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THE ASYMPTOTIC JOINT DISTRIBUTION OF REGRESSION AND
SURVIVAL PARAMETER ESTIMATES IN THE
COX REGRESSION MODEL*
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In this paper it is shown that the Cox likelihood (Cox, 1972) may be
treated as a standard likelihood, in the sense that its maximizer 8 is asymp-
totically normally distributed with asymptotic covariance matrix equal to
—{E8%log L(B8)/3B8’} ~'. In the process, an asymptotic representation of the
score function is obtained in terms of functions of the independent observa-
tions. This representation may have some uses in itself such as: (1) providing
a kind of residual for each observation, censored or uncensored, thereby
indicating the relative influence of the obsevations, and (2) providing some
information about the applicability of the asymptotics in a particular small
sample. R )

The asymptotic joint distribution of B and of the cumulative hazard function
estimator f\o(t) is also derived via a representation of the latter involving an
independent increments process. Bailey (1982) shows that the “joint likelihood
function” of the regression parameters 8 and of the cumulative hazard jump
parameters {A;} can be used in a natural way to obtain consistent estimates
of these joint asymptotic covariances in the case of no ties. This justifies, to
some extent, use of the general ML method for joint estimation of 8 and Ao (¢).

1. Introduction. The Cox regression model (Cox, 1972) has had much use in the
analysis of censored survival data in the presence of explanatory covariates. The model is
that there is some common unknown function Ao (), which gives the shape of the hazard
function for all individuals. An individual whose covariate vector is given by z has a hazard
function proportional to Ao (¢) with proportionality factor exp(8’z), where 8 is an unknown
vector of regression parameters. The problem is to estimate B (and possibly Ao (¢) as well).

Under these assumptions, and assuming we observe n individuals and the minimum of
their survival or censoring time, Cox derived what he later called the “partial likelihood”
function of B, and suggested estimating 8 by maximizing this function. He suggested that
the usual asymptotic properties of standard parametric likelihood functions based on i.i.d.
observations would pertain to this partial likelihood. The likelihood can be written

(1.1) L(B) = [Ii1 exp(B' Zw) /[T exp (B Z))]-

Here, Z, is the covariate of the individual failing at the ith epoch and %, the risk set at
that epoch. Thus the claim was that if # maximized (1.1), then n"?(8 — B) would be
asymptotically distributed as N (0, I*(8)), where I(B) is the Fisher information correspond-
ing to (1.1). However, not until recently has there been any formal justification for this
assertion.

Tsiatis (1981) proves asymptotic normality in the setting of random sampling from
individuals with a given distribution of covariates, and random censorship. In this paper,
another proof is provided in the slightly more general context of a fixed (arbitrary)
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sequence of covariates and censoring times. This may be an important distinction in the
context of clinical trials where one may not wish to assume the subjects are randomly
sampled from any population. Another difference between this work and that of Tsiatis is
the method of proof. Tsiatis uses weak convergence of some associated processes in proving
normality of 8. Our proof involves a projection technique leading to an asymptotic
representation of the score function as a sum of independent nonidentically distributed
random variables. This representation has interest in its own right, since it indicates the
influence of censored and of uncensored observations.

Also of interest is the asymptotic distribution of the survival function estimator, or
equivalently of the cumulative hazard estimator. Tsiatis also finds the asympt(ltic distri-
bution of the cumulative hazard estimates including the joint normality of [8, Ao(¢)] and
weak convergence of Ao(#) to a normal process. Again the present work is in the slightly
different context of fixed covariates, and uses a different method of proof, namely an
asymptotic representation of the hazard function estimator as the sum of an independent
increments process and another term which is the product of (B—p)and a fixed function
of time. This representation [see (3.17)] has intrinsic interest, since it shows how simple
the structure of the joint estimator is.

2. Asymptotic distribution of 8. In this section it is verified that the maximizer B
of (1.1) obeys the same asymptotic theory as if (1.1) were a standard parametric likelihood
based on i.i.d. observations. This will be done assuming an arbitrary fixed sequence of
covariate values and censoring times. This is an important case, since it arises in the
context of continuous recruitment in clinical trials, and since it generalizes the case of
random censoring, and random covariates.

