

If the set of extreme points of I'in conv(I') is { f5,, + - - , f3, }, then Problem 2 is equivalent
to the maximization of concave function ¢(w) subject to finitely many linear constraints
(w, f5) = n and so could be solved using convex programming techniques. Example 1 of
Section 1 has a particularly simple formulation as Problem 2: maximize Y, n; log w; subject
to 0 = w; < n. Solution: &; = n implies fQ( ¥:) =n;/n.

CoroLLARY 5.2. IfT is compact, then

(5.1) A =< nlog(l + é/n).
~This bound is the best possible given knowledge of 8 only.

Proor. If supyD(8; Q) = §, then for £5 = (n1/fq(y1), - -+ nk/fq(yx)) we have
(f5,fh) <n+46 forall 0€Q

SO

Q.
<n+8fz” ><n forall €

Thus from Problem 2 we hfive o((n/(n + 8))f8) = ¢(W) which gives result (5.1). This last
inequality is an equality if f = (n + §)n"'fg. O

Next, geometric methods will be used to generate a lower bound for A similar to a design
inequality given by Wynn (1970, equation 4.5; see also Fedorov, 1972, Theorem 2.5.2).
Suppose that D (8; @) = a > 0. Then f, is in the hyperplane H = {z: (z,f4) = n + a}. Since
it is also in the nonnegative orthant, it has a convex representation as Y, . px where p;, are
the extreme points of the convex set C generated by intersecting H with the nonnegative
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orthant:

n+a n+a
pl=< fQ(yl)) O, O, M ,O>, Pz = (O) fQ(yZ),O, M )0), e
n ng

n

+ a
pK=<O,O)"°) fQ(yK)>'
ng

For every 0 < £ <1 we have the system of inequalities
infpecd((1 — e)fq + ep) < ¢((1 — o)fg + efy) < o (),
and so
(5.2) sup.infec((1 — e)fq + p) = ¢(f).

For fixed 0 < & < 1 the function ¢((1 — ¢)fg + £p) is concave and continuous as a function
of p € C, so it will attain its global minimum somewhere on the extreme points of C,
namely, {pi1, ---, px} (R&V, page 124). The maximizing value of ¢ may be solved for
explicitly for each p., yielding & = an,/{n(n + a — nz)}.

For this minimizing value the log likelihood can be written as

(5.3) (1 — &)fq + &xpr) = o(fQ) + Br

where
B"=l°g{<1+f)/<” - >}
n n-—ng

Let h(x) = xlog (1 + a/x). It is easily shown that A is concave and increasing in x, and so
Br=h(n) — h(n —ng) >0.

Since the above arguments hold for every 0 < a < §, (5.2) and (5.3) imply the following
theorem.

THEOREM 5.3. Suppose that I is closed and bounded. If Q is a mixing distribution,
let § = sup {D(fy; £fo): 0 € R}, A = log L(Q) — log L(Q), and n* = min,{n.}. Then

(5.4) A= nlog(l + E) —(n - n*)log(l + 8 = )
n n—n

REMARK. The lower bound (5.4) will be met if sup{¢((1 — e)fg + efp): 0 =& =<1,0€
Q) occurs at fy = pi, with n, = n*, and £ = (1 — Hfg + & ps.

6. Algorithms. ' Finding the estimator f generally requires an iterative algorithm.
Herein we first define a somewhat inefficient vertex direction method (VDM) whose
simple proof of convergence will provide proof of the convergence of the more complicated
procedures to be discussed later. At the mth step let @,. be the current estimator; also let
A, = log L(Q) — log L(Qn). Procedure: find 8}, to maximize D (f; @..); then find &, to
maximize ¢(fg (1 — &) + € £y, ); then set Q41 = (1 — &2)@m + En0(07).

THEOREM 6.1. IfT is compact, then the above described VDM algorithm converges;
that is, .

limm-—»oonm = f.

Proor. The proof follows Fedorov (1972, Theorem 2.5.3), with his inequality (2.5.20)
being matched by inequality (5.2) of this paper. See also Wynn (1970). O
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An analysis of the rate of convergence demonstrates that the VDM can slow down (i.e.,
Am — Amz1 proportional to A%) as it nears the maximum if the support points of the
solution f are in the extreme rays of the positive orthant; in those cases the net increment
A, — A+ will be near the minimal value in (5.4), while the residual likelihood A,, is near
the upper bound (5.1). Various modifications have been proposed to the VDM in the
design literature; see, for example, Wu (1978) and Bohmng (1981).

We now consider several methods from the mixture literature. The iterative method of
Simar (1976), given for the Poisson case but more generally applicable, involves finding
the maxima 6* over § of D(6; @..), then forming new estimator @,..1 by maximizing
weights 7 over the set of suppert points 8* U support {@..}. The convergence theorem 6.1
now gives proof of the convergence of Simar’s method, as each step of his algorithm has a
greater increase in likelihood than the VDM. Bohning (1982) has a proof of convergence
for the Poisson case only, along with a discussion of possible modifications for improved
convergence. Silvey and Titterington (1973) prove the design version of this for
D-optimality.

It has also been suggested (Laird, 1978; Jewell, 1982) that one use the EM algorithm
(Dempster, Laird, and Rubin, 1977). This algorithm is directly applicable only to the
constrained problem of maximization over discrete mixtures @ with a fixed number of
support points. (See also Section 7). It can be adapted to the unconstrained problem by
maximizing repeatedly with an increasing number of support points until the estimator
stops changing. Although multiple initial values are generally taken to avoid termination
at a local maximum, verification that D (6, Q) = 0 for all 8 would seem both useful and
necessary to ensure a global maximum has been obtained. Alternation of the EM algorithm
with VDM would guarantee convergence, as the likelihood cannot decrease on the EM
portion.

