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CONTROL OF DIRECTIONAL ERRORS WITH STAGEWISE MULTIPLE
TEST PROCEDURES'

BY JULIET POPPER SHAFFER

University of California, Berkeley

This paper is concerned with jointly testing the hypotheses 6; = 6, i = 1,

-, 5, using tests based on independent statistics T; with distributions P(T; < ¢)

= Fi(t, 6;) nonincreasing in 6;. Holm proposed a sequentially rejective test

procedure, applicable to this problem, for which, for fixed a (0 < a < 1), the

probability that the joint conclusion contains no false rejections is = 1 — « for all
possible values of the 6.

Suppose, however, that if the hypothesis 8; = 6, is rejected, it is desired to
conclude not only that 6; # i but also either that it is greater than 6;, or smaller
than 6. Usually one then requires a probability = 1 — « that the joint conclusion
contains neither false rejections nor false directional statements. This paper
considers the use of Holm’s nondirectional procedure for rejecting hypotheses,
supplemented by decisions on direction based on the values of the 7. It is shown
that this procedure does not in general provide the required control over error
probabilities, but that it does so under specified conditions on the distributions of
the T,‘.

1. Introduction. Assume s hypotheses of the form H{: §; = 8, i=1, . - -, 5, which will be
tested against two-sided alternatives using independent statistics T; with continuous or discrete
distributions

(1.1) P(T;=<1t) = F(,89,), F; nonincreasing in 6;.

It will be assumed that any combination of true values of the 6/s is possible; while not
necessary for proof of the theorems, the comments on the favorable power properties of the
procedure considered in this paper would not otherwise apply. Rejection of a hypothesis will
be interpreted, at this point, as being equivalent to the conclusion only that §; # 6, without
specification of the direction of the difference between actual and hypothesized parameter
values. Acceptance of a hypothesis will be interpreted as reaching no conclusion about the
value of the corresponding parameter, so that errors occur only when true hypotheses are
rejected. The set of s acceptances or rejections resulting from the application of a joint testing
procedure will be called a correct joint decision if it does not contain any errors.

Holm (1977, 1979) proposed a sequentially rejective test procedure which can be applied to
this problem, and for which the probability of a correct joint decision, to be denoted P, is =
1 — « for all possible values of the §;. Essentially the same procedure was proposed in a more
general context by Marcus, Peritz, and Gabriel (1976). Holm’s procedure involves testing in
stages; any hypothesis rejected at one stage is eliminated from the set considered in setting
critical values for subsequent stages. More formally, the procedure is as follows. For i = 1,

e, S

STAGE 1. If T; < C;s or T; > Cls, teject HY. If at least one hypothesis is rejected, proceed
to Stage 2.
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Let r,_; be the number of hypotheses HY rejected at stage j— 1,j—1=1, ..., 5 — L. If rjs
= 0, accept all hypotheses which have not been rejected at an earlier stage. If r,_; > 0, proceed
to stage j.

STAGE . Consider all i for which H ? has not been rejected. If T; < C;,m or T; > Ci,m reject
H?, where m = s — Y%Zire.

Continue in this way until each hypothesis has been either accepted or rejected.
The C;j, Cij, i,j=1, - - -, 5, are the maximum and minimum values, respectively, for which

(1.2) Py (T;< Cj) = (1 — c)ay; Py (T: > Cij) < ciaj
where 0 < ¢; <1 and

(1.3) l-a)y=1-a

Thus, for any subset , - - -, n containing j of the integers 1, -+ -, s

(1.9 Py 8 (Cri <Th=Chjy +++, Cpy < T, < Cr)z 1 — ¢,

with equality if all the T; are continuous.

A joint testing procedure & will be said to be more powerful than a joint testing procedure
8’ if the probability of rejecting any false hypothesis under § is = the probability of rejecting
that hypothesis under 8’, and if it is greater for at least one false hypothesis for some values of
the 6;. A single stage test procedure with critical values C, Cis clearly cannot be more
powerful than Holm’s procedure, since the critical regions for each H? for the single stage
procedure are included in the critical regions given by Holm’s procedure.