The method of proof is to provide an asymptotic representation of ,8 in terms of a sum
of independent (but not identically distributed) random variables. This is done by a
projection method due to Hajek applied to the first derivative of the logarithm of (1.1).
Thus the first derivative is shown to be asymptotically equivalent to a sum of independent
random variables satisfying the conditions of the Liapunov Central Limit Theorem.

2.1 Assumptions and results. Let {(Z1, 11), (Zz, 72), +-+} be an arbitrary (nonrandom)
sequence of covariate vectors and censoring times assoc1ated with a sequence of individuals.
Further assume that T4, T3, - - - are mutually independent survival times with distribution
as implied by the Cox model S (t | Z) = {So(t)}=>¥ 2 The parameter 8 is assumed unknown.
Assume S, arbitrary, except that it is differentiable with hazard function A,. We observe
(T} &):i=1,.-.,n} where T¥ = min(T,, 7;), and §; = I{T; < 7;}. Let us define Up)
= dlog L(B)/48 and V(8) = —d%log L (B)/3B3B’. A direct calculation shows that

(2.1 UB) =Yk (Zi— Z)8i= Y= Ui(B), and V() =¥ Vibi,
where

Z: =30 Ziexp(B'Z) | Ln, exp(B'Z)),
(2.2) Vi=Yu, Z;Zjexp(B'Z;) [T, exp(B'Z)) — Z.Z:,
and

Ri={j|Ty>Tr}.

Let us impose the following conditions on the Z’s and 7’s.
AssUMPTION Al. |Z;| < M < = for all { and some constant M.
AssuMPTION A2. n”'x’{EV(B)}x > ¢ > 0 for all | x| = 1 and all sufficiently large n.

Assumption 1 is quite reasonable and very convenient for the purpose of moment
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calculations. Assumption 2 says that the expected “information matrix” increases propor-
tionally with n, another reasonable condition.
Under the above assumptions, we have

THEOREM 1. (a) Pr{,B exists and is unique} — 1 as n — , (b) |,8 B|—r 0, and (c)

(V®)Y*B - B — N, I).

Theorem 1 says that the maximizer of (1.1) may be treated just as if it were a standard
parametric MLE.

2.2 Preliminaries. In the course of the proof, two systems of indices will be used: (1)
the original system, corresponding to the sequence of independent observations, and (2) a
system corresponding to the ordered times of death, in which the subscripts will be given
in parentheses. Thus Z; will refer to the ith covariate vector in the sequence, whereas Z;
will refer to the covariate vector for the individual dying at the ith time of death. Note
that this will depend on n, which will be suppressed in the notation. The dependence of U
and V and other quantities on B will also be suppressed where convenient.

The functions U(B) and V(B8) can now be expressed as follows:

(2.3) UPB) =3 Ui(B) = 3k1 Up (B),
where £ is the number of deaths. Similarly,
(2.4) V(B) = X1 8:Vi(B) = Tk1 Viy (B).

As Cox (1972) noted, since U, and —V; are first and second derivatives of the log of the
conditional likelihood of the data given a death from risk set Ry;, it follows immediately
that

E(Uy) = E{E(Uy|Rw)} =0
(2.5) Cov(Uyy) = E{Cov(Uy|Rw»)} + Cov(0) = E(V(»), and
E(Uy|Uw) = E{E(Uy|Us, R») |Un} = E(0) =0, for j>i.
Therefore, summing (2.5) over all deaths, it follows that
(2.6) E{UB)} =0, and Cov{U(B)} = E{V(B)}.
It will first be shown (after Lemma 2.3, a technical lemma) that

LEMMA 2.1. n7'|V(B) — EV(8) | —»O.

Lemma 2.1 will be shown to imply the existence, uniqueness, and consistency of 8, and
to imply the existence of a Taylor series representation:

2.7 ’ VB -8 =U®),

where the ith row of V* is that of V evaluated at some point 8} intermediate between S
and B V* is not necessarily positive definite. Nevertheless, the consistency of ,8 and the
equicontinuity of the components of V near 8 imply that n ' V* converges to n 'V (8), and
therefore to n'EV(B). Therefore, it will suffice to show that

LEmMMa 22. {EV(8)}2U(B) — N(0, I).

