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ESTIMATION OF QUANTILES IN CERTAIN NONPARAMETRIC
MODELS

By R.-D. REiss
Gesamthochschule Siegen, West Germany

The deficiency of sample quantiles with respect to quasiquantiles is in-
vestigated under the assumption that the true density function has bounded
derivatives. Then the sample quantile is still an efficient estimator of the true
quantile but the relative deficiency of sample quantiles with respect to suitably
defined quasiquantiles quickly tends to infinity for increasing sample sizes. If
the second derivative of the true density function is bounded, then adaptive
estimators will be found which are of a better performance than quasiquantiles.
Corresponding results are derived for two-sided confidence intervals which are
based on quasiquantiles and adaptive estimators.

1. Introduction. The estimation of quantiles is usually considered either in
parametric models or in models with hardly any restriction concerning the distribu-
tions. In the first situation an efficient estimator for the unknown quantile can be
derived from the efficient estimator of the unknown parameter; in the second case
it is intuitively clear (and can be proved) that the “natural” estimator, namely the
sample quantile, cannot be beaten. The only exception dealt with in the literature is
the case of symmetric distributions. Then the sample median—as an estimator of
the center of the distribution—has different nonparametric competitors.

For symmetric distributions a comparison of the sample median and the sample
mean was given by Laplace (1818). Let M denote the median and p the density
function of a symmetric distribution. Laplace proved that the asymptotic relative
efficiency of the sample median with respect to the sample mean (based on their
asymptotic variances) is given by e = 4p*(M)[x%(x) dx. Given a parametric
family of p-measures with location parameter (w.l.g. being equal to the median) the
sample median is usually inefficient; i.e. e* < 1 where e* denotes the asymptotic
relative efficiency with respect to the best obtainable estimator. An interesting
exception is the sample median in the case of the double-exponential distribution
with unknown location parameter.

If e* < 1 then the sample median has still favourable properties in the following
situations: (a) The sample median gives a rough estimate of the true median
without laborious computations. Such an estimate might be satisfactory in pre-
liminary investigations. (b) If the costs of the experiment are low, then it might be
better—from an economical point of view—to raise the number of observations by
the amount of (1 — ¢*)n instead of using an efficient estimator for the sample size
n.
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A compromise between the two requirements to find an estimator which, on the
one hand, has efficiency close to one and, on the other hand, can be easily handled,
is achieved by using systematic statistics. Mosteller (1946) investigated the asymp-
totic efficiency of a linear combination of k order statistics (with £ not depending
on the sample size). For normal distributions with variance 1 and unknown
location parameter, the asymptotic efficiency of optimal quasimedians is equal to
.810 compared to .637 for the sample median (see Mosteller (1946), page 387, Table
III). Quasimedians M, are defined by M, = (Zy, /31— m+1:n + Zin/2j+m+1:)/2 fOr
m€ {1,---,[n/2]} with Z, ., denoting the ith order statistic for the sample size
n. The choice of the optimal m—with m = m(n) ~ n\ for some A €
(0, 2)—depends on the assumption that the true distribution is normal. The proof
of this result was enabled by computing the asymptotic joint distribution of the
order statistics Zp, ., 0 <Ay <:-- <A <1 (this distribution was earlier
found by Smirnov ((1944), (29) page 184). For estimating the median M as a
location parameter (the distributions are given by their density functions p(x —
M), p known) an asymptotically efficient estimator is given by

A -1 A A
Mn - (nf(p(l)(x))z/p(x) dx) En-lp(l)(zi tn T Mn)/p(zi tn Mn)
with M, denoting the sample median (see LeCam (1956) page 139).
If p is symmetric, we do not even need to know the form of p to get an efficient
estimator. Estimating p(x — M) by a suitable density estimator g,(x), we get the
asymptotically efficient adaptive estimator

ﬁn - (nf(ﬁsll)(x))z/ﬁn(x) dx)-lzn- lﬁgl)(zi : n)/ﬁn(zi H n)
(see Stone (1975), (1.11) page 270). This method is not applicable without the
symmetry condition.
It is proved in Pfanzagl (1975) that the sample median is an efficient estimator in
the following nonparametric cases: let ¢ denote the family of all p-measures P
with positive differentiable density function p(-, P). For Q € ¥ and ¢ > 0 define

p("P) _ €
po) 1S }

Among all estimators 7, which are translation-equivariant and asymptotically
median unbiased uniformly over ¥ (Q, ¢) the sample median is optimal in the
following sense: let P, , and P, , denote the distribution of M, and T, respec-
tively. Then

