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SHEFFER POLYNOMIALS FOR COMPUTING EXACT
KOLMOGOROV-SMIRNOV AND RENYI TYPE DISTRIBUTIONS'

By HEINRICH NIEDERHAUSEN

University of Toronto

Sheffer polynomials are used for proving algorithms and closed forms for
a broad class of nonlinear one-sided order and rank distributions. For two-
sided tests a more general concept results in a representation theorem for
piecewise Sheffer polynomial functions.

1. Introduction.
Let Xi, - .-, X be 1.i.d. random variables with continuous distribution function F and
empirical distribution function

Fx(x) = M7 Y2, 1Cwa(X).

We call the pair

Fx(x) — yF(x) Fx(x) — yF(x)

(1.1) SUPa<F(x)=p8 s — kF(x) ’ lnfasF(x)Sﬁ 8 — kF(x)

a bivariate Rényi statistic (a, B8, v, § and k have to be suitable constants). More generally,
we call

(1.2) P{f(Fx(x)) = F(x) = g(Fx(x)) forall a= F(x)=< 8}

a Rényi type distribution. Of course, f and g are determined by the test statistic. For
instance, « = k = 0 and y = § = 1 yield the Kolmogorov-Smirnov one-sample test in (1.1).
In that case f(u) = u — s and g(u) = u + r are the corresponding functions in (1.2), if
(s, —r) is the value of this test statistic. For two-sample tests replace F(x) by Fy(x) in (1.1)
and (1.2), where V is the combined sample.

It is well known in the theory of order statistics that the probability (1.2) can be written
as a solution of a system of differential equations with boundary conditions. A system of
difference equations solves the two-sample case. Both systems are piecewise solvable by
polynomials. But because of the complicated boundary conditions a general approach was
never undertaken to find these polynomials directly from their defining equations. We
show in this paper, however, that there are algebraic tools to solve the problem in a unified
and straightforward way.

The “Finite Operator Calculus” of Rota, Kahaner and Odlyzko (1973) is the basis of our
two simple representation theorems (Theorems A.1 and A.2) for the solutions of such
equations. To our knowledge, all known closed forms and recursions for the exact proba-
bility (1.2) can be derived by means of Sheffer polynomials.

For a single problem this unified approach does not mean substantially less work. The
benefit of our method is that this work has to be done only once for many different results
previously scattered in the literature. Equally important, the present theory makes it
transparent how these results are connected. For instance, specializing Theorem A.2 to the
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924 HEINRICH NIEDERHAUSEN

Kolmogorov-Smirnov one-sample test yields Durbin’s (1973, (2.4.8)) algorithm, Kemper-
man’s (1961, (5.40)) generating function identity, and Steck’s (1971) determinant. Now
change only the parameters and the operator in the very same theorem and obtain all the
two sample analogs!

Sections 2 and 3 discuss respectively the one- and two-sample tests. The algebraic part
of the method is summarized in the Appendix. Section 4 contains various examples,
including the Kolmogorov-Smirnov statistics with weight factor [ F(x) {1 — F(x)}]~ "% and
the Butler test for symmetry. Other important applications of (1.2) arise in power
computation as has been investigated already by Steck (1969, 1971, 1974).

The following notations are used throughout the paper. Z stands for the set of all
integers, and R for the real numbers; No={n € Z,n=0}, Ni={ne€Z,n=1},x Ny=
min{x, y}, x \v y = max{x, y}, (x)+ = max{0, x}, (x)- = min{0, x}, [x] = min{i € Z|i = x},
lx] = max{i € Z|i = x},

(x)=x(x—1)-~- x—n+1)

n n!

forall n€E Ny; (3) =1 (2) =0 forall z& No.
For the values of a function v: Ny — R we use both notations »(i) and »,.

2. One-sample tests.

2.1. Sheffer polynomials for D.

Let p and » be monotone non-decreasing functions from N into R, satisfying 0 < », <
o and v, < p,—1 for all ¢ € N;. The following functions define a u-Sheffer sequence

(see (A.12)) for the derivative operator D: p(x) r—-);% p(x),

1 if x=0
f°(")‘{0 if x>0,

xAp(n—1) u, A\pu(n—2) ug Ap(0)
v(n) v(n—1) v(1)

0 if x>,

and

falx) =

for all n € N;. Obviously f.(v,) = 8o,»; hence (f.) has roots in v (see (A.14)).
Denote by Uy; the ith order statistic of a size M random sample from U (0, 1). If uar—
= 1, then

(2.1) fm(uM_l) =Pw:= Uy =< 1 forall i=1, e, My/M!
= fu(um).

2.2. Closed forms.
If u = 1in (2.1), the p-Sheffer sequence (f,) for D with roots in » equals, for all x < 1, the
Sheffer sequence (s,) for D with roots in » and

(2.2) Pv:= Uy forall i=1,---, M) = M!syu(1).
If » = 0, but p is arbitrary, then a probability like (2.2) is obtained from the “dual form”

Pn=Uy=p, forall i=1, ..., M)
=PA-pM—-)<Upy=1-v(M+1—-3i) forall i=1, ..., M)
= M!fu(1),

if (fr) is the u’-Sheffer sequence for D with roots in », where
24) vi=Q1—puM-1))+ and pi=1-—»(M —1i) forall i=0,..., M.
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Therefore, (2.2) applies to both one-sided cases. For general », only recursions are available
for computing sy (1) (see Section 2.3).

But there are well-known special cases, where Theorem A.1 allows us to derive closed
forms for sp(1). With regard to the examples in Section 4, we list two formulas where the
first one is only a special case of the second. If

(2.5)

_jo for all i1=0,.-.,L
"ZYic+d forall i>L

then (see (A.7) and (A.8))

M'sy(1) =YL, ({{)(ic +d)'(1—Mc—-d)1 —ic—d)¥ !

=1-Y¥,. (Jt{)(ic +d)(1—Mc—d)(i—ic—d)" ",

If
0 forall i=0,-.--,L
(2.6) v,={ic+d foral i =L+1,-.---,K
) forall i> K,

then (see (A.9))

@7 Misu(l) = YK, (]‘f)u — MY, (})(8 —ic—d)( — je — d)"7\(je + d)’.
Remember that the inner sum equals §* for all i =0, - - -, L. The outside method (A.8) can
be used for the inner and/or the outer sum in (2.7). This explains the broad variety of
formulas occurring in the literature for the examples in Section 4.

In principle, each function » can be decomposed into affine pieces, and (A.9) can be
applied.