There is a key technical lemma which is very useful in the proof of these lemmas,
involving approximation of random sums by their expectations. First let us define
(2.8) mt) =Y I{T}f >¢t}, and

p() =i I{r; > t}S(t|Z;) = E{m(t)},
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the observed and expected number at risk at time ¢ Let d (z) be any continuous nonnegative
function of z bounded away from zero. Let a(z) be a bounded function. Let d(t) =
Y I{T} > t}d(Z;), and let d(¢) be E{d(t)}, and similarly for a(¢) and @(¢). The notation
Y = O,[f(x)] is used to mean that | Y| is bounded by a constant multiple of f(x) uniformly
in x. Finally, the notation f~'(x) is used to mean 1/f(x). The following lemma is merely an
application of the delta method.

LeEmMMA 2.3. Conditionalon T >t, andforj=1,2, ...,

(a) E[d7'(®)] = d'(¢) + Ou[min(2(¢), 1)]

(b) Var[d~'()] = O.[min( (), 1)]

(c) E[a/(t)/d(t)] = [@(¢)/d (&)} + O.[min(p"\(¢), 1)]

(d) Var[a/(¢)/d’(¢)] = O.[min( ™' (¢), 1)]

PROOF OF (a). Suppressing the dependence on ¢, d ' may be expanded as
2.9) dl=d' - (d-d)d?+d-d)>*d"),

where d* is intermediate between d and d. Now d*(t) > cm(t) for some ¢, by assumption,
and therefore g

(210) |E@TFr>t)—d'|<d2|Ed|T!>t)—d|+c E{(d - d/m’}.

Itis easy tosee that E(d|T¥ >t) —d = O(1). It follows that the first RHS term of (2.10)
is O.[p72(¢)]. Let A = (d — d)? and let B = m™% By Cauchy-Schwarz, E(AB) <
E2(AY)EY*(B?. It is clear that E(A? = O,[u%(¢)]. Similarly, E(m~¢) | T} > t] =
O,[p"8(¢)]. Part (a) follows immediately. The other proofs are parallel.

2.3 Proof of Lemma 2.1. Next it is shown that cov{V(8)} = o (n?). For simplicity. Let
us consider a single element of V, say v. The variance of v is bounded by

(2.11) Var(v) < Y1 Y 7=1 | cov(v;, v)) |.

Conditioning on the value of T'# gives

(2.12) Cov(v;, v;) = E{Cov(v;, vj| T#)} + Cov{E (v;| T}¥), E (v;| T¥)}.
By Lemma 2.3, conditioning on T}, var(v;| T#) = O, {min[p~"(T}), 1]}. Thus,
(2.13) Cov(v, vj| T¥) = O, {min[p"*(T¢), 11}.

For the second term in (2.12), note that v; depends on T} only through the presence or
absence of the ith individual in R;. Hence | E (vj| T¥) — E(vj) | = O{E[m™(T})1}, which
implies that

(2.14) R Cov[E (vi| T#), E(v| T¥)] = O{E[m ™ (T})]}.

It is now claimed that the expectation of (2.13), summed over all i and j, is O(n*?). If the
index i is drawn at random uniformly from {1, - - - , n}, then n"'w(T}) is a random variable
which is stochastically larger than a U[0, 1] random variable. Substitution of a U[0, 1]
random variable into (2.13), taking expectations and summing over ¢ and j verifies the
claim. A similar argument can be made that n™'m(T}) can be replaced by a U[0, 1]
random variables when (2.14) is summed over all i and j. This implies that the sum is
O (nlogn). Therefore, (2.11) is 0 (n?), as claimed. Lemma 2.1 follows by A2 and Chebychev’s
inequality.

