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ESTIMATION OF A COMMON MEAN AND RECOVERY OF
INTERBLOCK INFORMATION

By C. G. BHATTACHARYA
University of Waterloo

Consider the problem of combining two unbiased estimators of a parame-
ter when the estimators are known to be independent normal variables with
unknown variances possibly unequal. The two one parameter families of
estimators studied in Brown and Cohen, and Khatri and Shah, are accommo-
dated in a single two parameter family studied in this paper and the results in
the two papers are unified. For the type of estimators considered by Brown and
Cohen, this paper not only offers a generalization but also a significant
improvement. This improvement concerns the main result in Theorem 2.1 of
Brown and Cohen and has bearing on their entire paper except the last section
on interval estimation. Extensions of Brown and Cohen’s Theorem 4.1 concern-
ing the point estimation of the common mean of K-populations and Theorem
5.1 concerning interval estimation of the common mean of two populations are
also presented.

1. Introduction. The problem of estimating the common mean of two normal
distributions and the related problem of recovery of interblock information have
been studied in several papers. Since Yates (1939, 1940) initiated the whole subject
and his work was extended by Nair (1944) and Rao (1947, 1956) many have turned
their attention to the problem of constructing a combined unbiased estimator with
a variance uniformly smaller than that of the intrablock estimator (first of the two
sample means in the common mean problem). Of these, the earlier works by
Graybill and Deal (1959), Seshadri (1963 a, b), Shah (1964) and Stein (1966) are
applicable only to some special designs. Recent works by Brown and Cohen (1974)
and Khatri and Shah (1974), with which this paper is really concerned, are
applicable to any incomplete block design with more than 3 blocks. For the sake of
brevity, these two papers will henceforth be referred to as BC and KS, respectively.
For the same reason a statement like ‘7" is uniformly better than x* will be written
as ‘T ub x’.

Both BC and KS, in fact considered a whole family of estimators depending on a
single parameter and while the former required an upper bound on their parameter,
the latter required a lower bound. The two'families of estimators mentioned above
can be treated as particular cases of a two parameter family and the desired
property could be guaranteed by a single condition on the two parameters. The
upper bound set on their parameter by BC was somewhat crude and involved a
complicated expression which called for a table given in their paper. Thus, the
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present paper unifies these two classes of estimators and improves the result of BC
for the subclass which corresponds to their estimator. The improved upper bound
of the BC parameter, as given in this paper, is not only more precise but also is a
simple expression, for which no table is required. For the estimator considered by
BC, the improved upper bound of their parameter is, in fact, shown to be the best
possible. Incidentally, it was noticed that Theorem 4.1 and Theorem 5.1 of BC can
be easily extended to the corresponding two parameter family and these have been
presented in Remark 2.4 after the main result in Section 2. Finally, Section 3
contains application of the results of Section 2 to the two main problems, namely,
estimation of a common mean and recovery of inter-block information, which
motivated most of the studies in this field.

2. Main results. Let x,y, S, T, W,, i=1,2,- - -, g be independent random
variables where x ~ N(p, ag0%), y ~ N(p, Byn®), S/0* ~x2, T/n* ~ x2, and
I,Vi/(aio'z + B.'"?z) ~X%a i= 1, 2, tr s dq. Let
(2.1) fi=x+e¢(y—x)
with
(22) ¢ =aS/[S+c(T+(y—x/Bo+ 41 W./B}]
and a and c are constants to be suitably chosen.

Let W, be independent of S, T, and W,,i = 1,2, - - - , g such that W,/ (a002 +
Bon®) ~ x? and let ¢* be the expression obtained by replacing (y — x)? in ¢ by W,
Both BC and KS have shown that V(i) < V(x) for all values of 7 iff
(2.3) (1 + 7)E(¢**) < 2Ep*  forevery 7
where 7 = Byn?/(ay0?). Let r = (1 + 7)¢p*/a. It is easy to verify that (2.3) is
equivalent to a < 2E(r)/ E(r?) for every 7. Thus,

THEOREM 2.1. [i is uniformly better than x iff a < 20 where § = inf_E(r)/ E(rz).

