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ASYMPTOTIC DISTRIBUTION OF SYMMETRIC STATISTICS'

By H. RUBIN AND R. A. VITALE
Purdue University and Claremont Graduate School

Sequences of mth order symmetric statistics are examined for convergence
in law. Under appropriate conditions, a limiting distribution exists and is
equivalent to that of a linear combination of products of Hermite polynomials
of independent N(0, 1) random variables. Connections with the work of von
Mises, Hoeffding, and Filippova are noted.

I. Introduction. Symmetric statistics arise naturally in a variety of contexts
and accordingly have been investigated from several points of view (see, for
instance, von Mises [7], Hoeffding [4], Filippova [2], and Rubin and Sethuraman
[8]). Our purpose here is to provide a unified approach to their asymptotic behavior
in law by exploiting an orthogonal expansion technique. This method is implicit in
parts of [7] where it is apparently employed in an ad hoc fashion. A systematic
development, as we shall see, can be pursued to obtain quite general results and in
addition offer added insight into the structure of symmetric statistics.

II. Recasting a symmetric statistic. It will be convenient to consider symmetric
statistics in a canonical form which we develop in this section.

Let us consider random variables X, - - - , X, which are i.i.d. and a symmetric
statistic Z = f(X,, - - - , X,,). (The reader should note that subsequent discussions
do not require the X; to be real valued. Inasmuch as we deal only with functions of
the X, the latter may be random elements of any appropriate space. The present
study was in fact motivated by a consideration of functionals of random sets
(Vitale [11]).) We assume that Z is of order m—that is,

(1) Z= Ef-ozsk(xi,, Tt th)
where the inner sum is over a set of vectors of indices closed under permutations of
1,2, -, n. Because of this symmetry, we may assume that the S, themselves are

symmetric. Moreover, since an evaluation of S, over repeated arguments may be
moved to a smaller k (together with its symmetrizations), let us assume that this has
been done and that each inner sum is hollow, i.e., over a set of vectors of distinct
indices. .

Since the S, are symmetric, we may express (1) as

(2) Z= E'Z-OZEk Tk(XEk)
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166 H. RUBIN AND R. A. VITALE

where E, = {ij,- - -, i }isakelementsubsetof I, - - ,n, Xp = (X;, - -, X)),
and T,(-) = k!S,(-). By the elegant device of introducing conditional expectations
of different orders, Hoeffding [5] has shown that under suitable conditions (2) can
be rewritten as

zZ= E'ZuozE,‘Rk(XEk)
where the R, resemble the T, but satisfy additionally

ERk(xl, Ct sy Xg— Xk) =0 k > 0

and hence

ERk(XEk)Rk’ (XE,;,) =0

if k # k' or if k = k' and E, + Ej.

Let us derive this representation in a somewhat different way under the assump-
tion of square integrability of the S,. Without loss of generality we may assume
that the square integrable functions of X; form a separable Hilbert space with

orthonormal basis @u(X;) = 1, @(X)),- - - . Then the system of functions
{Hf_ltp,} (X))} forms an orthonormal basis for the Hilbert space of square integrable
functions over the product space (X, - - * , X;). In the expansion for T;(Xg) we

isolate those terms in which the basis element has ¢, occurring as a (k — h)-fold
factor, 0 < A < k. With the introduction of W,,, a symmetric function of A
arguments, this contribution can be written as

2k, cEWin(Xg,)
so that
Tk(XE,‘) = 2’;c.=021;,,g1‘:,‘ th(XE,,)
and
Z= Z'I:;OZE,CEI;:-OEE,,CE,‘ th(XE,,)’

Changing the order of summation yields

(3) Z= 2’1?=02E,‘27:=k2EkgE,, th(XEk)‘
Employing the orthonormality of the ¢,, one can verify that
Eth(xl, oy, xk_l, Xk) = 0 k > O

so that (3) is Hoeffding’s decomposition with the assignment
Rk(XEk) = 2’1:‘=k2EkgE,,th(XEk)'

Finally, making use of the representations for the W, we find it convenient to
re-write (3) as