The existence and uniqueness of B can be shown as follows. Lemma 2.1 and A2 imply
that V(B) is positive definite with probability approaching 1. Since, for any fixed b, V(d)
is a sum of weighted covariance matrices with weights bounded away from zero and
bounded above, it follows that V(-) is positive definite for all g if it is positive definite for
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any. Therefore, with probability approaching, 1, log(L) is strictly concave. Therefore, ,é
exists, is unique, and has the representation (2.7). To prove consistency, consider the
distances r, = n7?*%, 0 < ¢ < %. Consider the events E., and EZ%, where

(215)  Ei={|f-B|>r), and E}= {log[L(8 + raux)]>log[L (A1},

where u, = (8 — B)/| 8 — B|. By log concavity of L, E} C E2%, and therefore Pr{E}} <
Pr{EZ%}. But EZ can be expanded as

(2.16) E: = (2n7*uU(B) > n"'u, V(B*)u, )},

where B8* is intermediate between 8 and B8 + r,u,. Since cov(U) = EV = O(n), the LHS
in brackets converges to zero in probability. By assumption A2, since 8* — B by
construction, and by the fact that n~'V(.) is equicontinuous near 8 (having bounded
derivatives), the RHS in brackets is bounded away from zero for all sufficiently large n.
Therefore Pr(E%) — 0, and ,é is consistent.

By Lemma 2.1, the consistency of B, and the equicontinuity of the components of V
near B, it is clear that V*, V(ﬁ), and EV(B) are asymptotically interchangeable in the
representation (2.7).

2.4 Asymptotic representation of U. Turning to Lemma 2.2, it was noted earlier that
cov(U) = EYV, so the only issue is the normality of U(B). As Cox pointed out, U(B) is the
sum of uncorrelated but not independent vectors U . Let us therefore define U: =
E{UB)|(Z:;, T#, 6:)}. We may think of U: as the projection of U onto the space of square
integrable functions of the ith independent observation. Clearly {0} form a set of
independent random vectors. Let U= ¥ U:. By Hajek’s projection lemma [Hajek, 1968,
Lemma 4.1],

(2.17) cov(l?) + cov(U — 17) = cov(U).
Thus if cov(U) — cov(ﬁ) can be shown to be o(n), it will follow that

LEMMA 24. n"VX(U - U) -5 0.
This lemma says that U is an asymptotic representation of U in terms of independent
random vectors. To prove it, let us compute U; directly. First note that
(2.18) U:=EUi|Z, T, 8) + EQw Uj| Z;, T*,8:).
By Lemma 2.3, with a(z) = z exp(8’z) and d(z) = exp(B’z),
(2.19) E(Z| Ty, Z:) = g(T¥) + O, {min[u(T}), 1]}, where

S o1 Ziexp(B'Z)S (¢ Z)I {t < 1)
S exp(BZ)SE [ Z)I(E < 7,3

To approximate the second RHS term in (2.18), le_t us define #j; as #; minus the ith
individual, if present. With Z/; defined analogously, Z; can be expanded as

(2.20) Zi=27Z;— I{i € B} (D}) "(Z: — Z})exp(B'Z:)[1 — exp(B’Z:)/D;],

where D; = ¥, exp(B’ Z:), and Dj; is relative to #j;. Clearly (Z},, D}) is independent of (Z;,
T#, 8:), so that E (Y ;i (Z; — Z};)8;| (Z:, T#, 8;)} = 0. Therefore, if we let I;; = I{i € %;}, the
second RHS term in (2.18) may be expanded as

(221) EQ: Uil Z;, TF, 8) =
—E (3xi[L;(D) " (Z: — Zj)exp(B' Zi)(1 + Ou[m™(T})1| (Zi, T¥, 8:)}.
Conditioning on 7} in (2.22), applying Lemma 2.3, and integrating with respect to the

g(t) =
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distribution of T}, denoted by dF(s| Z;), gives

Tl
RHS = —exp(B8’ Z)) Zj,éij [I{r;> s}D(s){Z; — g(s)}1dF (s| Z)
(2.22) o

T
—exp(8’ Z;) Zj,eiJ’ [I{r;> s} O.{min[u"%(s), 11}1dF (s| Z),
0

where D(s) =Y I{s<1;}exp(8’ Z;)S(s| Z;). Since ¥ I{r;> s }dF (s| Z;) = Ao (s)D(s) ds, the
integral in (2.22) simplifies to

(2.23) RHS = —exp(B’ Z;) f l {Z; — g(s)}o(s) ds + O, {min[u " (T¥), 1]}.
0

The bound on the remainder term follows from the fact that the measure du(s) dominates
the measure Y I{7; > s} dF(s|Z;). Combining (2.1), (2. 18) (2.19), (2.21), and (2.23), the
term U can be written as

77
Ui=(Z - g(T¥)}o: - J {Z: — g(s))\(s]| Z;) ds + O, {min[u~"(T?}), 1]}
(2.24) 0
=A;—B;+r.

With this representation in hand, let us compute the moments of U,. By an argument like
the one after (2.14), E(}, rirf) = O(1). By the independence of r; and r;,

(2.25) cov(iir) = 0O(1).