P(Q, ¢) 1= {Pe@:

Py, (M—t,M+1t")<P ,(M—1t,M+1t")+ o(l)
uniformly for all #, ¢” > 0. A corresponding result holds true for quantiles, in
general.
We remark that the result of Pfanzagl (1975) still holds true if p-measures are
considered, only, for which (a) all derivatives of the distribution function exist, or
(b) finitely many derivatives exist and are uniformly bounded. The present paper
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deals with the second case showing that estimators and two-sided confidence
intervals can be found, which are considerably better than sample medians. Our
starting point will be quasimedians. Quasimedians M,, with m fixed, were proposed
by Hodges and Lehmann (1967) for estimating the center of a symmetric distribu-
tion (instead of symmetry we could as well assume that the first derivative of the
density function at the median is equal to zero). Under the assumption that the
distribution function has a continuous third derivative, they proved by means of
heuristic arguments that the ratio of the variances of M, and Z,,, 5., .,, n odd, is
equal to 1 — 2m/n + o(n™").

We shall drop the symmetry condition and let m(n) tend to infinity with
m(n) = o(n) facing the problem that the quasimedians are no longer unbiased.

The paper is organized as follows: the notations are collected in Section 2. In
Section 3 we discuss the results of the Sections 4 and 5 (concerning estimators and
confidence intervals for quantiles). Section 6 contains some auxiliary results. In
Section 7 we mention some unsolved questions and make some concluding re-
marks.

2. Notations and the models. Let R (respectively, N) denote the set of all real
numbers (positive integers). Let P™ denote the independent product of m identical
p-measures P on the Borel-algebra of R™. For any map g : R" - R* and B c R*
let {g€ B}:={(x, "*,x,) ER":8(x, -,x,) €B}. A function T, : R"
— R is called an estimator if it is Borel-measurable.

The normal distribution with mean p and variance o is denoted by N, 2. The
distribution function and the density function of N , are denoted by ® and ¢,
respectively. The ith order statistic Z; ., : R* — R for the sample size n is defined
by Z,.,(x,- ", x,)=2., where z;.,< --- <z, , are the components of
(X3 * * * , x,) € R" arranged in the increasing order.

The usual definition of the sample median is M, = Ziy /5410 if 7 is odd and

= (Zi/5:n + Zinjyy+1:0)/2 if nis even. We remark that the distribution of M
dlffers from that of Z, 5., in terms of order 0(n~ 2), uniformly over all intervals,
under the condition (2.3) stated below. Thus, the definition of the sample g-quan-
tile, as Z;,,;. , for ¢ € (0, 1), is in the case of ¢ = ; asymptotically conforming with
the notion of sample medians.

Given ¢ € (0, 1) and m € {1, - - - , min{[ng] — 1, n — [nq]}} the quasiquantile
Q, is defined by
(21) Qn = (Z[nq]-m ‘n + Z[nq]+m : n)/2

Another class of estimators is given by the adaptive quasiquantiles an which are
defined by

(2'2) én = (_ZZ[nq]—Zm ‘n + 8Z[nq]—-m in + l3Z[nq] in
+ 8Z[nq]+m tn 2Z[nq]+2m : n)/25
forge (0, 1) and m € {1, - - - , min{([nq] — 1)/2, (n — [nq])/2}}.
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Given a p-measure P with distribution function F a solution of the equation
F(y) = q, q € (0, 1), is called a g-quantile of P. Hereafter we shall always assume
that P has a density function p such that for some g-quantile g(P) of P the
following condition is fulfilled:

p(q(P)) >0

2.3) and
|p(x) = p(¥)| < C|x —y| forallx,y €[q(P) — &, q(P) + ¢]
for some constants C, & > 0.

(2.3) obviously i{:lplies that g(P) is the unique g-quantile of P. Let, furthermore,
o(P) = (q(1 - 9))2/p(q(P)).