Since it is not easy to evaluate # in all cases attempts will be made to obtain
some nontrivial lower bounds for 6. Let

Z,=8/0%2,=T/n*+ 3I_ W,/ (a0 + Bm?), u = W/[(ot.o2 + B.'qz)Z ],
Jj=0,1, ,q and let u = B(Sa uj/,B)/aO It is easy to see that Z; ~ x2,
Z,~x%, ¢+ and that u, Z,, Z, are all independently distributed. It is also not

difficult to see that  can be written in the form
(2.4) r=2 /[(l - Y)Z, + dZ,h(u, y)]

where d = cay/By, vy =7/(1 + 7), h(u,y) = u(l — y) + v. Let 8 = inf, . f(u, v)
where f(u, y) = E(r|u)/ E(r*|u). Clearly, § < # and hence it would be sufficient to
have a < 28 to ensure v( i) < V(x). Let primes denote derivations with respect to
y. Then direct computation from (2.4) shows that

(2.5) r=[r == wr]/h(u,v).
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Also f' = — g(u)/[h(u, y)E*(r*|u)] where
g(w) = 2E(r|lw) E(r*|u) — (1 = u) E(r|lu) E(r’|u) — E*(r?|u).
The following lemma can now be proved easily.
Lemma 2.1. If E(r'|u) > O, then f' < 0

Proor. If E(r'|u) > 0, then E(r*|u) > (1 — u)E(r|lu) and hence g(u) >
2E(r|u)E(r*|u) — 2E*(r*|u) > 0 and hence f’ < 0. To evaluate 8, first consider the
case where u > 1. Here ' > 0 and hence E(#'|u) > 0 for 0 <y < 1. Thus, f' < 0
for u > 1. This gives inf, f(u, y) = lim,_,, f(4, v) = da, where ay = (n + ¢ — 1)/
(m + 2).

Since r” > 0 for u > 0, it follows that #' is a nondecreasing function of y and
hence either (i) E(r'|u) > 0 for y € (0, 1) or (i) E(r'|u) < 0 for y € (0, 1) or (iii)
E(r'lu) < 0for 0 <y < A(u) and E(r'|u) > O for A(u) <y < 1.

Thus for 0 <u < 1, if E(*'|u) > 0, then inf f(u, v) = lim,_,, f(u, y) = day. On
the other hand if for 0 <u < 1, E(r|u) <0, then (2.5) gives f(u,y) =
E(rlu)/ E(*lu) > 1/(1 — u). Thus, & = inf f(u,y)=da, if day <1 and 8§ €
(1, day) otherwise. For day < 1, day = 8 < 6 and hence da, = 6. In view of Theo-
rem 2.1 we have thus proved

THEOREM 2.2. Ifn+ g > 2and ay=(n + q — 1)/(m + 2), then
(a) for a < 2 min[l, day), ji is uniformly better than x;

(b) if day < 1, ji is uniformly better than x iff a < 2da;

(c) for fixed a < 2, [i is uniformly better than x iff d > a/(2ay).

REMARK 2.1. Taking a = 1, Theorem 2.2(c) gives the following result proved by
KS in a different way: if n + ¢ > 2 and ay = (n + g — 1)/(m + 2), then the
estimator ji with @ = 1 is uniformly better than x iff d > (m + 2)/[2(n + q — 1)].

The following useful modifications of i can be dealt in the same way as ji. Let
G=x+¢(y — x),i=1,2,3 where

¢, = aS/[S + ¢(T + (y — x1*/Bo}]
¢, = aS/[S + c{(y — x)*/Bo + k., W;/B)} |
¢3 = aS/[S + cT].