4) Z=1z+ 2'/:'-121',;&0 te zikgeoqilu-iz ce -1%( ) n #n

for some coefficients g. The Oth order term has been 1solated so that i, # 0, and
consequently Eq,(X,) = 0, throughout.
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III. Asymptotics. We shall consider the asymptotic behavior of a sequence of
order m symmetric statistics described as follows (the reader will recognize expres-
sions from the previous section with additional dependencies on n carried by left
subscripts): for each nlet ,X;i = 1,- - - , n be i.i.d. and serve as arguments for the
symmetric statistic

nZ = 2002 Si(uXip o 05 nXy)
(hollow representation). We assume that
E,S{Xg) <o k=0,---,m n=12---
so that ,Z can be written as _
nZ =20t ZPaiZie0 Zitoniy i Zn, Enkl_[f=,,,qn,~j(,,X,5) n, # n,.

Let us recall that terms of this expansion are orthogonal except that two arising
from different permutations of i,- - -,i are identical. An elementary but
elaborate calculation depending on this consideration shows that

- n!
) Var(,2) = T kim0 BT i

This suggests a convenient normalization within each term: Since n!/(n — k)!~
n letusset r, ..., =n*?q ., and

"Vil"'ik = n_k/zz"l e E”kﬂf=1"q)§("X'§) n; 7Enj
so that
(6) nZ “nfo = 2”’(’=12i|9l=0 et zikannri,'--ian/i,---ik’

We shall prove the following.

THEOREM. Let ,r; ..., — 7T, ..., and let the series (5) for Var(,Z) be uniformly
convergent. For each i > 0 and ¢ > 0, let
(7) f],,‘p,(,,Xl)l>n'/ze n‘piz(nXl) dP(nXI) -0

as n—>oo. Let G,---,G;, - denote a sequence of iid. standard normal

variables. Then ,Z — ,z, converges in distribution to
(8) Z= 2’1?=12i,;é0 e Ei,‘aeo'-'ipwi,‘njo’ile(i,j)(Gj)

where H is the ath Hermite polynomial and v(i, j) is the number of times j occurs in
the sequence i = i}, - - - , i,.

PrOOF. We first observe that a standard truncation argument can be invoked:
by virtue of the uniform convergence of the series for Var(,Z), (6) can be truncated
to a finite series with a uniformly small mean square error (in n). The terms of Z
share the “orthogonal or identical” property with those of ,Z — ,z, and moreover

Var(Z) = *=1k!Z 0 zi,c;eofx%u-ik-
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These facts are sufficient for the convergence in law of truncations to imply the
theorem (Mann and Wald {6]).
To show convergence of truncations it is enough to verify that the quantities

1
n Yj =n" 22';31 nq?i(nXt)
are asymptotically independent standard normal variables and that for each
[ A
V,

[

— I H,, 5(,¥;) >0 in probability.

n

The first result holds since the ,Y; are already orthonormal and in (7) we have
assumed the required Lindeberg condition.

To prove the second result we apply the lemma in the appendix to ,V; ...,. We
see that

T({ab T ah}) = n_h/227=lnq)i¢l(nXt) e n(piah(nXt)'

If h = 1, this is precisely Y; . If A = 2, the Lindeberg condition suffices to show
that 7({a, b}) > 1 in probai)ility if ,¢, =,9, and 7({a, b}) >0 in probability
otherwise. Also, by that condition, max,<,<,,|n‘%,,<p,(,,X,)| — 0 in probability, so
that all higher order (> 2) terms vanish asymptotically. As a result we need only
consider partitions ) into 1 and 2 element sets and if {a, b} € 9D, i, = i,. Thus
asymptotically :

Viroie ~TH, 5 Y))
where
D). p(i. )—
Hv(i,j)(y) = 2@(— l)P( )y (i, /) —2p(D)

with 9 ranging over all partitions of {1,2,- - -, »(i,j)} into 2-element sets, of
which there are p(%D), and 1l-element sets, of which there are »(i, ) — 20(D). But
for each a, the number of partitions D with p(%D) = a is precisely the coefficient of
the appropriate Hermite polynomial.

