The Annals of Statistics
1981, Vol. 9, No. 5, 1087-1095

RANK TESTS FOR BIVARIATE SYMMETRY

By ToM SNIJIDERS
University of Groningen

The problem is considered of testing symmetry of a bivariate distribution
ZL(X, Y) against “asymmetry towards high X-values,” subject to the restric-
tion of invariance under the transformations (x., y,) — (g(x.), g(»)) (1 =1
= n) for increasing bijections g. This invariance restriction prohibits the
common reduction to the differences x, — y.. The intuitive concept of “asym-
metry towards high X-values” is approached in several ways, and a mathe-
matical formulation for this concept is proposed. Most powerful and locally
most powerful invariant similar tests against certain subalternatives are char-
acterized by means of a Hoeffding formula. Asymptotic normality and consis-
tency results are obtained for appropriate linear rank tests.

1. Introduction. Consider the testing problem where, on the basis of a random
sample from a bivariate distribution # (X, Y'), the null hypothesis

H: X, Y)=2(Y, X)

of bivariate symmetry has to be tested against the composite one-sided alternative that
asymmetry exists, X tending to be larger than Y. A standard treatment reduces this
problem to a problem of univariate symmetry by restricting attention to the difference X
— Y. The alternative hypothesis is then formulated as “X — Y is stochastically larger than
Y — X, and a commonly used test is the Wilcoxon signed-rank test; see, e.g., Lehmann
(1959) Section 6.7. The original testing problem (with the informally expressed alternative
hypothesis) can, however, be considered to be invariant under the group of transformations
-(x, y) — (g(x), g(y)), where g is an increasing bijection g : R — R. The formulation of the
alternative hypothesis mentioned above and the Wilcoxon signed-rank test (for most
significance levels) are not invariant under this group. In Section 2 a concept of bivariate
asymmetry is developed which leads to an invariant alternative hypothesis; several
equivalent formulations of this concept are given. Invariant similar size « tests are studied
in the following sections. In Section 4 a Hoeffding formula is derived, and used to
characterize most powerful and locally most powerful tests in this class against certain
subalternatives. Section 5 gives some large sample properties of linear bivariate rank tests.
An important test encountered in Sections 4 and 5 is a test using Wilcoxon scores, which
can be viewed as a competitor to the Wilcoxon signed rank test.

Other papers about testing bivariate symmetry include Bell and Haller (1969), discussing
the formulation of the null hypothesis and similar size « tests; Hollander (1971) and Koziol
(1979), treating a test against the unrestricted alternative; and Sen (1967) and Yanagimoto
and Sibuya (1976), discussing rank tests against restricted alternatives. Section 2 of the
present paper is based mainly on Schaafsma (1976).

2. Bivariate asymmetry. Let % be the group of all increasing bijections g : R —
R, and #; the group of all transformations (x, y) — (g(x), g(y)) with g € 4. We wish to
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define asymmetry concepts for bivariate probability distributions, which are expressions of
the intuitive concept that for the pair of random variables (X, Y), X tends to be larger
than Y; and which are invariant under % . Three approaches will be considered.

(i) Yanagimoto and Sibuya (1972) study a family of asymmetry concepts. For a class
# of measurable subsets of R? these authors define X to be stochastically larger than Y
with respect to £ if

P{(X,Y)EA})=P{(Y,X) €A} forall A€ A.

Yanagimoto and Sibuya (1972) consider many classes #, and the relationships between
the corresponding asymmetry concepts. We only consider

Z={{(x,y)]8x) —g(y)=c} gE 4, cER}

R = {{(x, y)| f(x) = y}| f : R > R increasing continuous}

A ={{x,y)|x=a,ysa}|aER)}

Ry = {A C R?|if (x1, y1) EA, x2 = x1, y2 < y1, then (xz, y:) € A}.

%, yields the H#p-invariant analogue of the asymmetry concept mentioned in the introduc-
tion, that X — Y is stochastically larger than Y — X: for every g € ¥, g(X) — g(Y) is
stochastically larger than g(Y) — g(X). The asymmetry concept generated by %, was
proposed by Schaafsma (1966), who also derived some properties of this concept. #; leads
to comparison of the marginal distributions: the marginal distribution of X is stochastically
larger than that of Y. %, is the class of increasing subsets (subsets with increasing indicator
function), when R? is partially ordered by

(2.1) (x1, ¥1) < (xe, ¥2) iff xi=x and ¥y = y..