Thus,

THEOREM 2.3. Theorem 2.2 holds word by word for each i, provided the expression
for aq in that theorem is replaced by

ay=f,/(m+2) where fi=n—-1, f=q—-1, fy=n—4
REMARK 2.2. The estimators 7, and 7,(1) of BC are particular cases of fi, and
s, respectively and application of Theorem 2.3 to these estimators leads to

improvement of Theorem 2.1 and Theorem 2.2 of their paper. For details refer to
Section 3 on application.



208 C. G. BHATTACHARYA

REMARK 2.3. Taking a = 1, Theorem 2.3 yields the following:
fyubxiffd > (m + 2)/2(n — 4), provided n > 5.

In view of symmetry considerations, it follows that, fi, is uniformly better than both
x and y iff (m+2)/[2(n — 4] <d <2(m — 4)/(n + 2), which is possible
whenever (m — 6)/(n — 6) > 16. This result, which is an improvement of a similar
result by Graybill and Deal (1959), was obtained by KS in a quite different way.

REMARK 2.4. As fi, generalizes T,(1) of BC the following generalize Theorem
4.1 and Theorem 5.1 of their paper:

(a) Let x;, S, i=1,2,-- -,k be independent random variables such that
x; ~ N(p, 8,62 and S,/02 ~ xX(m). Let b,c, i=1,2,- - -,k — 1 be arbitrary
sequences of positive numbers such that
(2.6) b, <min[1,2d(m,, —4)/ (m +2)], where d,=¢?8,/6,,.

Let a, = b, and q, = b(1 — Z/_la), i =2,3,- - -,k — 1. Then fiy(k) = x, +
Sk X1 — x)a,8,/(Sy + ¢;S;4 1), is uniformly better than x,, provided m; > 5,
i=2,3,-:,k. The result can be proved in the same way as in BC once it is
noted that condition (2.6) ensures that for each i, b, < 1 and the estimator
L= x+ (%01 = x)b/ (8 + ¢,5;41)ub x;.

(b) Consider the random intervals

@.7) x * ¢ (a)(apS/m)7 - - - and,

(2.8) fs * tm(a)(aOS/m)% e

where ¢,(a) stands for the two-tailed a critical value determined from Student’s
t-distribution with m degrees of freedom and the rest of the symbols are as defined
in the beginning of this section. Then there exists an e(a) € (0, 1) such that for
a < &g(a) the confidence interval (2.8) is better than the confidence interval (2.7) in
the sense that both intervals have the same length and the probability of coverage
of (2.8) is uniformly greater than that of (2.7), provided n > 5.

The proof of the result is analogous to that in BC and is omitted.

3. Applications.

(a) Estimation of a common mean. . Let (x|, x5, + + + , x,) and (¥, Y2 * * * s Vm)
be independent random samples from two normal populations having a common
unknown mean and unknown variances o2 and of respectively. Consider the
problem of estimating p. Let X = Sx,/m, sz = 3(x; — X)*/{m(m — 1)} and let

7, s} be defined similarly. Let,
T(a,c)=x+ (7 —)?)as)%/[s)% +c{s§ + (G =-%)?/(n— 1)}]

Tya,c)=Xx+ (¥ —J?)asf/ (2 +es?).
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These include as particular cases the estimators T, 7,(1) of BC and p*, p** of KS.
In fact,

L=T(a(n=1)/(n+2), T()=Tya 1)

pr=TLec(r-1)/(m=1), p**=TyLc(n-1)/(m-1).