2.3. Recursions.

For this section we assume py = 1 without loss of generality. With g,_x(x)
x"*/(n — E)! in (A.13), the Algorithm A.1 was found by Née (1972). Given that W is
constant for £ =0, - - -, K, say, it may be possible to use an explicit formula for £,(ux) (i

0, - - -, K). The same is true for the values p, in the following application of (A.16). Define
Ppo=1and

(2.8) .= Xko (,:)(—1)'_k_1(,ltk — ) 5% p.

Then

Pr,= Uy =< pi—1 forall i=1, ..., M) =ppn.
Alternatively, we get from Corollary A.2:

bm = det((]._l 1)(#/—1 - Vi)i_jﬂ)

Epanechnikov (1968) found recursion (2.8) and Steck (1971) independently derived this
determinant and many applications. See also Pitman (1972) for another proof.

Lj=1,..., M

REMARK. Depending on the accuracy of the computer, (2.8) should be used only for
small M because of the alternating summation. In Algorithm A.1 the summation does not
alternate, but compared with (2.8) the amount of computation is approximately squared!
In the computation of significance points, it often occurs that »a < uo. The same is true, of
course, in both one sided cases. Theorem A.2 (with ; = 0) yields for any real function o on
N 0,
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(2.9) D, =Jl0(0j) — 211;10 (2) (0; — ,uk)j_kpk forall j=1,..., M.

From vy < o we see that ¢, equals for j = 0, - - -, M the Sheffer sequence for D with roots

in ». Given that g; = u,—; for all j = 1, ..., M, the summation in (2.9) is non-alternating.

But how to compute #,0(g;)? In the simple case » = 0 (one sided tests) we get j't;0(a;) =

o;. With g, = p;—; Steck’s formula (1971, (2.3)) is obtained. See the previous section for

other closed forms. We suggest the following procedure for general » (with var < o).
Choose 6 = 1. Thus, forall=1, ..., M,

J6o) = P = Uy  forall i=1,-..,j) =jIf{9(1),

it \f4”’) is the u"'-Sheffer sequence for D with roots in 0, where u’ = 1 — »(j — i) for all
i=0, ---,J. Hence, (2.9) can be applied to compute ;0(1) (we choose again ¢ = 1) using

p¥’ =1 and p.m=I—Ei;{)(;)v(j—k)i_kpi” forall i=1,...,J.

Thus, j!4,0(1) = p/” for all j =1, - .., M. Finally, enter again (2.9) and compute py from
po=1and

pi=p)-3¥} (2)(1 —w)*pp  forall j=1,..., M.

2.4. Rényi type distributions.

In applications, the test distributions seldom occur in the form of (2.1). But if our
method is applicable at all, they are easily transformed so that one of the following two
lemmas can be used.

LemMA 2.1.  Let f and g be monotone non-decreasing functions from [0, 1] into itself
such that f < g and
fO)=a/M<b/M=g(1)=1

for two fixed integers a and b. Then
P{f(Fy(x)) = x < g(Fu(x)) for all a/M =< Fy(x) < b/M}
=P(V,'S U(;)Sp,,’_l forall i=1,°--,M),

where
0 forall i=0,-..,a—1
/M) forall i=a,---,b
f(b/M)  forall i>b

and

gi/M)  forall i=a,---,b

{g(a/M) forall i=0,...,a—1
1 for all i>b.

The proof is obvious. The situation in the following lemma is more complicated.
LeEMMA 2.2. Replace a/M and b/M in Lemma 2.1 by any real a and B such that 0 <
a < B =< 1. Then, under the same assumptions about f and g,
P{f(Fy(x)) = x = g(Fu(x)) forall a=<x=<pf}
=Pui=Unp<m forall i=1, ..., M)
if

f@/M) forall i=o+1,.--,0

{0 forall i=0,...,q
B for all 1> f
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and
o forall i=0,--+,0,—1
w = 148(/M) forall i=ag +++,B,—1,
1 forall 1=,
where

ar=max{k = M|f(k/M) < a}, By = max{k < M|f(k/M) < B}
o = min{k = 0| g(k/m) = o}, B = min{k = 0| g(k/M) = B}.
Proor. Denote by [0, 1]* the set of all monotone non-decreasing ordered vectors u
€ [0, 11™, i.e. vectors
u=(uy, +--,uy)suchthat0=u; < ... <=uy=<1.

Define the subset A of [0, 1]* by A = {f(i/M) < x holds foralli =0, --- , M and x €
[w, w1) N [a, B} (wo =0, upr+1 = 1). Then

A={fi/M)=x forall i=oa+1, ..., Mandx € [u, w+1) N [a, B}
={fi(/M)=u, forall i=ar+ 1, ..., M such that u, < B8}
= {ug+1>p6, and f(/M)=u forall i=ar+1, ..., 8 suchthat u =< p}
= {ug+1>p6, and f(/M)=u forall i=a+ 1, .--, 0B
By interchanging the roles of f and g it follows analogously that
B = {x=<g(i/M) foral i=0,.-.--,M and x€[w;, w1)N [a, B}
={tte,<a, and w=g((i—-1)/M) forall i=ag+1,---, Bl
P(A N B) = P{f(Fu(x)) = x = g(Fu(x)) for all « < x < B} finishes the proof. O

ReEMARK. Ifpy=pforalli=0, ..., M — 1in the lemmas above, look for the best
applicable method in Section 2.2 or 2.3. The probability is zero otherwise.

3. Two-sample tests.

3.1. Sheffer polynomials for V.

Denote by T(j, j) the set of all vectors T consisting of exactly i ones and j zeros. For each
T=(Ty, -, Tisy) € T, j) define the path T’ of T by Ty =0 and T, =Yj-1 T} for all ¢
=1, ...,i+j. The set T(i, ) is closely related to empirical distribution functions: Let X},
eee, Xu, Yy, -+, Yn be M+ N continuous and ii.d. random variables. Denote the
monotone non-decreasing ordered combined s;ample by Vi, +++, Vaen. Define
3.1) T,— {1ifvf=x,» forsome i,1<i<M

’ 0if V,=Y, for some j,1=<j=<N.

Then T, = MFx(V,) and £— T, = NFy(V,). Let p and » be integer valued functions on Nj,
—1 = vy < uo and

(3.2) vii—1l1=wn<p1=p forall ie N,

Then fi.(j) = #Y G, j|v(T) < £— T, < w(T) for all =0, - -, i +)), if (f,) is the u-Sheffer
sequence (with variables in Z) for the backwards difference operator V (see (A.6)) with
roots in ». Hence,

-1
(3.3) PuT)<¢—Ti=wT) forall ¢=0,..., M+ N} = (M;} N) fu(IN).
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REMARKS. (a) Denote by R, the relative rank of the ith order statistic X(;) in V. Then
R,=(M+ N)Fv(Xy), and v(T7) < =T <= pT%) for all /=0, ..., M + N is equivalent
tov@) +i<R =p(i—1)+iforalli=1, ..., M (if uypr = N).