Q, and Q, will be appropriate estimators of the g-quantile of p-measures which
fulfill the smoothness condition (2.4). For every k € N, g € (0, 1) and for positive
real numbers A4, C, e, u,v, i =0,---,k, we define a family of p-measures
?P(q,k, A, C,u,e,v, i =0,- - -, k) which contains exactly those p-measures P
which have a density function p that fulfills condition (2.3) (for C and ¢) and

@) p() =S A - qp)) + HEED (o)

with
|8l < Aag™*!,
u < ay < v,
la] < v for i=1,---,k.

Such models could, e.g., be accepted if we started from a theoretical model
which is defined by p-measures P which have a smooth density function. If higher
derivatives of the density function exist then a, = p®¥(q(P)) in (2.4). To protect
ourselves against small deviations of the actual situation from the idealized one
—in other words, to base our considerations on a model which is possibly more
related to the actual situation—we include in the model all density functions which
deviate from the idealized density function in the kth derivative. Then our results
are little affected by the additional treatment of letting the values g, vary within
certain ranges.

As far as our results are not depending (asymptotically) on the special values of
C,u,ev0,i=0,-- -k, weshall write ?(q, k, A) instead of P(q, k, 4, C, u, ¢, v,
i=0,---,k) for notational simplicity. Whenever necessary we include again
some of the variables which define P (g, k, A).

Other reasonable models can be obtained if conditions are used where (a, +
8(x))(x = q(P)) in (2.4) is replaced by (3., + Zera(X))(*¥ — g(P))*** for some
a € (0, 1). In order not to overload this paper with details we abstain from this
possible generalization of (2.4). Conditions of this type (with a # 0 and a, = 0)
were used by Weiss and Wolfowitz (1967), page 328, and Woodroofe (1970), page
1666, in connection with density estimation.
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3. Discussion of the results.

A. Quasiquantiles in the case of k = 1. Estimating an unknown parameter we are
usually not interested in the fact whether the estimate falls left or right of the
parameter. Thus, we base our measure of accuracy of estimators on the value of the
distributions on symmetric intervals about the true parameter.

For the double-exponential distribution E with the Lebesgue-density p(x) =
e /2 it is easy to see that E € P (3, 1, 2). As an immediate consequence of
Theorem 2.7 in Reiss (1976) and Theorem 4.1 we obtain for every ¢ > 0
3.1 E"[—— <T, <—} <E"[——tT <Zyuy:n < — } +0(n"2

n2 nz n2 n2?
=20(f) — 1 + 0(n"?)
for every sequence of estimators 7, : R” > R, n € N, which are equivariant under
translations, i.e.
32) T,(x;+u- -, x,+u)=T,(x,---,%x,)+u
for every (x,,- - * , X,, u) € R**'. It is obvious that sample quantiles and the
estimators which are defined in (2.1) and (2.2) fulfill (3.2).

Next, the performance of quasiquantiles Q, with m(n) > oo for n— oo is
investigated. Lemma 6.13 implies that the distribution of Q, can be approximated
by a normal distribution N, ,» where p, and », are explicitly given in (4.4) and
(4.5). Thus, by Lemma 6.12

(33) P"[IQ,. a(P)] <

where

to(P)

n2

} = 20(t(1 + 5,)) — 1 + o(s,)

s, = 5,(m(n), g, P) = %(1 - 2(1'3 + (p — q(P))z))-

To find the estimator Q, for which the dlstnbutlon is maximally concentrated on
intervals [q(P) — to(P)/ n2 q(P) + to(P)/ n2] we have to minimize the “mean
square error” »2 + (u, — q(P))> Notice that, in general, »> + (p, — g(P))* is not
an approximation of the mean square error [(Q, — q(P))* dP".

To get an optimum sequence m*(n), n € N, which is independent of the
particular p-measure P € ¥ (g, 1, 4) we use the inequality

50 > m(")( I _ A) _mnt 1 (% + A)2

n \4q(1 - q) n® 84(1 —q)
3.
G WECREDY

which holds uniformly over ? (g, 1, 4, C, ¢, v,, v,). We remark that the estimate in
(3.4) is sharp in the sense that the largest lower bound is given for which only the

4
term of order o(m—flnl + m—(—})—) depends on C.
n
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Hereafter, let A < 1/44q(1 — q) whenever the case of k = 1 is considered. It can
easily be proved that sequences m*(n), n € N, with

(3.5) m*(n) ~ n3(1 — 44q(1 — q))%(% + A)_5

are optimal in the sense of asymptotically maximizing the right-hand side of (3.4).
Using m*(n), the covering probabilities of quasiquantiles exceed the respective
covering probabilities of sample quantiles by terms of order n~3. Remember that
in the case of the double-exponential distribution—where 4 = 2—it is only
possible to find translation-equivariant estimators which improve the covering
probabilities of sample medians by terms of order n-i.