It can be shown by means of a limiting argument, that %, and %, generate the same
asymmetry concept. (Yanagimoto and Sibuya (1972) mention the classes #; and %;, but
not %, and %,).

(ii) Schaafsma (1976) gives the following two “probability 1-concepts.”

There exists a probability distribution #(Z,, Z,, Zs) on R® with (X, Y) =

22D 9@z, 2, L(Ze, Zo) = L(Zs, Zo), P(Z1 = Zs) = L.

There exists a probability distribution #(Z, Z., Zs, Z,) on R* with
(2.3) LX,Y) = L4, Zy) = L(Zs, Z3), L (21, Zs) = L2, Z)), LZs, Z3) =
.,%’(Z3, Zg), P{Z] = Z3, Z2 = Z4} =1.

These definitions can be interpreted in the following way. Let Z; and Z, be scores obtained
from a pair of subjects, of which one is assigned to treatment (yielding Z,) and the other
to control (yielding Z.). Then Z; gives the hypothetical unobservable score of the first
subject, had it been assigned to control; Z, gives the hypothetical unobservable score of
the second subject, had it been assigned to treatment. It is immediately seen that (2.3)
implies (2.2). The reverse implication is also true: let #(Z,, Z,, Z3) be as in (2.2), and let
W be a random variable such that

(a) conditionally on (Z;, Z;), Z, — Z3 and W are independent;

(b) LW (Z,, Z3) = (22, 23)) = L(Z1 — Z3|(Zs, Z3) = (23, 22));
then (2., Z,, Z3, Z, + W) satisfies (2.3). So (2.2) and (2.3) define the same asymmetry
concept for (X, Y).

(iii) A quasi-axiomatic approach can be taken by formulating some properties which
the asymmetry concept should have, and deriving the smallest/largest/unique set of
bivariate distributions with these properties, if such a set exists. The following properties
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seem to be fundamental. Denote by #,, the class of all bivariate probability distributions
which satisfy the asymmetry concept or are symmetric.

If X and Y are independent and X is stochastically larger than Y, then
LX,Y) € Pus.

If (X, Y) € #,,, then the marginal distribution of X is stochastically
larger than the marginal distribution of Y.

(2.4)

(2.5)

(2.6) 2. is convex (closed under mixtures).
(2.7) 2. 1s closed under convolutions.

Let Z, be the (weakly) closed convex hull of all #(X, Y) mentioned in (2.4) and %, the
class of all #(X, Y) for which X is stochastically larger than Y. Both £, and %, satisfy
these four properties, and for every weakly closed Z,; which satisfies them one has £, C
Pos C P

The asymmetry concepts generated by %, %, and %, in (i), the asymmetry concept of
(ii) and that defined by £, in (iii) are identical. A “natural” setting for this result is the
partial ordering of probability distributions on a partially ordered outcome space studied
by Lehmann (1955) and Kamae, Krengel and O’Brien (1977). For a measurable space &
with partial ordering <, the class of probability distributions on Z can be partially ordered
by defining P; < P, if

(2.8) E,f(X)=E.f(X) for all bounded measurable <-increasing f: 2 — R.

Kamae, Krengel and O’Brien (1977) demonstrate that if 2 is a Polish space and < a closed
partial ordering, then (2.8) is equivalent with both

(2.9) P,(A) = Py(A) for all closed <-increasing A C &
and
There exists a probability distribution % (X1, X;) on 22 with

f(X1)=P1, .ﬁ,p(Xz)=P2 and P{X1<X2}=1.

(This shows that Lehmann (1955) errs when he states that his conditions A and B are not
equivalent.) This leads to the following definition and theorem.

(2.10)

~ DEFINITION 1. The probability distribution £(X, Y) on R? is asymmetric towards
high X-values if

Ef(X,Y) = Ef(Y, X)

for every bounded measurable f : R? — R which is increasing in the first and decreasing
in the second coordinate, with strict inequality for some f.

THEOREM 1. For probability distributions (X, Y) on R® with #(X,Y) # £ (Y, X),
the following conditions are equivalent.