Under an additional assumption, it is also easily shown that the power of the procedure
cannot be improved, if all T; are continuous, by increasing any C;; or decreasing any Cj;
without violating the requirement

(1.5) P.=z1l—-a for all values of the 6.

(The choice of the ¢; in (1.2), which determines the joint selection of C;; and C;;, affects power
but also involves other considerations outside the scope of this paper.) To state this assumption,
let [£;4,, t;,6,] be the convex support of F;(, 8;). Suppose that the possible values of 6; are g ;
<6, <0; (—o0 =8,, ; < »). Then the additional assumption is

(16) liIIla‘_._oiFi(t, 0,) = l, liIIloi_JiFi(t, 0,) = 0; _t,-,0,»0 <t < ?,',0‘“ .

(In the discrete case, the lower endpoint of the interval for t would be included, provided it is
finite.)

To show that, given (1.5), (1.6), and all T; continuous, the procedure cannot be made more
powerful by increasing any C;, or decreasing any C;;, consider, for any j, the configuration in
which 6; = 0y, i = 1, - -, j, and 6; approaches §; or 0:,i =j+ 1, .-+, 5. Then, by (1.6), the
probability of rejecting all hypotheses Hjs1, - -+, H at Stage 1 can be made arbitrarily close
to one, in which case P. approaches the probability that (Ci; < T1 < CY;, -+, G;; < T; <
Cj;) which equals 1 — a by (1.4). An increase in C;; or reduction in C; would result in P,
being smaller than 1 — « for the configuration given above.

It seems likely that, in most applications of such procedures, when H? is rejected one would
want to decide either 6; > i or 8; < 6, not simply 6; # ;. For this purpose it seems natural,
in view of (1.1), to augment the Holm procedure by concluding, after rejecting H?, either 6;
> @, or 0; < 0, depending upon whether T; is large or small. Under this augmented procedure,
additional errors, sometimes referred to as Type III errors, may arise by concluding 6; > 6,
when 6; < 6, or vice versa. These will be called directional errors, in distinction to the errors
of falsely rejecting true hypotheses H?, which will be called nondirectional.

The augmented procedure will be referred to as the directional test procedure. It seems
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plausible that this procedure would still satisfy (1.5), with P. now the probability of a joint
decision containing neither directional nor nondirectional errors. This is easily seen to be true
when s = 1, since P. under the directional test procedure is at least as large when § # 6, as
when § = 6, assuming (1.1). One might then expect that, for s > 1, P. would be minimum
when 6; = 6, for all i, and thus = 1 — « for all possible §;. (If so, then among procedures
satisfying (1.5) with all T; continuous, no more powerful procedure could be obtained by
increasing any C;; or reducing any C;;, as shown by the argument used with respect to Holm’s
procedure.) However, as pointed out by Marcus, Peritz, and Gabriel (1976), neither the
directional test procedure, nor any other procedure within the more general class of “closed
testing procedures” which they consider, has been shown to have this property.

In Section 2 of this paper, it will be shown that (1.5) does hold provided that the
distributions F; satisfy (1.1), (1.6), and

(1.7) FUt', 8)/Fi(t, 0) < FI(t', 0)/Fi(t,0") fort’ >1,0">8,i=1,-.-,s

where Fi(t, 8) is the derivative of Fi(t, §) with respect to §. On the other hand, it will be shown
by an example in Section 3 that (1.5) is not necessarily true if the F; satisfy (1.1) and (1.6) but
not (1.7).

In treating the directional test procedure, it will be convenient to replace HY, i=1, - .., s,
by the hypothesis-pair H;, H; defined as

(18) H;: 9;’ = 9i0; Hi: 9,‘ = 0,’0.

The directional test procedure can then be described as follows.

Directional test procedure. In the adaptation of Holm’s sequentially rejective test procedure
described above, replace each statement “If T; < C;; or T; > C; reject H?” by “If T; > C/;
reject H;; if T; < C;; reject H;” where j = s or m.

Note that rejection of either H; or H/ implies rejection of H?, and rejection of H? implies
rejection of either H; or H;.