(b) It is the restriction to integer valued functions » that makes closed forms so rare.
Sometimes the following elementary identities can be helpful (c € N,, d € Z),

#YV,j|T)/e+d=<=¢—T, forall ¢=0,---,i+])
=#T(j,i|{—Tr<cT,—cd forall ¢=0,---,i+))
=#T(j,i|lc(T,+d—j)+i<¢{—T, forall £=0,.--,1i+]).

3.2. Closed forms.
If 4 = N in (3.3), we obtain

(34) P{D(T})</_T2’ for all /:0,...,M+N}=SM(N)/<M1'&N>,

where (s,) is the Sheffer sequence for V with roots in ». The dual form of (3.3) is now

35) PIN-1—-uM-T)<¢-T,
=N-1-vM-T) forall ¢=0,---,M+ N}.

The delta operator V allows two special cases. First, if

. _f(jtn\ [ j+n
(3.6) sa(J) = ( n ) (n - 1) for any L € N,
then (s,) is the Sheffer sequence for V with roots in »; = (i — L)+ —1 (i € Ny). Second, with
the same s,, we get from

[2(J) = Yi=o{Sn-rx+r+2) (j + R(K + L + 2))
3.7)
- s,_k¢K+L+2,_K_1(n + k(K + L + 2)+ K+ 1)}

for all v, <j < u, + 1, the u-Sheffer sequence for V with root in », where y;, = ¢ + K for all
i € Ny, and v as above. The proof is in both cases just verification of recursion and side
conditions. See Fray and Roselle (1971) for another proof. The case K = L was derived by
Koroljuk (1955), using reflection arguments.
Now assume in (3.4) that
V={—1 forall i=0,---,L
' ic+d forall i>1L,

where the integer constants ¢, d and L may not contradict (3.2). Then we get from (A.10)
and (A.8)

o fic+d+i\N-Mc—d(M+N—-ic—i—d—1
su(N) = ¥izo ( i )m M-
(3.8) =<MAJ2N)_ uo <Lc+;l+z)

.N—Mc—d M+N-ic—i—d-1
N-—-ic—d M- ’

If
ic+d foral i=L+1,..-,K
la+b forall i> K,

where ¢, a, L, K € Ny and d, b € Z, then

{—1 forall i=0,...,L
Vv, =
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su(N) = 25:0

N-Ma—-—b(M+N—-—ka—b—Fk—1
N—-ka—-b»b M-k

(3.9)

. fic+d+i ka+b—kc—d[(k+ka+b—ic—i—d—1
= i ka+b—ic—d k—i

(see (A.9)). Again, the outside method (A.8) can be used for the inner and/or the outer

sum in (3.9). Observe that the inner sum equals| * +ka+ b) foral2=0, ..., L.

3.3. Recursions.
We assume u(M) = N throughout this section. From the definition of a u-Sheffer
sequence (f,) for V with roots in » we get the following two-dimensional recursion

N JAEG =1 + £ () forall vi<j=pw
(310 1) = {0 dtherwise,

with initial values fo(j) = 1 for all j < uo, and £, (»;) = O for all i € N;. On a computer with
unlimited integer precision, this algorithm may be slow but absolutely accurate!

The one-dimensional recursion (A.16) is left to the reader. From Corollary A.2 one gets
the determinantal solution

Pw(T))<¢—T,=u(T)) forall¢=0,..-,M+ N)

_[(M+ N\, (-1 — 2)+
(el (270)

This determinant has been found independently by Kreweras (1965) and Steck (1969). See
also Mohanty (1971) and Pitman (1972) for other proofs.

A close look on » and p may save some recursion steps. If »(M) < u(0) the outside
method allows non-alternating summation as described in Section 2.3.

=1, ..+, M.

3.4. Reényi type distributions.

LEMMA 3.1. Define f, g, a and b as in Lemma 2.1. Then
P{f(Fx(x)) < Fv(x) = g(Fx(x)) forall a/M= Fx(x)=< b/M}
=PWw(T)) <¢{—Tr= u(T?) forall ¢=0,...,M+ N),

if
-1 forall 1=0,.--,a—1
=M+ N)fG/M)]—i—-1, forall i=a,---,b
Vb forall i>b,
and
Lo forall i=0,.--,a—1
w=l(M+ N)gi/M)] —i forall i=a,---,b
N forall i>b.

The proof is obvious from Section 3.1.

LeEMMA 3.2. Define f, g, a and b as in Lemma 2.1, and oy, Bf, ag and B, as in Lemma
22 witha=a/(M+ N)and B =5b/(M + N). Then

P{f(Fx(x)) < Fy(x) < g(Fx(x))  forall a/(M+ N)=< Fy(x)=< b/(M + N)}
=P(T)<¢—To=u(T)  forall ¢=0,..., M+ N},
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if
-1 forall 1=0,.--,q
vi=4[(M+ N)fG/M)]—i—-1 forall i=ar+1,---, 05
b—pB—1 for all 1> B,
and
a— o forall 1=0,.++,0,—1
w=L(M+ N)gi/M)] -1 forall i=og, -+, B —1
N for all 1= B,

The proof follows the same pattern as the proof of Lemma 2.2 and is therefore omitted.

REMARK. It may happen that » or p in Lemma 3.1 or 3.2 violates the monotonicity
conditions (3.2). In this case define the “monotone hulls” 7 and ji by

;/0 = - ].
(3.11) ~ i .
v; = max{v;, vi_1} forall i=1, ..., M,
and
fim=N
(3.12)

Q= min {p, fi)} forall i=0,...,M—1.

Ifra<pforali=0, ..., M — 1, look for the best applicable method in Section 3.2
or 3.3. The probability is zero otherwise.

4. Examples.

As in the preceding sections we assume that Xj, - -+, Xas, Y3, -+, Yy are M + N iid.
random variables with continuous distribution function F. We will work out some details
in the first (and easiest) example. This task is left to the reader for the other examples,
where we will derive only the middle parts of the functions » and p.

Example 1. The test statistic supo<rx=1 Fx(x)/F (x) has for s = 1 the distribution function

G(s) = P{Fx(x)/F(x) < s forall 0<F(x)=<1)}
= P{Fx(x)/s < F(x) forall x€ R}.

We find from Lemma 2.1 and (2.2) that G(s) = M!su (1), if (s,) is the Sheffer sequence for
D with roots in », = i/(Ms) for all i € No. Thus, v is even easier than in (2.5), and we get
directly from Lemma A.3 that

Sn(x) = (x — n/(sM))x"_l/n!.