(a) XX, Y) is asymmetric towards high X-values

(b) X is stochastically larger than Y with respect to %,

(c) X is stochastically larger than Y with respect to R»

(d) X is stochastically larger than Y with respect to R4

(e) Z(X,Y) satisfies (2.2) or (2.3)

(f)y X, Y) € 2,

(g) LY, X)2 L(X,Y) (see(2.1) and (2.8)).

Proor. It is trivial that (g) < (a) = (b). The equivalence of (a), (d) and (e) follows
from the equivalence of (2.8), (2.9) and (2.10). The equivalence of (c) and (d) was mentioned
in (i) above. It will now be demonstrated that (b) = (c) and (e)  (f).
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(b) = (c). A sufficient condition for (c) is that
(2.11) P{fX)=Y}=P{f(Y)=X}

for all f € % For such f, (2.11) is not affected when f is replaced by f with f(x) =
min{ f(x), f~*(x)}. This f satisfies f(x) < x. With an approximation argument, this shows
that it is sufficient to prove (2.11) for all f € ¢ with f(x) < x for all x. This will be deduced
from (b) by demonstrating that for every such f, there exists a g € ¥ with g(x) — g(f(x))
= 1, implying that

{fx) = y} = {g(x) — g(y) = 1}.

Define g(x) = —x/f(0) for f(0) = x < 0, and extend g as follows. If g is defined on [ f"(0),
f771(0)) then define g(x) = g(f*(x)) — 1 for f"*(0) < x < f"(0). Extend to the right in a
similar way. This yields a function ¥ € ¥ satisfying g(x) — g(f(x)) = 1.

(e) « (f). Let 2, be the class of all bivariate probability distributions satisfying (2.3); it
must be proved that & = £,. It is clear that Z. is closed and convex and satisfies (2.4), so
2, C %.. The proof of #. C %, will only be sketched, without giving the topological details.
It follows from (2.3) that the extreme points of Z. are precisely the distributions concen-
trated in some point (x, y) with x = y. These distributions satisfy the condition mentioned
in (2.4); so 2., being the closed convex hull of its set of extreme points, is a subset of
2,. 0

ProrosiTION 1. If £(X, Y) is asymmetric towards high X-values, then P{X = c} =
P{Y = c}, with strict inequality for some c.

Proor. Theorem 1 implies the existence of a ¥ (Z,, Z., Z3, Z,) as mentioned in (2.3).
As (X, Y) # £(Y, X), one has

0<P{Z,>Z or Zo<Z) <P{Z>2Z) + P{Z:<Zs) = 2P{Z, > Zs}.

But P{Z, = Z;} = 1 and P{Z, > Z;} > 0 imply that there exists a ¢ with P{X = ¢} =
P{Z,=c} >P{Zy=c}=P{Y=c}. O

3. Formulation of the testing problem. A random sample (X, Y1), ---, (X, Ya)
is drawn from the bivariate probability distribution #(X, Y). The null hypothesis of

symmetry
H: 9X,Y)=2(Y,X)
is to be tested against the alternative hypothesis (see Definition 1)
A: (X, Y) isasymmetric towards high X-values.

The level of significance is denoted by «.

Denote the group of transformations, génerated by # (as defined at the beginning of
Section 2) and the transformation (x, y) — (—y, —x), by J# It can be proved that s# is the
class of all %-increasing bijections 4 : R? — R?* which have an <-increasing inverse and
which leave the null hypothesis H invariant. The testing problem is invariant under 3#
when the action of 4 € # on the outcome space (R?)" is defined by ((x1, 1), « + *, (X, ¥n))
— (A(x1, y1), -+, h(xn, ¥»)). Of course, the testing problem is also invariant under
permutations of the indices 1, 2, - - -, n.

NoraTioN. Let U, = max{X,, Y.}, V. = min{X,, Y.} and Z, = sign(X, — Y,). Let U =
(Ui, V1), - -+, (U, Va)) be the permutation of (T, V1), - -+, (U, V) for which U, =
Usirand V, <= V. if U, = U,yy, and let Z = (Z,, - - -, Z,,) be the corresponding permutation
of (Z,, +--, Z,). Let R, and S, be the ranks of U, and V,, respectively, in the combined
sample X;, Y1, Xz, - -+, Y, when ordered increasingly and let R = ((R1, S1), -« -, (R, S»));
use mid-ranks in case of ties.
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(R, Z) is a maximal invariant statistic under # and permutation of the coordinates.
Yanagimoto and Sibuya (1976) show that a test is similar-size « if and only if it is of size
a conditionally on U. Hence the class @, of all permutation-and #-invariant similar-size
o tests consists of all tests ¢ = p(Z, R) which are of size « conditionally on R.