THEOREM 1. Assume that the hypotheses (1.8), i = 1, ..., s, are being tested using the
directional test procedure defined above, that each T; is continuous or discrete, that the T; are
independently distributed as F(t, 0:), and that the distributions F; satisfy (1.1), (1.6), and (1.7).
Then (1.5) holds.

In Section 4 it will be shown that the conditions of Theorem 1 are satisfied by wide classes
of distributions.

2. Proof of Theorem 1. A hypothesis Hi; is false if ; > 6,o; H; is false if 8; < ;. Let k be
the number of false hypotheses. Since H; is true if H; is false, and vice versa, the possible
values of k are 0, 1, - - -, s.

Without loss of generality, we can assume that the false hypotheses are H, -+, H. For
any fixed values of ; > ;i =1, - .., k — 1, it will be shown that P, = 1 — « for all 8 > .

The proof will be carried out in two stages.

(A) P. will be shown to approach limits = 1 — « as (i) 6 — 0o+ and as (ii) x — G;.

(B) It will be proved that P, has no local minima between 6; = 6z and 6 = §;.
Together, these two facts imply the desired result.

ProOOF OF (A). The proof will proceed by induction. If k = 0, P, = P(all hypotheses are
accepted) = 1 — « by (1.4). Thus, (A) holds for k = 0. It will now be assumed to hold for k&
— 1, and proved for k false hypotheses.

(i) 6 — Oro+. Let P. = P1 + P;, where P; = P(correct joint decision with H} accepted)
and P; = P (correct joint decision with H} rejected). As 6 — Oro+, P, — P(correct joint
decision with s hypothesis-pairs and k — 1 false hypotheses) = 1 — a by the induction
hypothesis, and part (i) of (A) follows.
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(ii) 8 — 0. Put P, = P3 + P,, where P; = P(correct joint decision with T, < Ck.) and P4
= P(correct joint decision with T > Ck;). As 6 — 0Ok, Py — P(correct joint decision with s
— 1 hypothesis-pairs and k — 1 false hypotheses) = 1 — « by the induction hypothesis, and
part (ii) of (A) follows.

ProoF OF (B). For fixed 8; > i, i =1, - -+, k — 1, let 8 vary from Gro+ to 0. It will be
shown that if the derivative of P. with respect to . is negative for any value 6, = 6*, it cannot
be positive for 6, > 6*, and this implies (B).

It is convenient to define sets D;j, i=1,2, +++, 855j=—s, =(s = 1), - -+, (s — 1), s in the
following way:

D;s = (Cis, ®)
D;j = (Cij, Cijul, Jj=12--5-1
Dy = Di—o=[Cis, Cil
Dij =[Ci~(j-v, Ciy), J==G=1,.--, -1
D;—s = (—, Ci).
Then
@1 P.=Yj-—sP(Tx € Dsj) p;

where p; = P(correct joint decision | Tx € Dy;). By (1.1) and the independence of the T;, the
p; do not depend on 6, and

22 Pi = Ppi-1
P-j = p-y-vs

since values of T, T, ««+, Te—1, T+1, - -+, T resulting in a correct joint decision for T € Dp;
also result in a correct joint decision for Tx € Dy j-1; and similarly for Ti € Ds-; and Tx €
Dy, —(j-v-

In terms of F.(¢, 6,) we can rewrite (2.1) as

j=1’...’s

(2.3) Pe = p; — 3 5=1Fx(Chy, Or)(pj — pij-1)
+ Y 3=1 Fr(Crjo, 08)( P~ — p-(j-1)

where F(Cgj-, 0x) is the limit of F (¢, 6%) as t approaches Cy; from the left. (If 7} is continuous,
Fr(Crj—, 6k) = Fr(Csj, 0r), while if T is discrete, Fr(Crj-, 0r) = Fir(CEj, 6) for some C%; <
Crj)

Let Fi(t, 6) be the derivative of F,(t, 6x) with respect to 6. Differentiating P. in (2.3) with
respect to 6, denoting the derivative by P, and multiplying and dividing by Fi(C, 6,) for
some C such that Ci; = C < Cp,1, gives