Hence, G(s) = 1 — 1/s. For at least equally elegant proofs see Robbins (1954) and Rényi
(1968). The result was proved first by Daniels (1945, page 415), and was rediscovered also
by Chang Li-Chien (1955). I thank the referee for pointing out these references.

Our method also computes immediately

Gg(s) = P{Fx(x)/F(x)<s forall 0= F(x) <}
for 0 < 8 <1and s> 0. From Lemma 2.2 we obtain
e i/(sM) forall i=0,-.--, B
B forall i> g,

where Br = max{k =< M|k/(sM) < B} = | BsM . Therefore, choose L = 0, ¢ = (sM)}, d
=0, K =|8sM] and § = 8 in (2.6). Equation (2.7) yields
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M il l 1—1
(4.1) Gy(s) = {io<i>(1—ﬂ)M (ﬁ—m)ﬁ ,

If sB > 1, we get K > M and Gg(s) = 1 — 1/s. Chang Li-Chien (1955) found for all s > 0
M _
Gs(s) = ¥o ( ; )(1 - BN

_vE M\ B (Ms — M* . (M —k\ (MsB—E\™" I_Msﬁ—kM_'
=\ k (Ms)™ \i-k )\ Ms—% Ms—k)

That this sum really reduces to (4.1) may be shown by induction or again by using Sheffer

polynomials.
A double summation becomes necessary if we compute
(4.2) G,p(s) = P{Fx(x)/F(x) < s for all a= F(x) = B}.
Then
0 forall i=0, ..., |asM]
v, =1 1i/(sM) forall i=|asM]+1,---,|BsM]
B for all i>|BsM],

and G,g(s) is obtained from (2.7) with L = |asM ] and K, ¢, d, § as before. See Eicker
(1970) for another proof of this general result.
Use Lemma 2.1 for the distribution

P{Fx(x)/F(x)<s forall a/M = Fx(x) < b/M}.

Then choose L =a — 1, K = b, § = b/(sM) and ¢, d as before in formula (2.7). For b = M,
the result was found by Ishii (1959).
The statistic

info/m<rym=o/m Fx(x)/F (x)
has for s = a/M > 0 the distribution
P{F(x) < Fx(x)/s forall a/M= Fx(x)=<b/M}=M!fy(1)
(see Lemma 2.1) if » = 0 and

a/(Ms) forall i=0,...,a—1

W, = 1/\]‘% forall i=a,.--, b
1 for all i>b.

Now we use the dual version (see (2.3)) and get u’ = 1 and

0 forall :=0,.--, M+1-b

| 1
Y = <L+1__) forall i=M+2-b,--,M—a
Ms s .
+
1--2 forall i>M
Ms orat ¢ *

Again, (2.7) is applicable. If a = 1, use the outside method for the outer sum in (2.7). Then
only a single sum is left (see Chang Li-Chien (1955) and Rényi (1968, (2.20), misprint: the
upper boundary of the summation range is [n/t] — 2.)

See the next example for two-sided and/or two-sample analogs.
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Example 2. The following distribution contains (4.2) as a special case

_Fx(x) —yF(x) _ - -
P{—r_—m)———_s for all a_F(x)_,B}.

If y + s and y — r are both positive, then

i

"M T
o

M=MG=n

forall i=|aM(y+s)]AM+1, . ---,|BM(y+s) |\ M

foral i=[aM(y—17 -+, [BM(y—r)]—1.

Again, the one-sided case does not need more than a double summation (use 2.7)). See
Takacs (1967, page 177), Birnbaum and Lientz (1969), and Eicker (1970) for other proofs.
In the two-sample version

=<s,a/(M+ N)= Fv(x)< b/(M + N)}

N Fx(®) - yFy(®)
P{_r5M+N' Fr(®)

we get from Lemma 3.2 that

N

-1
Yy+s
forall i=[laM(y+s)/(N+yM)IANM+1, .-, |bM(y +3s)/(N+yM)] \ M,
_T.N/M+r]
i = lT

forall i=[aM(y—r)/(N+yM)], ---,[6M(y —1)/(N +yM)1 - 1.

Example 3.
Fx(x) — yF(x)
P{ S——I—WSS for all aSF(x)SB]
yields
I/M—s
=
Y — sk
forall i=|aM(y—sk)+Ms]AM+1,.---,|BM(y—sk) + Ms| A\ M,
(4.3) _i/M+r
v Y+ rk

forall i=[aM(y+ r«) — Mrls, ---,[BM(y + rx) — Mr], — 1,

where y — sk and y + r« have to be positive. The one-sided case for y = k = 1 has been
studied by Birnbaum and Lientz (1969). If « = k = 0 and 8 = y = 1, the well known
Kolmogorov-Smirnov distribution is obtained; namely

P{—p/M=<Fx(x) — F(x) <o/M forall x€ R} =Mfi(1),
if (f.) is the u-Sheffer sequence for D with roots in », where
4.4) vv=0G0—0)+/Mand u;= (@ +p)/M forall i€ N,.

These simple functions » and u allow the following simplified application of Algorithm A.1.
First, observe that the probability is zero if var = up—.. Therefore, we assume that A =



POLYNOMIALS FOR RENYI DISTRIBUTIONS 933

o + p is greater than 1. Let K be the largest integer such that vk < po, i.e., K = |A]. From
(A.8) we get

4.5) J'fi(po) = (p/M)’ —

(’i)(i—oym—i)ﬂ-l forall j=0,--- K.

These are our K + 1 starting values. We will use Algorithm A.1 to show how to compute
[ () forallj=i+1, ---, K+ i+ 1,if f,(u) is already known forallj =4, ..., K + i.
Assume for the moment that A is not an integer. Now u; < v(K + i + 1) < p;+1. Hence, we
get from step (a) in Algorithm A.1

£ () = Yhein filv(K + i+ DI[(A = K)/MY7*/(j — k).
The unknown f. (v(K + i + 1)) in this formula is also obtained from step (a):

K A—-E\"
£ (per1) = Th=ie1 [Z'Lm felp) < *l- ) /(k f)‘]( k) /(J —k)!

M~
=Yt G GofAm) forall j=i+1 . K4y,
and
M{’—K—L—l
fK+z+1 (,liz+1) ﬁ_HITI—(—-l-i'f'l——f)' ff(#z)[l —(K+1- A)KHH_II

(If A is an integer, then v (K + i) = u, and the right hand side in the equation above equals
zero, as it has to.)

As soon as K + i reaches M, we can omit the computation of f;(u:+1) for all j > M. The
algorithm stops when i = [ M — p]. Now u, < 1 < w1, and a final step yields the desired
probability, namely

Mfu(1) = MYy flp) (1 = )™/ (M = £)!.