In this paper, attention will be concentrated on the case where the marginal distributions
Z(X) and £(Y) are continuous. For the case where £ (X) and #(Y) can assume only
finitely many values so that the data can be represented in a square contingency table, the
reader is referred to Schaafsma (1966, Chapter 10) and Snijders (1979, Section 9.5).

4. A Hoeffding formula with some applications. For this testing problem, just as
for other nonparametric testing problems, one can derive a Hoeffding formula for the
distribution under the alternative and deduce from this the form of most powerful and
locally most powerful rank tests; see Hoeffding (1951), Héjek and Sidak (1967, Section
I1.4) and Witting and Nolle (1970, Section 3.6). This produces the following results.

If P, and P, are bivariate distributions with P, << Py and p = dP,/dP,, while P, is
symmetric, then

(4.1) P{Z=z|R=r}=cE{[[-=1pX,Y.)|(Z R)=(z71)},

where ¢, = 27*Po{R = r}/P,{R = r} with k = #{i |r. # s.}. The Fundamental Lemma of
Neyman and Pearson shows that (4.1) can be used as a conditional test statistic for the
most powerful @, test against the simple alternative that #(X, Y) = P,. It can be verified
that for some P, € Z,, this yields the conditional sign test.

For the characterization of locally most powerful ®, tests, consider a family {P,|0 < A
= d} of bivariate distributions of which P, is symmetric, and with Py << Py and p, =
dP,/dP, for all A. Suppose that

P = limapo(pa — 1)/A
exists a.e. (Py). The test statistic for the most powerful @, test against P, is T defined by
Ta(z, r) = Eo{I[=1 pa(X., Y0) | (Z, R) = (2, 1)}.
Let ¢ be the conditionally size « test based on T defined by
T(z,r) = Eo {31 p(X,, Y) | (Z, R) = (2, 1)}

If interchange of expectation and differentiation is permitted, then at A = 0 we have dT»/
dA = T; if, moreover, ¢ and T, are such that 0 < ¢(z, r) < 1 and T(z’, r) = T(z, r) imply
that Ta(2’, r) = Ta(z, r) for all A, then there exists a § > 0 such that ¢ is uniformly most
powerful ®; against the alternative that £ (X, Y) € {P»|0< A < §}.

For most families {Ps|0 < A < d}, the test statistic T is hard to compute. If X and Y
are independent under P, for all A, then p(x, y) = pi(x) — p2(y) and the conditional
expectation in the definition of 7(z, r) can be evaluated as the expectation of a function of
univariate order statistics. This gives test functions which are the same as locally optimal
test functions for the univariate two sample problem with equal sample sizes; only the
critical values are different (and depend on r). For example, the LMP-®, test against the
subalternative that X and Y are independent logistic random variables differing only in
location uses a test statistic with Wilcoxon scores

(4.2) =1 Zi{(R, — S.).

The LMP-®, test against the subalternative that X and Y are independent normal random
variables with EX > EY and Var X = Var Y > 0 uses a test statistic with normal scores

(4.3) Y1 Z(E Vo) — EVans,),

where V) is distributed as the j th order statistic in a sample of size 2n from the standard
normal distribution. Tests like these may be regarded as variants of the corresponding two
sample tests, which are robust against dependence within the pairs.
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5. Asymptotic normality and consistency. In this section it will be assumed that
all bivariate distributions under consideration have continuous marginal distributions. A
Héjek-type theorem of conditional asymptotic normality will be derived. It may be noted
that Sen (1967) derived a Chernoff-Savage type theorem of conditional asymptotic nor-
mality. An extra index n indicates the sample size and @,, will denote the rank of X, in (X;,
Y, Xs, ---, Y).

The ranks will be normalized by defining R}, = R,;/(2n + 1) and similarly for S,, and
Q.. In the sequel, “almost surely” or “a.s.” will mean “with probability 1 according to the
distribution of ((X;, Y1), (X2, Y), - - -),” and “a.e.” will mean “almost everywhere according
to Lebesgue measure on (0, 1)”; || - ||» denotes the L,-norm for functions on (0, 1).