IV. Low-order cases. The result simplifies if 7, ..., = 0 for k > 3. If only first
order terms are present, then we have the asymptotic normality results of Hoeff-
ding [4].

If there are only second order terms present, then we have

‘

Z = 37(G? — 1) + 2,,57,G,G;.

(If we diagonalize the quadratic form 37,{,{;, the off-diagonal terms vanish). This
corresponds to results of von Mises [7] and Filippova [2] except for the centering in
the diagonal terms. This allows us to avoid the unnecessary assumption |27;| < .

If both linear and quadratic terms are present, then. after diagonalization (8)
becomes

EPi(Giz - 1) + v,G;
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which is a convenient form for computation. This case occurs in the case of Pitman
alternatives where the null hypothesis yields only quadratic terms.

We note that in each of these cases an expansion of Z can be exhibited which
has independent terms. Unfortunately these considerations cannot be extended to
higher order. For example the third order form

G — 3G, + G(G] — 1) = Hy(G)) + H\(G,)Hy(G,)
cannot be written as aH;(Gy) + BH;(G3) with independent Gaussian Gf and G3.

V. Additional remarks. The results of von Mises [7] and Filippova [2] are
couched in terms of full sums. Their assumptions, however, are sufficient to allow
hollow sum decompositions and the use of our method.

We note that the square integrability condition is not necessary for our result to
hold in some cases. For example, let us consider ,Z = n_%(E','_,X )® where X, has
mean 0 and variance 1. Obviously we have Z = G} = Hy(G)) + 3H,(G,). How-
ever, the decomposition of ,Z is
©) ,Z=n"3S33, X, X, X, +3(n—)n"isX,

nFER ny ny ny
+3n733S, . (X2~ 1)X, + n"3S(X} - EX}) + n"1EX}.

Now the first two terms are what make the theorem work. However, the assump-
tion of square integrability of each term fails even at the third, which does not have
a finite variance unless the fourth moment of X, exists. Obviously our condition is
too strong, but we do not have an appropriate weakened form. Note, incidentally,
that (9) shows how coefficients in the decomposition can exhibit a dependence on n
even before term-wise normalization has been done (4).

Under the conditions imposed, we can say nothing about the rate of the
indicated convergence. The stronger assumption of third moments should be
sufficient to allow the use of methods of Sazonov [9, 10] thereby generalizing his
result on the rate of convergence for the Cramer-von Mises statistics. Moreover,
moderate deviation results can probably be obtained under appropriate assump-
tions and the use of techniques developed in Dirkse [1], Funk [3] and Rubin and
Sethuraman [8].

APPENDIX
The evaluation of a hollow sum. Leto =2, -3, , 0, ** &,. Then
we show that
(A1) 0 = 3gllpeqC(E)T(E),
where ) ranges over all partitions of {1, - - -, k} into nonempty disjoint sets,

C(E) = (—1)E"YE — 1)! (E = number of elements of E), and
T(E) =2 ILiee-
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This is easily established by induction. For k = 1 this states that Ja;, = Ja,,
and for k = 2 that

En,#:nzaln,ahlz = (20‘1:)(20‘2:) — 2oy,

Now
o* =32, " Enm;nﬁ&'yalnl L T W
= (2, 2 mnin, Un N Z s 1,)
= 2p2, Enk;n.-séryalnl T e Ak 1, e
(A2) = 17({k + 1})Z9llgea C(E)T(E) — Z,2allgcarC(E)7(E;),

where E; = Eu {k + 1} if p € E and E; = E otherwise, and %)’ ranges over the
partitions of {1, - - , k}.

Let us identify contributions of (A2) to (Al) written over partitions ) of
{1,- - -, k + 1}. We separate into two cases. If {k + 1} € 9 then the relevant
term of (Al) is 7({k + 1D} ca; pe(i+1yC(E)T(E) which agrees with the first term
of (A2). In the other case, let F be the element of ) containing k¥ + 1 and p other
elements. Then this term of (Al) occurs p times in the second term of (A2) as
—IIC(E ~ {k + 1})7(E,) and since C(F) = — pC(F ~ {k + 1}), this establishes
the result.
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