No alternating summation occurs in this algorithm, which can be seen as a compact form
of Durbin’s (1973, (2.4.4)) matrix multiplication method. If p is an integer, the final step is
not necessary, because we get fir(1) = far(uam—,). If 6 and p are both integer and equal, the
algorithm of Massey (1950, page 117) is obtained.

Again, let ¢ and p be positive real numbers. Define g,(x) = M"f,(x/M) for all n € N,.
It is easy to check that (g,.) is the (i + p)-Sheffer sequence for D with roots in (i — ).
Hence, (g.) is independent of M. The generating function identity (A.19) can be applied
to (gn) as follows.

Ym0 —— (tl)l P{ o0/i = Fx,(x) — F(x) < o/ifor all x € R}

(4.6)
Yo (£) vo (2)

= ZizO tg() =g, (t) = Yo+a(2) ’

where we made use of

@a(t) = Ym0 &(E + p — D)t = TZ (0 — 0)'t" = v, (¢)

(see A.18); (Fx, in (4.6) means of course the empirical distribution function of a sample X
of size i.) Identity (4.6) is due to Kemperman (1961, (5.40)) and is useful for asymptotic
results.

In the one sided case (1 = 1) and for general » as in (4.3), it may be necessary, at worst,
to work with a double summation in the closed expression (2.7). Smirnov (1944) solved the
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Kolmogorov-Smirnov case. For more generating functions (not obtainable by our method)
and asymptotic results see Lauwrier (1963). A detailed study of the exact distribution has
been done by Alter, Govindarajulu, and Gragg (1975).

Replacing F (x) by Fv(x) in the general distribution, the two sample version is obtained.
v and p are easily derived. We restrict ourselves to the Kolmogorov-Smirnov case

M+ N
N I

where », = [ic — ¢]+—1 and p, = |ic + p ] for all i € Ny, and ¢ = N/M. Massey (1951) derived
the recursion (3.10) for this case. If M divides N, i.e., if c is an integer, then ¢ and p can be

chosen as integers without loss of generality. For this case the generating function identity
(A.19) with A = p + ¢ + 1 yields

4.7) P{—p/N = Fx(x) — Fy(x) = o/N forall xe R} = fM(N)/<

o (T ) Pl L < Fri) - Fra@) =% forall x€R
l Cl Ccl

=Yizo fi(D) ' = @, (2) =M’
'Yp+a+l(t)

where we made use of

le+1) —o—1
i

(Pp+a+l(t) = Zizo ﬁ(zc -0 l)tl = E&igj ( )tl = ‘Ya(t)
(see (A.18); Kemperman (1961)).

If N= Min (4.7), apply (3.7). In the one sample case (1 = N) use (3.6). Use (3.8) if ¢ is
any integer greater than 1.

The condition N/M € N is sufficient, but not necessary for obtaining a simple function
v. Obviously, if 6 = M — 2, v cannot contain more than two different affine pieces (between
0 and M, of course). f N=cM +er (le|=1r=M/2c,r € N,), thenr+ 2 —[(r(L +
1) — sc)/M1 is a sharp upper bound for the number of different affine pieces, where L =
loM/N |,

s = Mo — M|o] if e=1,
T IM-s..—1 if e= —1,

and oM = aN — bM with a, b € No, 0 = a = M, 0 < b = N. (It is always possible to choose
o in this way without changing the probability; see Niederhausen (1978, Section 18) for
details.) If » = 1, the number of different pieces cannot exceed three and the function »
equals

-1 forall 0=i<L
v(i) =qic—|o]—1 forall L<i=<s.
ic—|o]—1+¢€ forall s.<i=<M.

Compute the corresponding probability from (3.9). This case has been investigated for ¢
= 1 by Hodges (1957), and for general ¢ € N; by Steck (1969).

Example 4. Borokov and Sycheva (1968) found the exact and the asymptotic distribution
of
Fx(x) — F(x)

[F(x)(1 - F(x)]"*

We call the test statistic W, if the supremum of the absolute value of the ratio is taken.
Let

Wir = SUPg, <F(x)=<6,

20 + s + [s* + 4si(1 — i)]?
2(1+s)

h* () =
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and
c*(y) = M(y £ [sy(1 - v)]"*).
We get from Lemma 2.2 that
P(Wi =s"%) = Mfu(1),

if (f») is the u-Sheffer sequence for D with roots in », where

(4.8) v,=h"(i/M) forall i=|c"(@)]AM~+1,---, |lc*(6:)] N\ M,
and
4.9) w=h* (/M) forall i=T[c (61)+], ---,[c7(62)1 — 1.

The following short table of the percentage points of M'?W, was computed by
Algorithm A.1 and by the outside method (2.9) if applicable. We chose always 6, = § =
1 — 6, for 8 =0, .01, .05, .1 and .25. Let

P(z) =P(M"*Wy =< 2).

We consider the significance probabilitiés a = 1 — P(z,) for a = .1, .05 and .01. Because of
the discontinuities, these levels cannot always be attained. If the absolute difference
between a and 1 — P(z,) is less than 0.000005, this small discontinuity is not noted in the
tables, and z, is rounded to 4 digits after the decimal point. If

.000005 = |a — 1 + P(z.) | < .005,

and « is greater (smaller) than 1 — P(z.), then five digits are given and a bar is placed
under (over) the last digit. This last digit is not rounded. Decreasing (increasing) it by one
yields a probability greater (smaller) than a. Two bars indicate an absolute difference
between .005 and .013. The asymptotic values of Borokov and Sycheva (1968, Theorem
3A) are given in the last row of Table 1(b)-(e).

Table 1(a) is a confirmation of Noé’s (1972) computations. In Tables 1(b) and 1(c) the
results of Canner’s (1975) simulation study are given in parentheses. In Tables 1(d) and
1(e) the rows marked by F contain the percentage points of M'/2Wj, as in 1(a)-(c). The
rows marked by Fx refer to the corresponding statistic where the supremum is taken over
d/M = Fx(x) =1 — d/M. The integer d is chosen such that d/M is closest to the desired
g, i.e.

g [LM8] if M@—|M6]<05
T IM01  else.