We consider a test statistic of the form

(51) : Tn = n_1/2 :l=1 Zx{fn(R;:z - fn(S:l)})
and assume that the score functions f, : (0, 1) — R satisfy the condition

C: The functions f, are constant on the intervals with end points j/2n. There exists
a square integrable and a.e. continuous f : (0, 1) — R with f, —» f ae. and

/o = fllz— 0.

Héjek and Sidék (1967, Section V.1) contains several sufficient conditions for C. E.g., the
test statistics (4.2) and (4.3) can be expressed in this way. The following proposition is
fundamental to this section; note that no independence assumptions between the X-
sequence and the Y-sequence are made.

ProposiTiON 2. Let X, X,, --- and Yy, Y,, --- be two sequences of independent
identically distributed random variables with distribution functions F and G, respec-
tively, and let H = %(F + G). Then

nT YL {fHX)) — (@)} —>0  as.

Proor. Ties which may occur contain, a.s., at most two observations. Such small ties
do not affect the result and will be ignored.

The indicator function of the set A is denoted by I4, and composition of functions by
°. The following three statements are equivalent for functions g,, g with || g2 < » and
&»— g a.e; for a proof see Witting and Nolle (1970, page 178).

(5.2) lg.—gll=— 0
(5.3) lim sup, .. [| g [z =< | g2
(5.4) limy o0 SUP || &n X Limyw) © 8n) []2 =0

Lemma V. 1.6.b. of Hijek and Sidak (1967) implies that the function defined by

i/n
f®)=n j fx)dx for ((—1)/n<t=<i/n
(

=1)/n
satisfiesf, — fae.and | f, — f |l2— 0. Also
n7 T {(f(@%) — Q)Y
=n7' B0 {fa(/ 20 + 1) = [/ 2n + 1))
=2| fu= fl3>0.

This implies that in the following, it may be assumed that f, =F,.
Let Xuy, «++, Xpm be the ordered sample X, ---, X, and let Q% --- @ be the
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ordered normalized ranks @ ;. Define the step functions
An(t) = (@), B.(t) = f(H(Xn))) for (—1)/n<t=i/n.

Let F, and (2n/(2n + 1))H, be the empirical distribution functions of X;, - - -, X, and of
the combined sample X, ..., X,, Yi, -+, Y,, respectively. Define the inverse of a
distribution function D by

D7'(¢) = inf{x | D(x) = ¢t}.
These definitions entail
A= foo H, o F;!
(5.5) B,=f°H-~F;
n”' S (fHX)) = Q%)Y = || An = Ball®
sup,| D7!(t) — t| = sup.| D(t) — ¢t|.
The Glivenko-Cantelli Theorem implies that
sup; | Fn(¢t) — F(¢) | = 0, sup, | Ha(t) — H(¢) | > 0 a.s.

With the a.e: continuity of f and the assumption f, = J,, this implies that a.s.
(5.6) A,— foHoF, B.— feHoF™! a.e.
The triangle inequality and (5.5) show that in order to prove the proposition, it is sufficient
to prove that (i) | An— fo He F™'|;— Oand (ii) | B, — f o H° F™' ||;— 0 almost surely.

(i) It follows from (5.6) and the implication (5.4) = (5.2) that it is sufficient to prove
that
(5.7) limp o SUPs || An X Limy) © An) [|2— O a.s.
The latter result follows from

| An X Iimey © An) 5= 07" Ty fr (Q4)imm) © [n(@)
=2| fu X U © fo) I3,

together with condition C and the implication (5.2) = (5.4) applied to f,.

(ii) It follows from (5.6) and the implication (5.3) = (5.2) that it is sufficient to prove
that

[Bull3=n""%r f2e HX) > || foHe F'3<w

almost surely. The latter result follows from the law of large numbers and

(5.8) ||foHoF-‘||%=f(f2oH) dFs2f(f2°H) dH=2| f|3 < .0

From Proposition 2, asymptotic approximations for the conditional null distribution of
T., for the critical value and for T, itself will be deduced. Denote the vector of ordered
ranks ((Rn1, Sn1), -+, (Ran, Srn)) by R(ny. The null variance of T, conditionally on R, is

ai(an)) = n_l ZLI {fn(R:t) - fn(sr’:t)}z

Proposition 2, combined with the strong law of large numbers and the triangle inequality,
implies that a.s.