We use the concept of deficiency (as introduced by Hodges and Lehmann
(1970)) to describe the performance of quasiquantiles in a different way. Let
T, : R" > R be an estimator and r(n) = r(n, T,, P) be a positive integer which
minimizes

pre ){lzlr(n)ql iy — 9(P)| < to'(:)} = P"[IT,. 4(P)| < “”S’) }'

The integer d(n, T,, P) := r(n, T,, P) — n is called the relative deficiency of the
sample quantile with respect to 7,,. Thus, d(n, T,, P) is the number of observations
which are additionally required such that the distribution of the sample quantile is
as concentrated about g(P) as that of T, based on n observations. To get a concept
of deficiency which only depends on a given family & of p-measures we define

(3.6) d(n, T,) := inf{d(n, T,, P) : p € ¥ }.

Then, T, has an at least equally good performance as the sample quantile for the
sample size n + d(n, T,) for every P € . Put d(n) = d(n, Q,). By means of
Theorem 4.6 and Lemma 6.13 it can be proved in an elementary way that the
sequences m*(n), n € N, as characterized by (3.5), are the only sequences m(n),
n € N, such that

(3.7) lim inf, _nd(n)/n3 > (1 — 44¢(1 — ¢))° /2(% + A)g

for @ := P(q, 1,4, C, u, &, vy, v,) for every C > 0. Thus, the relative deficiency

of the sample quantile with respect to the quasiquantiles Q,, defined with m*(n), is
2

of order n3.

B. Adaptive quasiquantiles in the case of k =2 and k = 3. If P € 9 (q, 2, B) for
some B > 0, then (3.4) will hold for 4 = 0. Even in this case we cannot find
quasiquantiles which are considerably better than those for kK = 1 due to the fact
that the “expectation” of the quasiquantiles Q, is equal to

e 2] (22
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By means of Q, and an appropriate estimator for a,/aj we shall define another
estimator for the g-quantile. Notice that —a,/a3 = (F ~")®(g(P)) under ap-
propriate differentiability conditions on the distribution function F of P. By means
of estimators of

(o0 s (o)

we find an appropriate estimator 4, , of —a,/ a3, namely,

8 _ ( n(Z[nq]+m’(n) tn T Z["q] : n) n(Z[”q] tn T Z['lq]—m’(n) : n) )/ ( m’(n) )
2,n -
n

m'(n) m'(n)

n
m'(n) ) (Z[nq]—m'(n) in T 2Z[,,q] .nt Z[nq]+m'(n) . n).

The choice of the sequence m’(n), n € N, determines the asymptotic properties of

0 - o0 ( m(n) \?

Hereafter, we take in rather an arbitrary way m’(n) = 2m(n) obtaining the estima-
tor

which is identical to the sample quantile for m(n) = m’'(n).

A Y
O =~ 2 Zing—aminy:n T YZ(ngl—m(n) : n
4
(3.8)
3 Y
+ (1 - 5 Y)Z[nq] on t YZ[nq]+m(n) tn T z Z[nq]+2m(n) in

with y = %

The covering probabilities of the estimators Q, are given in Theorem 4.12. For
the families 9 (g, 2, A) the optimum choice of y and m(n)—in the sense of
maximizing the covering probabilities—is y = % and

(39) m(n) ~ nfA=3(3)*

(see Theorem 4.12 and Remark 4.16). Since the optimum y does not depend on ¢

and A we can restrict our attention to the estimators Qn = Qn% as defined in (2.2).

It can easily be proved that y =5 and m*(n), as characterized by (3.9), have also

the property of asymptotically max1m1z1ng the relative deficiency d(n, Q:,") (of the

sample quantile with respect to Q ) given P = P(q, 2, A). For Q,,, defined with
m*(n), we have

A 4 1 — _2
(3.10) d(n, 0,) ~ n335(%)*(4(1 — @) "'475.
For k = 3 estimators QJ with m(n) of order n7 can be found such that d(n, QJ )
6
—defined with respect to ¥ = P (g, 3, A)—is of order n7. For details we refer to
Theorem 4.18 where the covering probabilities of Q. are given if P € %P (q, 3, A).