Silvey, Titterington and Torsney (1978) use a modified version of the EM algorithm for
a design problem where points of support are fixed and weights are to be estimated.
Bohning and Hoffmann (1981) have a discussion of other iteration procedures for this same

problem.

7. Restricted support size estimators. In this section, the preceding theory of the
mixture maximum likelihood estimator is linked to the more familiar problem of estimating
a discrete mixing distribution when the support size is fixed in advance. Everitt and Hand
(1981, page 8) have a general discussion of the latter problem. The two theories are linked
through the differential D(6; @).

Theorem 4.1 indicates that the support points of the global maximum likelihood
estimator Q are local maxima of D (8; @) and so under assumptions of differentiability in
6 of D the measure @ satisfies the following at each interior support point §*:

(7.1) D@#* Q) =0, D'(6*Q)=0, D"(6* Q) =0.

On the other hand, a mixture @ which is a local maximum to L (Q) within the (2m — 1)-
dimensional parameter space (7, §), m fixed, satisfies the following:

THEOREM 7.1. If @ is an m-point maximum likelihood estimator then at each support
point 8* of @ one has

(a) D(0*; @) = 0; (b) if fs(y) has a continuous first derivative in a neighborhood of
6* for each data point y, then D’(8*; @) = 0, and (c) if fy(y) has a continuous second
derivative in a neighborhood of 6* for data point y, then

nip*. f0 (yk)
D" (6% Q@) - Tk n, {f’( }

This lemma can be proved by using the parametric likelihood equations for the problem.
In Part II of this paper we will consider the number and location of the zeroes of functions
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D’(6; @) in the exponential family. Part (b) of the lemma ties this investigation to the
restricted support size problem. Part (c) indicates that a key distinction between the global
maximum and restricted estimators is that the support points of a restricted estimator @
may show up as minima to D(6; @). Since the EM algorithm terminates at restricted
maxima, a simple first order check for global maximality in this algorithm is to verify that
D”(6*; @) < 0 at the support points 8* of the measure §.

8. Uniqueness of the estimator. The next objective is to characterize conditions
under which the estimator of the mixing distribution is unique. That is, when does there
exist a unique @ with f = f6? The point f sits in at least one support hyperplane of the
mixture likelihood set, namely {z: (f*, z) = n}. We first identify a property of this
hyperplane which gives uniqueness.

THEOREM 8.1. Assume I' is compact. The point £ in the boundary of conv(Tl') has a
unique convex representation in terms of elements of T' if lies in a support hyperplane
H of conv(I') which intersects I in a set of affinely mdependent vectors. (These must be
fewer than K in number.)

Proor. Iffisin the support hyperplane H = {z: (w, z) = n}, then all possible support
points of f under any possible representation @ lie in H, and hencein HNT.If HN T
consists of affinely independent vectors, then there exist at most K of them,; say they are
{fs,, -+, f5,}. The point f lies in the convex hull of T, and hence the convex hull of
HnN l" so there exists a convex representation as ), w,fg =1f The weights 7y, - -+ , ms, with
Y, @j = 1, are unique by affine independence.

Given an estimator @, one can thus verify that it is unique by finding all the solutions
f, to (£*, f,) = n and checking if they form an affinely independent set. It is more difficult
to verify in advance that a given family of densities will always generate unique estimators.
One useful approach seems to be the following.

Step 1. Ensure that there can be no more than K solutions to (£*, f;) = n given the
constraint (f * f) =<n.

SteP2. Verify that every set of K or fewer vectorsfy , - - - , fy, are affinely independent.

This approach leads to uniqueness for the exponential family; however, only a few
special cases of Step 1 will be handled in this paper; the general case is treated in part two.
These special cases have a simple treatment because of the following result.

LEMMA 8.2. An exponential polynomial of the form h(x) = Yrqr(x)exp(crz), where
qr(x) is a real ordinary polynomial of degree a., admits at most K — 1 + Y, a, zeroes,
counting multiplicities (Polya and Szego, 1925).

In order to bound the number of maxima (zeroes) to (f*, fy;) — n at K, we note that if
Y. @:fs(y:) is analytic in 6, then it suffices to show that Y, t:fs(y:) = D’(6; §) has at most
2K — 1 zeroes, as maxima must alternate with minima. For the exponential family with
densities of the form f;(x) = exp(fx — k(8)), we have

8.2) . D'(6; Q) = X @n{ys — x'(6)yexp{Oyi — k(6)).

Thus if «’(f) is of the right form, Lemma 8.2 can be applied. In particular, the normal
density with mean # and fixed variance 1 satisfies k’() = 6, so (8.2) has at most 2K — 1
zeroes. The gamma density with scale parameter 1/6 and known shape parameter o has
k’(0) = a/0, so the same bound applies. (Jewell, 1981, has a slightly different proof.) The
Poisson density has k() = e so that the maximal number of zeroes to (8.2) equals the
number of distinct elements in

{y1>""yK'y1+11 "‘1yK+1}
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minus one. Thus for the observed set {1, 2, 3, 7, 8, 9} there are at most 8 zeroes to (8.2) and
hence at most 4 points of support in the interior of the natural parameter space.

Moving to Step 2, we note that it suffices that the vectors f;, ---, fy, be linearly
independent, which is equivalent to

det[fol, e yf0K]7£O

where [y, - - - , f5,]is the K X K matrix with kth column f,,. This is true for the exponential
family densities because they are generated by a totally positive kernel; see Karlin (1968,
pages 18-20, 117-120) for other examples which satisfy Step 2 for this reason.

Acknowledgments. I wish to express my thanks to the referee who pointed out the
link to optimal design theory and the key references therein.
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