The Fx-row in Table 1(d) equals the F-row when M = 10 and is therefore omitted.
We denote by Wiy the two-sample version of Wy, that is

| Fx(x) — Fy(x)|
[Fv(x) (1 — Fyv(x))]/

where 6, = a/(M + N) and 6 = b/(M + N); a and b integer.
Now we get from Lemma 3.2

N
sreun=e) =i [(157),

if (f.) is the g-Sheffer sequence for V with roots in 7, where

v=[(M+NAG/M)]1-i-1 and p=_(M+ N)h*(i/M)] -1,

WM,N = SUPg,<F (x)<6,
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TABLE 1
Percentage points z, of M'*W,,

M a=.1a=.05a=.01 M a=.1 a=.05 a=.01 M a=.1a=.05 a=.01

10 4.6146 6.4257 14.1863 10 3.2900 3.9829  6.03859 10 29218 3.4216 4.1705

(3.33) (5.70) (3.33) (4.00)
20 4.6423 6.4398 14.1908 20 3.3962 4.04519 4.9094 20 2.9094 3.1831 4.10391

(3.76) (4.77) (3.07) (3.80)

50 4.6631 6.4488 14.1929 50 3.2029 3.5533‘; 4.5353 50 2.8616 3.1525 3.8289
(3.69) (4.40) (3.15)  (3.80)

100 4.6719 6.4519 14.1931 100 3.0640 3.4379  4.1899 100 2.8384 3.1417 3.7419
®  3.05 3.30 3.79 w 289 3.15 3.67

(a) 6 =0. (b) 8 =.01 (c) 8 =.05
M a=.1a=.05 a=.01 M a=.1 a=.05a=.01

10 F 27148 3.1336 3.8203 10 F 24383 26340 3.2863
Fx 32747 39777 6.0714
20 F 27130 2.9830 3.72677 20 F 24694 27236 3.2852

Fx 3.3938 4.0798 6.1725 Fx 27419 3.1507 4.0971

50 F 27284 3.0071 3.6284 50 F 24890 2.77609 3.3414

Fx 29641 3.3533 4.2777 Fx 2.6223 29530 3.6498

100 F 27362 3.0120 3.5960 100 F 25159 2.7929 3.3568

Fx 2.8562 3.1803 3.8839 Fx 25657 2.8727 3.4969

® 278 305 359 ® 253 283 3.40
(d)yo=.1 (e) =25
TABLE 2
MN \"*
P t int: — | W
ercentage points for ( W N) M,N
M=N a=1 a=.05 a=.01 M N a=.1 a=.05 a=.01
10 2.3441 2.6832 3.1462 100 100 Fv2.7795  3.0089 3.5022
(2.71) (3.17) Fx2.7369 29820 3.4724
20 2.5819 2.7603 3.2274 100 99 Fv2.7747 3.0157 3.5051
(2.70) (3.18) Fx 27524 2.1893 3.4781
50 2.7007 2.9488 3.4299 100 98 Fy 27607 3.0146 3.5112
(2.93) (3.44) . Fx 27470 29922 3.4686
100 2.7914 3.0249 3.5022 100 95 Fy2.7669 3.0239 3.5057
(3.02) (3.47) Fx 27426 29939 3.4863
500 2.9441 3.1863 3.6694 500 500 Fy 28423 3.0990 3.6136
(a) =01 () 6=.05

M=N a=.1 a=.05 a=.01 M=N a=.1 a=.05 a=.01

20 2.3631 2.6520 3.1870

50 2.6667 2.8968 3.4299 50 2.4723 2.7357 3.2963
100 2.7003 2.9711 3.4720 100 2.4829 2.7580 3.3131
500 2.7415 3.0139 3.5468 500 2.5227 2.8028 3.3623

(c)0=.1 (d)8=.25
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TABLE 3
Pk = P{sup.cp | Fx(x) — F-x(x)| = K/M}.

N4 5 6 7 8 9 10

4 125
6 250  .063 031
8 359 141 078 016  .008
10 453 219 131 043 023  .004  .002
TABLE 4
Percentage points for M"/*An.
M a=.1 a=.05 a=.01 M a=.1 a=.05 a=.01
10 2.1213 2.3333 2.6458 10 1.9999 2.2361 2.5299
20 2.2361 2.4962 2.9824 20 2.2360 2.4495 2.8868
50 2.4286 2.6549 3.1529 50 2.3349 2.6000 3.1236
100 2.4962 2.7222 3.2497 100 2.4495 2.7107 3.2072
® 2.74 3.02 3.56 ® 2.56 2.84 3.41
(a) =01 (b) 6= .05
M a=.1 a=.05 a=.01 M a=.1 a=.05 a=.01
10 1.9999 2.2361 2.5299 10 1.8974 2.1213 2.4495
20 2.1829 2.4494 2.8402 20 2.1105 2.3094 2.7137
50 2.3333 2.5585 3.0869 50 2.1429 2.4286 3.0000
100 2.3635 2.6666 3.1831 100 2.1652 2.4659 3.0378
® 2.44 2.74 3.31 ® 2.23 2.53 3.12
(c00=1 (d) §=.25

with { in the same range as in (4.8) and (4.9). (See (3.11) and (3.12) for ¥ and ji.) The

1/2
preceding table of percentage points for (—]‘%) Wun was computed using only
algorithm (3.10). Discontinuities occur at almost each entry. The bars are set following the
same rules as above, but only four digits are given. The table for 8 = 0 is the same as Table
2(a) for @ = 0.01 and is therefore omitted. The numbers in parentheses are taken from
Canner’s (1975) simulation study (computed for § = 0). For § = 0.05, the rows M = N = 10,
20 and 50 are equal to those in Table 2(a) and are omitted. Instead, we demonstrate the
effect of slightly different, but large sample sizes. Again, the rows are marked by FY, if the
supremum is taken over all a’/M =< Fx(x) = b’/M. In Tables 2(c) and 2(d) those rows are
omitted which do not differ from Table 2(a). The asymptotic values of Tables 1(b)-1(e)
may be used for comparison. For applications see Doksum and Sievers (1976).

Example 5. Kuiper’s statistic.
supxer(Fx(x) — F(x)) + supsegp(F (x) — Fx(x))

was originally suggested by Kuiper (1960) as a Kolmogorov-Smirnov test on the circle.
Durbin (1973) proved that

P {sup.er(Fx(x) — F(x)) + supser(F(x) — Fx(x)) = 7/M}
(4.10)
=M-PMx—1=M-1)Fyp(x) =Mx+7—-1 forall 0=x=1}.
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Hence, v and p are similar to (4.4), specifically
vv=>G—7+1)4/M and u=0+1)/M forall {=0,...,M—1,

and the probability (4.10) equals M!fy_1(1), where (f,) is the u-Sheffer sequence for D with
roots in ». For computing fy—1(1) the same methods are available as for the ordinary
Kolmogorov-Smirnov test in Example 3. Choose 6 = 7 — 1 and p = 1 in (4.4). The simplified
version of Algorithm A.1 can be used (see (4.5) and what follows). The alternating recursion
(2.8) is now basically the same as the recursion in Durbin (1973, page 35). Stephens (1965)
derived explicit expressions under special assumptions about o.