Estimators O should not be used in the case of k = 3. The performance of oy
depends on P € P (g, 3, A) through the numbers a which are given in (6.2). Thus,
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the optimum choice of m(n) also depends on a;. The situation is similar to that of
k = 1: we expect that there exists an appropriate estimator 4, , of a; (in analogy to
the estimator d, , of @; = — a;/ a?) such that an estimator Q} + %764’ L(m(n)/n)*
has (a) the favourable properties of an optimum estimator Q} and (b) depends on
the family 9 (q, 3, 4, - - - ) only through the number 4.

C. Confidence intervals. In Section 5 asymptotic confidence intervals [k, 4, &, ]
are constructed by means of the estimators O, and Q. Thus, the confidence
intervals depend on y € R in the cases k = 2, 3, and on m(n) for k = 1, 2, 3. The
performance of [k, ;, k, ] is measured by the probability that [x, ., k, ;] does not
contain parameters which are in the complement of symmetric intervals about the
true quantile (see Theorem 5.1, (5.3)). Based on this criterion the optimum
confidence intervals are determined by those y and m(n) which have also defined
the optimum estimators (see Remark 5.5). In analogy to the relative deficiency of
sample quantiles with respect to other estimators we define the relative deficiency
d(n, k, P) of the distribution-free confidence intervals [Zp,;_ ) : n> Zingj+ st : n]
with respect to [k, ;, &, ;] where s(n) is appropriately chosen. We take d(n, k, P) =
r(n) — n where r(n) = r(n, k, P) minimizes

|P"{[ Zirtnya1—strm : riny Zirtmar s : rimy ]

c[4(P) - to(P)n"3, g(P) + to(P)n"1])

—P"{[ k1 B ] C[a(P) — t0(P)n2, g(P) + to(P)n~2]}].

If m(n) fulfills (3.5) for the case of kK = 1 or (3.9) for the case of kK = 2 with
Y =28—5, then the relative “uniform” deficiency (in the sense of (3.6)) of the
distribution-free confidence intervals with respect to [k, ;, k, ;] is again given by
(3.7) and (3.10). This can easily be deduced from Theorem 5.1 and (5.4).

4, Estimators. In Sections 4 and 5 we shall always assume that m(n) > nit+s
for some 8 € (0, ). Furthermore, we shall always write m in place of m(n).

THEOREM 4.1. Let E be the double-exponential distribution (with the density
function p(x) = e~ ¥1/2). For every sequence of translation-equivariant estimators
T,: R" > Randevery t >0 ‘

E”{[T,,[ < i} <20(1) — 1+ 0(n~%).
n2
Proor. According to Corollary 6.11 it suffices to prove that
4.2) |g,] <a,n €N, forsomeconstant a >0,

and

4.3) J82(x)p(x — n‘%t) dx = 41 + O(n_%)
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where

gn(x) = n%(e—lx+n"%t|+|x—n_1?t| _ 1)

The computations which lead to (4.2) and (4.3) are elementary and therefore

omitted. []
Let
44 t = (F7'(A,) + F7',0)/2,
(45) V: = L( Al,n(l - }\l,n) + 2'Al,n(l - A2,n) + A2,»(1 - }\2,n) ),
4n pi,, P1,nP2n pg’,,
with
A1,n=q_%’ A2,n=q+% and pi,n=P(F_l(>‘i,n))
fori=1,2.

For quasiquantiles Q, we obtain
THEOREM 4.6. For every g € (0, 1)

to(P)} >20(t(1+¢c,,) -1+ o(m + m4)

uniformly for all t > 0 and P € P (q, 1, A) where

P"{IQ - q(P)| <

cn, 1 = cn, l(m’ q, P)

_m 1 _ m* |a,| g
_”(44(1—4) A) 8nq(1—q)( +A).

Proor. Lemma 6.13, applied for / =2 and g, , =3 p, » i =1,2, yields that the
distribution of Q, is approximated by a normal dlstnbutlon N, »? uniformly for
all intervals with an error of order O(n~2 +'3) for every ¢ > 0. Since the covarlances
of N,(,,) (see Lemma 6.13) are known it is straightforward to see that y, and »? are

given by (4.4) and (4.5).
According to Lemma 6.12, applied for p = g(P), it suffices to prove that

4
(7 + (b — 4(P))’) > 26, + o(m . 13),
atol

n
@7 -5
(6.1) implies
(@8)  F7',) = a(P) + (= Dai 2+ 3(a+ 5,)(2) + o (2)),
with |b, | < A/ayfori=1,2.