Next consider the moments of A; and B;. Let dF*(s| Z;, ;) be the distribution of 7'} and
f(s|Z;) the density of T;. By a direct calculation,

E(B;) = f [f {Z; — g(r)}\(r|Z:) dr] dF*(s|Z;, ;)
0 0
(2.26) = f {Z; —g(’”)}f(rIZi)Snl(rlzi){f dF*(Slzi,Ti)} dr
0 r

T
= J {Z:— g(r)}f(r|Z:) dr = E (4).
0

The third line follows because, for r < 7;, [ dF*(s| Z;, 7;) = S(r| Z;). A similar calculation
shows that

(2.27) E(A;B)) = E(B;B})/2,
and therefore, cov(4; — B;) = E(A;A}). Now E (A;) # 0. Nevertheless, by the independence
of (A; — B;) and (A; — Bj), it follows that
(2.28) cov{}i-1 (Ai — By)} = ¥i-1 cov(A; — B)) = }i-1 E(A;A))
=EQr AiA) = E{JE,ApAl).
To evaluate the last expectation, condition first on the ith event occurring, and on T'f) and
R to get
(2.29) E(AwpAy) = E(Vy) + E[{Zy — g(TH)}{(Zw — g(TH))]

The first RHS term in (2.29), summed over i, is EV(8). The sum of second terms can be
rewritten as ¥ E[{Z; — g(T¥)}{Z, — g(T¥)}'8;]. In this form, Lemma 2.3 can be applied
and the sum can be seen to be O(log n), by using the usual U[0, 1] comparison. It follows
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that
(2.30) EQEi1ApAw) = E(V) +o(n).

Combining (2.6), (2.17), (2.24), (2.25), (2.28), (2.30), and Chebychev’s inequality gives
Lemma 2.4.

2.5 Asymptotic Normality of U. The only issue remammg is asymptotic normal-
ity. Consider an arbitrary linear combination x’ U with |x| = 1. Let My =
CE|x U:1%", and let M, = (3 E | x’ U;|%)2 It will be shown that lim M; /M, = 0. Since
U; and U; are independent, M, = E (| x’ U|?)"2 The preceding proof, plus assumption A2
imply that M, > cn'/? for some c and all sufficiently large n. The quantities x’ A; and x’ r;
are uniformly O(1). The term x’B; is O[f%* A(s|Z:) ds] = O[—log S(T'} | Z: )] Thus x'B; is
dominated by a unit exponential random variable, which implies that E[| x’ U.*1=0qQ).
Therefore Ms = O(n'/?), U satisfies the Liapunov CLT conditions, and Lemma 2.2 and

Theorem 1 follow. .

2.6 Remarks. Having proved Theorem 1, it is worth examining the representation
(2.24), which in effect gives us the “regression” of the score function U(B8) on each
independent observation. In particular, note that A; — B; can be considered (asymptoti-
cally) as a residual for the ith observation. This vector can be estimated from the sample
by an empirical analogue. This has potential diagnostic value in assessmg the influence of
various points on B Of course, it must be born in mind that the U’s do not have identical
covariance matrices. Nevertheless, these too can be estimated from the data. In fact one
can write

(2.31) cov(4;— Bi|Z,, .) = E(A;A}|Zi, i) = J l {Z:— g(s)}{Z: — g(s)} dF(s| Z).
0

In order to estimate (2.31), 7; must be known, which is typically the case in clinical trials.
In that case, the joint MLE of (8, S(s|Z;)) as given in Bailey (1980) or in Prentice and
Gloeckler (1978) can be substituted (along with Z(s) for g(s)) into (2.31) to obtain an
estimate of cov(A; — B,). This requires substantial computation, since for each Z;, one
integrates with respect to a different measure S (s| Z:). Clearly, whether we standardize or
not, the asymptotic distribution of these “residuals” is not normal, depending so directly
on §;. However, there is enough continuity to suggest that a normal approximation might
be useful in an informal way.