Durbin (1973) proved also the two sample analog of (4.10). We get from his result

P {(supeex (Fx(x) — Fy(x)) + supsce(Fy(x) — Fx(x)) = /M) = Mfs+(N) / (M Vi 1) ,

if (f,) is the u-Sheffer sequence for V with roots in », where
vi=[(N=-1i/M—(N+M-1)(r—1)/M]+ -1

and
w=lIN-1)i/M+(N+M-1)/M| foral i=0,.--,M—1.

The same considerations as for the Kolmogorov-Smirnov two sample test in Example 3
are valid. In particular, the generating function identity (A.19) can be formulated for the
two sample and the one sample case.

Example 6. The Butler test.
P{—K/M = Fx(x) — F-x(x) = L/M  forall x€&€ R} = Pu(K, L),

with K, L € No; K <= M; L = M, is the distribution of the Butler test (Butler, 1969) for
symmetry about zero. Here F_x denotes the empirical distribution function of —Xj, .-,
—Xyr. If the vector T is defined in (3.1) with Y, = -X,(j =1, -.. , M), we obtain

T;,=1- Top+1-, forall ¢=1,...,2M.
Denote the set of all such vectors by T«(M, M)C T (M, M). Then #T,(M, M) = 2™ and
#L (M, M|-K=<2T,—-<1L forall ¢=0,...,2M)
=#T M, M|-K=<2T,—¢<L forall ¢=0,-..--,M)
=YY #Ti, M —i|-K=2T,—¢<L forall ¢=0,...,M).
From (3.7) we obtain, for J =K + L + 2

M M M
_ o9—M QL (M+L)/2) _
Pu(K, L) =277 Y, m Le=0 {(; + (¢+ 1)J> * <i - /J) <i +4]+ K+ 1)

(4.11)
_ M = 2—M Z+_oo Z[(M+L/2] M _ M
i—4&—L—1 = Lm0 \\ i + 4 i+ +K+1

if Xj, - - - , Xpareii.d. random variables with a continuous distribution function, symmetric
about zero. The one-sided case (K = M) can be written in various different forms as

follows.
_ M M
— o—M \L(L+M)/2| _

_ M
-2 yistieg
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M\ M
=1 - Myl ( i ) -2 M((M—L—l)/2)

=1-Bus(M—-L —2)/2) — Bus(M— L —1)/2)

_ ) PurM+1,L) if M—Lisodd
" | Pu-(M —1,L) if M- L iseven,

where Bu,5(x) = 277 Y15 (All) is the binomial distribution function with probability p =
0.5 of success. Thus, no extra tables are needed for the one-sided case. The case K = L in
(4.11) has been considered first by Smirnov (1947) (I owe this reference to W. R. Pirie) and

was rediscovered by Butler (1969), the result being

M
_ o-M v _1\¢ VLM+K)/2)
Pu(K, K)=2"" 37 » (-1) ZL=I'(M—K)/2] <i +¢(K + 1))

=220 (—1D)Pu[M, 2¢+ 1)(L + 1))].

For tables of Py(K, K) one should use

Pyi(K, K) if M — Kis odd

*.12) PulK, K) = {PM_I(K, K) if M- Kiseven,

If the distribution functions F, of X, are not all equal, the distribution of the Butler statistic
does not change. This result is due to Chatterjee and Sen (1973). Because of several
misprints in their Table 2, we give here a small table of Px = 1 — Py(K — 1, K — 1). Use
(4.12) for odd M. :

The test statistic

| Fx(x) — F_x(x) |
{1—]1— Fx(x) — F_x(x)|}"*

(4.13) AM = SUPa/M=Fy(x)=b/M

has been introduced by Aaberge, Doksum and Fenstad (1977), who found the asymptotic
distribution for the one-sided case. The exact distribution can be computed recursively, if
the functions » and u are defined by

-1 forall i=0,...,a—1
v(i) = {i—l_(4is+sz)1/2 —s]-1 forall i=a,.---,b

v(b) forall i>b,

wa) foral i=0,...,a—1
w(@) = {i+|_(4ir+r2)l/2+rj “ forall i=a,---,b

M for all i>b.

Now
P{Ay = (2s/M)"*} = 27 Y'f(M — i),

where the summation ranges over all i with i + 5, < M < i + {i, and (f,) is the ji-Sheffer
sequence for V with roots in 7 (see (3.11) and (3.12) for 7 and ji). We give some percentage
points for M'/?A, in Table 4, where o = 1 — P(M"?A < z.). Discontinuities are marked
by bars and @ = M — b is chosen close to § as in Example 4. The asymptotic values are
computed from Theorem 3Aa) in Borokov/Sycheva (1968), as suggested in the work of
Aaberge, Doksum and Fenstad (1977). Our asymptotic results differ slightly from their
Table 3, because we use one more term in the asymptotic expansion.
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APPENDIX

The purpose of this appendix is to summarize the algebraic results which we used in the
preceding chapters. All proofs are straightforward verifications of the definitions. Hence,
we give only some hints and leave the details to the reader. A more general approach
including Eulerian polynomials can be found in Niederhausen (1980). The “Finite Operator
Calculus” of Rota, Kahaner and Odlyzko (1973) is the fundament of the whole theory.

Let P be the algebra of polynomials over a field K with characteristic zero. In our rank
test applications K always equals Z, for the order tests choose K = R. We will deal with
linear operators P — P only, and omit the word “linear” in the sequel. For all a € K the
shift operator is denoted by E*: p(x) — p(x + a). An operator @ on P is a delta operator,
if .

Q is shift invariant: QE® = E°Q forall a € K, and
QX is a non-zero constant.

The derivative operator D is a delta operator if K = R, and the following properties show
how @ generalizes D:

(A.1) Qa = 0 for every constant a
(A.2) deg(®p) = deg(p) —1 for each p € P with deg(p) = 1;

see Rota et al (1973, page 687). Hence, the kernel of @ consists only of the constant
polynomials. A sequence of polynomials (s,) »en, is a Sheffer sequence for @, if

(A.3) So is a non-zero constant
(A4) QSn = Sp—1 forall n=1.

We make the convention s, = 0 if n < 0. For instance, (x"/n!) is a Sheffer sequence for D.
LEMMA A.1l. If (s,) is a Sheffer sequence for @ then deg(s,) = n.
Proor. (A.1)-(A4) 0O

LEMMA A.2. If (s,) and (t,) are both Sheffer sequences for @ with the property
Sn(¥n) = ta(vn)

for a given sequence (v,) in K, then the two sequences are equal.