Thus,

@9 (k= aP) = 3(@+ By + 5,0/ %) + o (2))
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Furthermore,
,m m
(4.10) Pin= a0 = (a + ¢, )ai 2 + o(2))
with
lc; | < Aa} for i=1,2.
Thus,
1 1 q(1 — ¢) m m

411) 2==|opY-| —-L "D _ 124 o Z2)].
@) = oY | 25 = F B e = cadai | 7+ o )

(4.9) and (4.11) immediately imply (4.7). [
A careful examination of (4.8) and (4.10) reveals that the estimate in Theorem
4.6 cannot be improved without depending on the number C (with C as given in

(2.3)). .
Let Q7 be the estimator as defined in (3.8).

THEOREM 4.12. For every q € (0, 1)
6
inf,eqp(q,z,A)P"{le — y(p)] < 2P) } 20(1(1 + ) — 1 + o( ¥ '—”;)
n

uniformly for all t > 0 and P € P (q, 2, A) where

1 m 5 mé (5 \?
) = - -2 (2
cn2 2q(1 _ q)( (Y 47) n5 (67A) ).

PROOF. LCtA],,= —2Tm,A =q—ﬂ A3n=q’A4n=q+ﬂ AS,n=

q+ 27 Lemma 6.13, applied for / = 5, implies that the distribution of Q“’ is
approximated by the normal distribution N, »» uniformly for all intervals with an
error of order O(n~ 2 *©) for every ¢ > 0 where

= =G (FOL) + F7060) +9(F105,0) + P70 ) + (1= Sv)acp)
and
: .
Pr? = ;(2?-1" 1 i,n + 221<x<1<5 noi,j,n)
where
Kl,n = _Y/4P(F_1(Al, n))’ K2,n = Y/p(F_l(}\Ln))’

K3,n (1 - 73/2)/‘10’ K4,n = 'Y/p(F_l(A4,n))’
Ks n = _Y/4P(F_l(}\5, n))a
0 =N.1-X,) for 1<i<j<5.
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Straightforward computations give

w1t ein)) ol )

Using (6.1) we obtain by some tedious calculations

- 2 2 ay+ by, (2m)3
Fo0) = a(p) - 2 4 B (2] B2 (2]

m  a

-1 — _oom  am\? a3+ by, m\3
Fi0,) = a(P) — a2+ 2(2) - B2 Dan (MY,
-1 ,m @ m\2  dy+ by, my3
F0,,) = a(P) + a2 + 2 (2) 4 B2 Pan ()]
10 ) = ,2m @ (2m)\?  ay+ bs,(2m)}
F'(0 ) = a(P) + gy + (5] + S22
where
A m
(414) B1,ab 4,0l < 22+ o 57)
A m
161, = 2,,/8l, |bs,» — by »/8] < %a—o + 0(7).
This implies
m m\3
(@19) 1ty = a(B) = L(Z) (1.0 = bu/D = (s = bu/D) + o (2))
5 vA m\3
<6 ao(n) +0((n))'

Since the bounds given in (4.14) are attained for p-measures in 9P (q, 2, 4) it
follows that the bound given in (4.15) is attained on ? (g, 2, 4). (4.13), (4.15) and
Lemma 6.12 imply the assertion.

REMARK 4.16. If m = m(n) fulfills (3.9) then

(4.17) () ~ nH(2) 24 H(q(1 - )

Elementary computations show that this is the optimum choice of values y and m.
By means of (4.13) and a rough estimate of | u, — g(P)| with P € P (g, 3, P) we
obtain

THEOREM 4.18. For every q € (0, 1)

(4.19) P"{lQ — q(p)| < 22B2) } > 20((1 + ) — 1+ o(.’nﬁ + L"f.)

nz n’

uniformly for all t > 0 and P € % (q, 3, A) where

= gy (2 =) - T B (8 +34Y),

B is the supremum of ay|ay| over P (q, 3, A) and a, is defined in (6.2).
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5. Confidence intervals. Let ¢, , = c{}, k = 1, 2, be defined as in the Theo-
rems 4.12 and 4.18. Let ¢, | be defined as in Theorem 4.6 with v,/4* in place of
a,/a3. Fork=1,2,3let