3. The distribution of Ao(t). In this section the asymptotic distribution of Ao(2) is
derived, where

3.1) Ro(t) =3H9 D, with
k(t) = card{i| T* = ¢, 8 =1}, ﬁ(i) = Yo exp(ﬁ, Z;).

The quantity Ao(t) is often used to estimate the cumulative hazard function Ao(¢) =
J* Ao(s) ds. In the interest of simplicity, assume no censoring, although the modifications
needed for censoring will be suggested. Further assume that attention is restricted to
[0, T'], where So(T') = § — 0. This implies that, for any ¢ > 0,

(3.2) Pr{k(T) <n(l—§ +¢)} —p0.

Given these assumptions, the following theorem holds.

THEOREM 2. C~2()((8 — B), {Ao(t) — Ao(t)}) — N(O, I), where
0) = [{EV(B)} ! {EV(B)}'T(¢) ]

(3.3)
'O(EVB)} ™ @) + T'O{EV(B)}'T(¢)
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with
F(t)Ef &(s)ho(s) ds, and lI/(t)EJ D(s) dpufs).
0 0

Since there is no censoring, du(s) = Y, dF(s|Z;). Furthermore, note that, since the
sequence {Z;} is arbitrary, C(t) depends on n, so Theorem 2 must be stated with the C
dependence on the left.

Proor. The basic idea of the proof is to expand Ao(¢) about the true parameter value.
This gives

(3.4) Ro(t) = THY DG = 3 DG — (3H DG Zw Y (B - B)
+5 B =B 0* OB - B),

where p*(¢) = Y D& (VY — Z%Z%), and the asterisks indicate evaluation at an
intermediate value 8*. Let us define

Ao(t) = 3E9 D, n(t) = Ao(t) — Ao(t), ') =3 Z, D3 .

The proof of Theorem 2 consists in showing that
LEMMA 3.1. ¢~ 2(t)n(t) — N(0, 1),
LemMa 32. T(¢) —T(¢) —»»0,

and
LEMMA 3.3. n Y% p*(t) —p 0.

Lemma 3.3 follows from the observation that the summands of p*(¢) are O.[m™(¢)],
and therefore, by (3.2), for ¢ < T, sup p*(¢) = O,(1).
To prove Lemma 3.1, note that n(¢) can be expressed as the sum

Tm t
n(t) =Y E {DG? —f Ao(s) dS} - Ao (s) ds

T-1 Triy

Tw ¢
(3.5) = ko Dm {J’ Dyo(s) ds — 1} - J’ Ao(s) ds

To-n Try
, ‘
=Y Die—1) — j Ao (s) ds,

They

where {e;} are i.i.d. unit exponential random variables. The second term in (3.5) is of order
O[m™(t)exw ]. From (3.2) and the fact that max;e; = O, (log n), the supremum over ¢ < T
of this quantity is O,(n"" log n). Thus, apart from a term o,(1), 7(¢) has the form of a
weighted sum of a random number of independent centered unit exponentials, where the
weights are also random. If we could replace both the weights and the random index % (¢)
by their expectations, then Lemma 3.1 would follow. Indeed, one has weak convergence of
n(¢) to an independent increments process with covariance function cov{n(s), n(¢)} =
Y(min(s, ¢)).

The random weights D7 can be taken care of as follows. The variance of Dy, is of order
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O(n). This can be seen by writing
Dy =Y j-1expBZ)I{T;= Ty},

and noting that the terms in the sum are O(1) and slightly negatively correlated. Note
that for i < n(l — § + ¢), Dy > cn, for some positive c. Therefore, var(Dy) ) = O(n™3),
uniformly in i < n(1 — 8 + ¢). Let ¢y'= Dy — E (D7 ). Since e; is independent of Dy;, and
of the past up to T;_1y, it follows that E {e};(e; — 1)%} = O,(n"®), and that

(3.6) cov{e(e; — 1), e»(e; — 1)} = 0, 15 .