Proor. Induction over n. Use ker(Q) = constant functions [
(s») has roots in »: Ny = K, say, if sn(v») = 8o,n

for all n € N,. The Sheffer sequence for @ with roots in 0 is called the basic sequence for
@ and always denoted by (g,). Obviously,

(A.5) (x"/n!) is the basic sequence for D.
It is easy to verify that

(A.6) ((x + : - 1)) is the basic sequence forV =1 — E~,

neN,

More examples can be found in Rota et al (1973).
Immediately from the shift-invariance follows: If (s,) is a Sheffer sequence for @ with
roots in v, then (E°s,) is a Sheffer sequence for @ with roots in » — a.
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Deeper than all the other results in this appendix is the following

LEMMA A3. Ifv(n) =an+ b (a, b € K), then
Sa(x) = (x — an — b)(x — ) 'qn(x — b)

defines the Sheffer sequence for @ with roots in v. (For n = 0 we have to defineg =1)

Proor. See Niederhausen (1978, equation (16.2); 1980, equation (2.4) O

Now we come to a representation theorem for Sheffer sequences with roots in

o) = () forall 0=i=<L
ci+d forall i>1L,

where L € Ny; ¢, d € K and ¢: Ny = R arbitrary.
THEOREM A.l. If (s,) is the Sheffer sequence for @ with roots in v as above, then
$.(x) = Yo si(ci + d)(x — cn — d)

(A.7)
(x—ci—d)'quilx —ci—d) forall n€E N,.

ProoF. Check recurrence and side conditions, using Lemma A.3 0

CoROLLARY A.l. (Binomial Theorem). If (s,) is the Sheffer- and (q.) the basic
sequence for @, then

Snlx +¥) = Yo 8(¥)gn-ilx)  forall n€ N,.
ProoF. Choose ¢ =0,d=yand L =« in (A.7) O

Avoiding alternating summation in (A.7), it may be sometimes preferable to use the
“outside method” (a term, introduced by Hodges(1957)):

(A8)  sn(x) = ra(x) — Yl rilci + d)(x — cn — d)(x — ¢i — d) ' gui(x — ¢i — d)

where (r,) is the Sheffer sequence for @ with roots in ¢ (follows by summation over all
i=0,---,nin (A.7)).

Repeated use of (A.7) yields a representation of the Sheffer sequence (s,) for @ with
roots defined in the piecewise affine function

v(i) =ia,+ b  forall Li<i=<L,

where —1 = Lo < L; < ..., each L; integer, and a;, b; € K for all j € No. Then for all L;
<n=<s Lj+1

(A9) $n(%) = Thio + -+ Thino pAX)Ps-1(2(R)) -+ Po(v1(k1)),
if
x — v(kiv1)

Sy eal EHC R AU

pulx) =
where ko = 0 and k;,; = n. Because of its importance we explicitly write down the special
case of (A.9) where
() = ia+b forall i=0,.--,L
"W=Nic+d forall i>L.

Then
ilc—a)+d—-b>b

= VL
(A.10)  sa(x) = Yio erd—b

gilei + d = b) S quilx — ic — d).

C
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For n < L, the right hand side equals (x — an — b)(x — b)¢,(x — b) by Lemma A.3.
Now we assume that K is completely ordered. Let u: No = K be a non-decreasing
function and (¢.,),ien, be a double sequence in P with the properties

tai(le) = b1 () forall 0=i=r(n) =min{m € No|u(m) = p(n)},
(A-1D th, =0 for all i> r(n).
Define an associated sequence (f,,) to (£,;) by
(A.12) [a(x) = t,(x) forall p-1<x=up, (u_1 = —).

We call (f,) a p-Sheffer sequence, if (£n+n,-tm)en, is a Sheffer sequence for all m € N,.
From Coroellary A.1 we get a first representation of f,(x)

(A.13) fu(®) = Yi=i fe( ) gn-r(x — ) if %,y € (g1, w).
If (f.) has roots in », i.e.
(A.14) fn(vn) = 8o,n forall n € N,,

then any value f,(2) can be computed from (A.13) by stepping through all the intervals
[, w+1] until z is enclosed. We give only a brief description of this trivial algorithm:

ALGORITHM A.l. Assume fr(;(), - - - , fi() are already computed such that j < n and
Vit1 > [y

(@) If »is1 < pyjs+1 then define x = viry, ¥ = w, and compute fo;\(¥ir1), -« - , fi(wr1) from
(A.13). Of course, fi+1(vi+1) = 0. Therefore, the i-index increased by one, and it increases
again if »,., lies also in the same interval (define x = »;42 and y = v;41). Finally a k is
reached such that u(j) < vx < pj+1 < vp+1 (the case v, = w4, is left to the reader). Then
choose x = 11, ¥ = v, and compute f,(;)(i+1), « - + , fe(t+1) from (A.13). Now we are in the
same situation as in the beginning.

(b) If ir1 > pjs1 > ) then define x = y 41, y = ), and compute frj)(wis1), +« + , fa(wis1) from
(A.13). Again, we are in the same situation as in the beginning.

(¢) If wj = wy+1 increase j by one.

In special cases this algorithm can be simplified, as in Example 4 of Section 4.

A one-dimensional recursion can be obtained from

THEOREM A.2: Let (f,) be a u-Sheffer sequence for @ (with basic sequence (q.)). If (f,)
is associated to (t,,) then
(A.15) bui(x) = Y= fo(ue) @nor(x — pp) forall ne Nyandi=0,-..-,n.

ProoF. Verify side conditions (A.11).
See Niederhausen (1980, Theorem 4.1) for a general version of this theorem. The
announced one-dimensional recursion follows, when we write (A.15) as

(A.16) fu(x) = X' fe(ur)gn-r(x — pe)  forall n € N,,

where the summation runs over all k£ such that u; > x. Thus, a system of equétions for the
unknown fi(ux) is obtained, if only one value f,.(v,) with », < y, is known for each n. By
Cramer’s rule, f.(u1.) can be expressed as a determinant.

CoROLLARY A.2: If (f,) is a u-Sheffer- and (q,) the basic sequence for Q, then
fo(pn) = det(ai,)ij=1,... n+1,
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where

Qs = Qi) ((ve-1 — py-1) ) forall j=1,...,n
i fica(vio1) if j=n+1,

for any v < p.
If, in addition, (f,) has roots in v, then

(A.17) falpa) = (=1)" det(gi+1- (. = 1) ))sjm1, - -

In some applications (see Example 4) pu is of the special form u(i) = ic + d with ¢, d €
K. If there exists a A > 0 such that f,(u, — A) is known for all i € N,, (A.16) becomes a
generating function identity; as follows. Define, for z = 0,

(A.18) @:(t) = Ym0 fil s — 2)t" and v.(2) = ¥/ q.(ic — 2)t".
Now we get from (A.16) with x = u, — z that

@:(t) = @o(t)y:(2).
Choose z = A, then go(t) = ya(t) "ga(t), hence,

() palt)

A.19 L(p) = 12U¥

( ) @:(t) ™)
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