249 P, = F}(C, 0,)G(6r)
where
(2.5) G(0r) = XJ<1[F(Chj, Or)/Fi(C, 00)1( pj=1 — p))

= Y5=1[Fi(Crj-» 0r)/ Fi(C, 01))(p-(j-1) — P-))-

By (1.7), the ratios of derivatives in the first sum in (2.5) are nondecreasing in 8, and the
ratios of derivatives in the second sum are nonincreasing in 6. Since, by (2.2), all coefficients
of these ratios are nonnegative, G(6) is nondecreasing in 6. By (1.1), Fx(C, 6;) in (2.4) is
nonpositive, and therefore if P; is negative for any 6, = 6% (> ) it is nonpositive for all 6,
> 0F, as was to be proved.

This completes the proof of Theorem 1.
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3. A counterexample. The following example shows that the directional test procedure
described in Section 1 need not satisfy (1.5) when (1.7) is not satisfied.

Let s = 2, Fi(t, 6:) = Gi(t — 61), where G is a standard Cauchy distribution, and F; be
continuous but otherwise arbitrary. It will be shown that P.is < 1 — « for §; = 6 and large
values of ; (> 61).

From (2.1) we have

P.=[G(Ci2 — 61)) — Gi(C12 — 0))]P(Coe < T2 = C2)
+[1 — Gi(Ciz — )]P(Car = To < Ch)
=[Gy(Clz — 81) — Gi(Crz — 0)](1 — @)% + [1 — Gi(Cr2 — 61)](1 — ).
Then P. = 1 — « if and only if
3.1 Gi(Clz — 61)/Gi(Cia — 6) = 1/[1 — (1 — a)"?].
Now, if g is the density of G,
3.2 lims,-=G1(Ciz — 1)/ Gi(Ci2 — 61) = lims,~=81(C12 — 01)/81(Cr2 — 6:) = 1

since G, is Cauchy. Then, for a sufficiently large value §¥, (3.1) will be violated for 6; >,
and therefore P, will be < 1 — a. (Holm (1979) has proposed a more general but less powerful
class of directional procedures for which (1.5) is satisfied in the Cauchy case.)

4. Some families of distributions satisfying Theorem 1, and applications. Theorem 2 gives
conditions under which Theorem 1 holds for some common classes of distributions.

THEOREM 2. The conditions of Theorem 1 are satisfied for (A) location-parameter families
with monotone likelihood ratio, (B) positive-valued scale-parameter families with monotone
likelihood ratio, and (C) exponential families which are continuous or discrete and which satisfy

(L6).

Proor. The proof of (A) and (B) follows directly from the usual expressions for the
cumulative distribution functions for such families. To prove (C), note that (1.6) is assumed
and (1.1) is known to be satisfied; the inequality (1.7) is easily proved from the fact that E4«(T)
is an increasing function of 6, that the density (with respect to ) expressed in natural form,
f(u, 0) = a’¢”™, has monotone likelihood ratio, and that

F(t,6) = f [u = EfT))f(w, 6) du(u).

Making use of Theorem 2, it is easy to show that Theorem 1 applies to the usual tests,
based on independent random samples, for single parameters of the following distributions
(with any other parameters assumed known): means and variances of normal distributions,
location and scale parameters of exponential distributions, scale parameters of uniform
distributions and (for sample size 1) of Cauchy distributions, and the parameters of binomial
and Poisson distributions. Tests for means of normal distributions with common unknown
variance are not covered by Theorem 1, but when the variance is estimated with large degrees
of freedom, the individual r-statistics are approximately normal and independent so that
Theorem 1 holds approximately.

When the T; are discrete, as in the binomial and Poisson cases, one may wish to use
randomized tests in order to obtain values C;; and Ci; which result in equality in (1.4). It is
easily shown that if the discrete T; satisfy the conditions of Theorem 1, the same will be true
for the randomized test statistics derived from them.

Note that nothing in Theorem 1 requires the hypotheses to refer to common families of
distributions or parameters. Similarly, since Theorem 1 holds for arbitrary values of the c;
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used to define the C;; and C}; in (1.2), any combination of one-sided and two-sided tests is
covered. (If all tests are one-sided, Theorem 1 holds without any conditions; see Holm (1979).)
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