(5.9) 62(Rm) — o° = E{f(F(X)) — f(G(Y)))? < .
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THEOREM 2. Let ¥ (X, Y) be symmetric, and let F be the marginal distribution
function of X and Y. Then the distribution of T, conditionally on R, is asymptotically
normal,

(5.10) F(Tn|Riny) > N (0, 0%) almost surely
with
o’ = E{f(F(X)) — f(F(Y))}* = Var{ f(F(X)) — f(F(Y))}.

ProOF. For o® = 0, (5.9) means that E {T%| R} — 0 a.s., which implies (5.10). Now
let 0® > 0. Conditionally on R, the Z, are independent with P{Z, = 1 |Rw} = P{Z; =
—1|R(} = ' for R,; # S,.. Define

orzu' = {fn(R:L - fn(S:l)}2

The Central Limit Theorem of Lindeberg-Feller implies that for (5.10) it is sufficient that
(5.9) holds and

(5.11) n' Y 62 Inwy(02) > 0 forall €e>0, as.

From (5.7) and the similar result for the Y-sequence it can be deduced that (5.11) holds.
|

COROLLARY. Let c,(r(,)) be the critical value of the conditional size o test based on
T.. Let F and G be the marginal distribution functions of ¥(X, Y) and define H =
%(F + G). Then

cn(Rpm) — ou,  almost surely,
with
o’ = E{f(H(X)) — f(H(Y))}* < .

ProoF. The probability distribution of R, is the same for #(X, Y) as for %(¥ (X, Y)
+ Z(Y, X)). Apply Theorem 2 to the latter (symmetric) bivariate distribution. O

From this corollary and (5.9) it can be concluded that the sequence of exact conditional
tests based on T, is under the null hypothesis equivalent to the sequence of approximate
unconditional tests rejecting for

(512) Tn > ua&n(R(n) )

The test (5.12) is, of course, much easier to carry out.

THEOREM 3. Both the conditional test based on T, and the test rejecting for (5.12)
are consistent against all distributions £ (X, Y) whose marginal distribution functions
F and G satisfy Ef(H(X)) > Ef(H(Y)), where H = %A(F + G).

Proor. It follows from (5.8) that Ef*(H(X)) < « and Ef?(H(Y)) < . Proposition 2,
the law of large numbers and the Cauchy-Schwarz inequality imply that a.s.

n VT, - E{f(H(X)) — f(H(Y)))} < .

So T, — » a.s. if Ef(H(X)) > Ef(H(Y)). But the corollary and (5.9) imply that the critical
values converge to a finite limit a.s. 0

It follows from Theorem 3 and Proposition 1 that if f is strictly increasing (as is the
case, e.g., for Wilcoxon (4.2) and normal (4.3) scores), then the two tests based on T, are
consistent against all £ (X, Y) which are asymmetric towards high X-values.
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THEOREM 4. Let ¥ (X, Y) be symmetric, let F be the marginal distribution function
of X and Y, and

T.=n2Y%, {(f(F(X,)) — f(F(Y.))}.
Then T, — T, > 0 in probability.

Proor. Let W}, be the normalized rank of Y, in (X, Y,, Xz, ---, Y,) and let U, =
((Un1, V1), +++, (Unn, Vin)). The triangle inequality yields

[E (T = To)*| U317 = [0 Bis {£u(@3%) — fu(Wi) — f(FX) + f(F(Y.)))*]”
=[n7' 3k {(f@QF) — f(F(X,)))*]?
+ [0 TR (W) — FF(Y.)))*]72
According to Proposition 2, the right-hand sides converges to 0 a.s. This implies that
P{T.—T.|>€¢|Un} >0 as.
for every € > 0, which again implies that T, — 7\ — 0 in probability. 0

Theorem 4 can be helpful when one wishes to apply to the test based on T, well-known
general methods for obtaining asymptotic relative efficiencies against contiguous alterna-
tives, as given by Hajek and Sidak (1967, Section VII.2.1) or Witting and Nolle (1970,
Section 4.3). This yields results which are also obtained by Sen (1967). An interesting
special case is that the test using normal scores (4.3) or Van der Waerden scores is
asymptotically uniformly most powerful (with respect to contiguous alternatives) for
testing H against the subalternative that ¥ (X, Y) is a bivariate normal distribution with
EX>FEYand Var X =Var Y.

Acknowledgment. I would like to thank Willem Schaafsma for arousing my interest
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