It can be seen that Ty(a, ¢) and Ty(a, c) are of the same forms as ji, and fis,
respectively. Note that d = ¢(m — 1)/(n — 1) in each case and the values of a, are
(n—2)/(m + 1) and (n — 5)/(m + 1), respectively. It follows from Theorem 2.3
that T(a, c)ub x for all a < 2 min[1, d(n — 2)/(m + 1)] provided m > 2, n > 3.
Similarly Ty(a, c)jub X for a < 2 min[l, d(n — 5)/(m + 1)}, provided m > 2,
n > 6. Given a < 2, as is the case with KS estimators it further follows that
Ty(a, c)ub X iff d > (3)a(m + 1)/(n — 2) and Ty(a, c)ub x iff d > (3)a(m + 1)/
(n — 5). From these, the results concerning KS estimators are immediate. Given ¢
such that da, < 1, as is the case with BC estimators, it also follows that
T\(a, c)ub X iff a < 2d(n — 2)/(m + 1) and Ty(a, c)ub x iff a < 2d(n — 5)/(m +
1). In particular, 7, ub X iff @ < 2(m — 1)(n — 2)/[(m + 1)(n + 2)] and T,(1)ub X
iff a < 2(m — 1)(n — 5)/{(m + 1)(n — 1)}. These results are readily seen to be
improvements of Theorems 2.1 and 2.2 of BC.

(b) Recovery of inter-block information. Consider a connected binary
equireplicate incomplete block design. Let » = number of blocks, kX = number of
plots per block. Let N(v X b) denote the incidence matrix of the design and let
rank (N) = t. Let ¢, - - - , ¢,_, denote the v — 1 characteristic roots of NN’ other
than rk and assume, without loss of generality that ¢, - - - , ¢,_, are the nonzero
ones among these. Consider the following canonical reduction of the plot yields,
given by Roy and Shah (1962) under an Eisenhart model III (Eisenhart (1947)):
x~NE¢,a0?), i=1,---,0-1; yi~NE, bo?), i=1,---,t—1; Slz/al2
~ Xx*(e,) and S,?/0;? ~ x*(e;) where a; = k/(rk — &) b, =k/¢, e, =bk — b -
v+ 1, eg=b—1t and &, - ,&_,, 07 0,2 are unknown. The statistics
Xttt XVttt > Yee1s 81 S, are mutually independent and constitute a set
of minimal sufficient statistics for the treatment effects. Consider the problems of
estimating §(a canonical contrast) for some i < ¢ — 1. Let

Ty(a,¢) = x; + (y; — xi)aslz/[Slz + c{S22 + 2}:11()’,' - xj)z/bj}]

Tya, c) =x+ (y; — xx’)aslz/[sl2 + c{522 + - xi)z/bi}]

Ts(a,c) =x; + (y, — x,.)asﬁ/['s,2 + ¢87.
These include as particular cases the estimators £, of KS and s 3,(1), i¥ of BC. In
fact, § = Ty(1, cb,;/a),

fia = T(a, e,(b;/a)/ (b=t =3)),  B,(1) = Ts(a, e,(b;/a)/ (b — 1))
fii = Ty(a, e(b;/a))/ (b + 1)).

Note that BC actually concerned themselves only with a BIBD. It can be seen that
Ty(a, ¢), Ty(a, ¢) and T(a, c) are of the same forms as f, fi, and fi,, respectively.
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Note that d = ca;/b; in each case and the values of a, are (b — 3)/(e, + 2),
(b—1t—1)/(e, +2)and (b — t — 4)/(e, + 2), respectively. It follows from Theo-
rems 2.2 and 2.3 that Tj(a, ¢) ub x; for all @ < 2 min[l, d(b — 3)/(e, + 2)] pro-
vided b > 4, Ty(a, ¢) ub x; for all a < 2 min[l, d(b — ¢ — 1)/(e, + 2)] provided
b—t>2,and Ty(a, c) ub x; for all a < 2 min[l, d(b — t — 4)/(e, + 2)] provided
b — t > 5. Given a < 2, as is the case with the KS estimator, it further follows that
Ty(a, c¢) ub x; iff d > (%)a(e1 +2)/(b — 3), Ty(a, ¢) ub x; iff d > (%)a(el +2)/(b
—t—1) and Ts(a, c) ub x; iff d > (%)a(e1 +2)/(b — t — 4). Results concerning
é,. of KS is immediate from that concerning 7;(a, c) above.