Therefore, the sequence of partial sums Y &, (e; — 1) forms a martingale, which, along with
(3.2), implies that

(3.7) sSup:=rh 172 |Z{’i‘i &) (ei - 1) I —p 0.

If Dy = E(Dy), then D can be substituted for E (D ) in (3.7).

The random index % (¢) can be handled as follows. Let £ be defined as the smallest value
such that & (f) = [Ek(t)]. Partition [0, T'] into subintervals [#;, £ ], where ¢; is defined by
Ek(t;) = vi=in'>**, a > 0. The uniform convergence in probability of n"/*{k(t) — Ek(¢)}
to 0 implies that ¢ and ¢ will be in the same or adjacent subintervals for all ¢ in [0, T'] with
probability approaching 1. The triangle inequality gives

(3.8) supe<rn? | YEC D (er — 1) — TH2Y D@ (er — 1) | < 3 max;&;, where
(3.9) & = max,<jenn| N2 5 DA (e — 1)|.

The fourth moment version of Kolmogorov’s inequality gives

(3.10) Pr{&i>e} <e™E{n'? 35 D{i(e— 1} =7 0u(n™1*™).
Taking maxima over i gives

(3.11) Pr(max;§; > €) = e {0 (20 (n 1) = ¢ 740 (n™V/?%).

If ¢ is taken to be n_l/é“‘/‘”", with 0 < a/4 + p < 1/8, then

(3.12) Pr(maxé; > n*/***~8) = O(n"*),

and so max;§; —p 0. Thus there is a uniform representation of 7(¢),

(3.13) supo<,=rn*(n(t) — 7(t)} —p 0,

where 7(t) = Y42 D (e; — 1). It follows immediately that n'y(t) is essentially an
independent increments process with covariance function Y (¢) = n YF4? D . This
converges to Y(¢), which can be shown as follows. Notice that

(3.14) , nYiy DHTHIT < t) = n $149 DF.
The LHS of (3.14) can be approximated by
(3.15) |n Y D HT)I{T: <t} — n Y1 DXTHI{T: < t}| —» 0.

This follows from a variance calculation based on Lemma 2.3. The approximating sum

converges to Y(¢) by the strong law of large numbers. The RHS of (3.14) converges to

n YE9 D@ by variance calculations based on var(Dg#) = O(n~°%). Thus the equivalent

sums in (3.14) converge to Y(¢) and afz(t). It also follows from (3.13) that n(¢) and ﬁ are

asymptotically independent, since clearly the representation 7(¢) is independent of 8.
Turning to Lemma 3.2, T'(¢) — I'(¢) can be expressed as

t

T - Te) =34 2y D —J &(s)o(s) ds
0
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(3.16) =Y D3 {Zw - g(Tw)} — XA DG g(Tw)(e: — 1)
t
+ Y 0(eDW){&(Tw) — g(Tu-1)} —j &(s)o(s) ds,

Tr

using an integration by parts to obtain the second and third terms. The first term converges
uniformly to zero by a Glivenko-Cantelli argument applied to the process Z(s) — g(s). For
the second term, use a martingale argument. For the third term, note that g’(s) = O.(Ao(s)),
so that g(T,) — g(T-1) = Oule;/ D). Therefore, the third term is O,(n'log n), uniformly
in ¢. The fourth term is also uniformly O,(n 'log n). This establishes Lemma 3.2, and the
uniform representation

(3.17) n2{Ao(t) — Ao(t)} = n'?q(t) + n'*(B — BIT(2) +0,(1),

where 7(¢) is an independent increments process independent of 8 with covariance function
which is asymptotically equivalent to y, and where I'(¢) is the nonrandom function given
in (3.3). Theorem 2 follows immediately. The uniformity of the representation (3.17)
implies weak convergence to a normal process, by using the standard case given in
Billingsley (1968, pages 68-70].

If censoring is allowed, the technical details become more cumbersome, but the idea is
identical. In that case one has to allow for the fact that the ith event may not occur. If
attention is limited to an interval and to such i that Pr{the ith event occurs} — 1, and if
the definition of () is modified appropriately, the same basic argument can be used. One
nice feature of this representation is that it shows the essential simplicity of the joint
estimate of [B, Sy (¢)] in the Cox model.
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