Given ¢ such that da, < 1, as is the case with BC estimators, T5(a, c) ub x; iff
a < 2db — 3)/(e; + 2), Ty(a, c) ub x; iff a < 2db —t — 1)/(e; + 2)
Ty(a, c) ub x; iff a < 2d(b — t — 4)/(e, + 2). In particular, fi, ub x; iff a < 2¢,
Bb—-—t—-1/{(e;+2)b—1t—-3)}, g, (Dubx;, iff a <2e(b—1t—4)/(e;+2)
(b — ?)), and p* ub x; iff a < 2e(b — 3)/{(e; + 2)(b + 1)}.

Note that for a BIBD, v(x;) < v(y;), as shown in BC and hence the estimators
considered above are, in fact, uniformly better than both x; and y; under the stated
conditions. With ¢ = v, as is the case for a BIBD, the results above concerning the
BC estimators are readily seen to be improvements of those in Section 3 of BC
where the knowledge that 7 = v(y;)/v(x;) > 1 is used to improve the upper limit of
a from a,,, to a,,,. Note that a,, is even more difficult to compute. (There is a
misprint of the expression for a/ ., given there and the correct expression should be
al. (- +)=2Ev"'/E max[2/{v(l + v)}, 1/0%.

Acknowledgments. The author is grateful to Professor K. R. Shah for his
helpful criticisms and valuable advice during the progress of his work. He is also
grateful to the University of Waterloo for offering the research facilities.

REFERENCES

[1] BRowN, L. D. and CoHEN, A. (1974). Point and confidence estimation of a common mean and
recovery of inter-block information. Ann. Statist. 2 963-976.
[2] EiseNHART, C. (1947). The assumptions underlying the analysis of variance. Biometrics 3 1-21.
[3] GRAYBILL, F. A. and DEAL, R. D. (1959). Combining unbiased estimators. Biometrics 15 543-550.
[4] GrAYBILL, F. A. and SESHADRI, V. (1960). On the unbiasedness of Yates method of estimation
using inter-block information. Ann. Math. Statist. 31 786-787.
[5] GrAYBILL, F. A. and WEEks, D. L. (1959). Combining inter-block and intra-block information in
balanced incomplete blocks. Ann. Math. Statist. 30 799-805.
[6] KHATRI, C. G. and SHAH, K. R. (1974). Estimation of location parameters from two linear models
under normality. Comm. Statist. 3 647-663.
[7] Rao, C. R. (1947). General method of analysis for incomplete block designs. J. Amer. Statist.
Assoc. 42 541-561.
[8] Rao, C. R. (1956). On the recovery of inter-block information in varietal trials. Sankhya 17
105-114.
[9] Roy, J. and SHAH, K. R. (1962). Recovery of inter-block information. Sankhya Ser. A and B 24
269-280.
[10] SESHADRY, V. (1963a). Constructing uniformly better estimators. J. Amer. Statist. Assoc. 58 172-178.
[11] SESHADRI, V. (1963b). Combining unbiased estimators. Biometrics 19 163-169.



ESTIMATION OF A COMMON MEAN 211

[12] SHAH, K. R. (1964). Use of inter-block information to obtain uniformly better estimators. Ann.
Math. Statist. 85 1064-1078.

[13] SHAH, K. R. (1970). On the loss of information in combined inter and intra-block estimation. J.
Amer. Statist. Assoc. 65 1562-1564.

[14] YaTEs, F. (1939). The recovery of intra-block information in varietal trial arranged in three
dimensional lattices. Ann. Eugenics 9 136—156.

[15] YaTes, F. (1940). The recovery of inter-block information in balanced incomplete block designs.
Ann. Eugenics 10 317-325.

c/0 M. G. BHATTACHARYA
ASSISTANT DIRECTOR, SDRD, NSSO
GOVERNMENT OF INDIA

25A, SHAKESPEARE SARANI
CALCUTTA-17, INDIA