&, = 1,(1 = ¢, )g(1 = @))*ni/2m
where
t,=0"'"1-a/2) fora€(01).
For k = 1, 2, 3 we define the confidence intervals [x, ,, i, ,] by

Knx = Tn,k - an,k(Z[nq]+m:n - Z[nq]—m:n)
and

Kn,k = Tn,k + an,k(Z[nq]+m:n - Z[nq]—m:n)
with
T,,=Q, and T,,= Q) for k=23
THEOREM 5.1.  For every k = 1, 2, 3 and every q € (0, 1)

m20e+D) )
b

2k+1

(5:2) P {Kk, 1 <q(P) <&, ,}>1—a+ o(%+
n

and for every t > t,

6 2{[snm] cfar) - 22, )+ D]}

n2 n2

2k+1

2k +1)
> 20(1(1 + ¢, , )—1+o(m+m )
n

uniformly for every P € % (q, k, A).

Proor. We shall only prove the assertion for the case of £ = 1. Then the proofs
for the cases k = 2, 3 will be apparent. The index “1” in k, , etc. is suppressed. Let
a, = n‘%ta(l — ¢,)0(P). Lemma 6.13 implies that k, + «;, and k, — a;, are distrib-
uted as Q, uniformly over all intervals within an error of order o(§,) where

m  m
= — 4+ —. This implies
h n?

n

P"{x, < q(P) < &,}
= P"{k, + &, <q(P) + a;} — P"{&, — &, <q(P) — o}
= Ny, 2)(— 0, ¢(P) + a;) = N, ,2(-0, 9(P) — a,) + o(8,)
= N,»)(9(P) — o, g(P) + a5, 9(P) + ;) + 0(8,)

where u, and »? are given in (4.4) and (4.5). Lemma 6.12 together with (4.7)
immediately implies (5.2) for k = 1.



ESTIMATION OF QUANTILES 99

Furthermore, uniformly over ? (g, 1, A).
P"{ [k &,] C[a(P) ~ 10(P)n"7, g(P) + to(P)n~3]}
= P"{%, — a;, <q(P) + (t = 1,(1 = ¢,))o(P)n"7)
—P"{k, + & < g(P) = (t — £,(1 = ¢,)o(P)n"7)
1
= N, (4(P) = (1 = (1 = ¢,))o(P)n"%, 4(P)
+ (1 = 1,(1 = ¢,)o(P)n"3) + o8,)
>20(t(1 +¢,) —t,) — 1+ 0o(5,). O
It can easily be proved by means of Lemma 6.13, applied for / = 1, that for the

distribution-free confldence intervals [Zp,;1_ ) : > Zingj+stmy: n] With confidence
coefficient 1 — a + o(n~ 2) the following holds true:

(5'4) p" {[Z[nq]—s(n):m Z[nq]+s(n):n] C[CI(P) - ta(P)n'%, q(P) + ta(P)n‘%]}

=20(t—1t)— 1+ o(n_i'”)
for every ¢ > 0 and every ¢ > ¢, uniformly for all P € P (q, 1, 4).
We remark that (5.4) also holds for confidence intervals which are based on the
sample quantile as proposed by Siddiqui (1960).

ReMARK 5.5. The probabilities in (5.3) as well as the covering probabilities of
the estimators Q, and Q:,V (see Theorems 4.6, 4.12 and 4.18) depend on the family
P (q, k, A) through c, ; and c¢{"), for k = 2, 3. Therefore, the optimum values y and
m(n)—in the sense of asymptotically maximizing the right-hand side of (5.3)—are
exactly those which were already determined in the case of the optimum estimator
sequences.

6. Auxiliary results. Let P fulfill the conditions (2.3) and (2.4) for some k € N.
Denote by F the distribution function of P. Then there exists some ¢ > 0 such that
the inverse function F~! of F exists on [q — ¢, ¢ + ¢'] and

-1 @G+ Era(X) k+1
. = — 4 okT —
(6 1) F (x) 1-0 il (X q) (k + 1)' ( )
with | g, . (x)| —i + 0(Jx — g|) uniformly for all x E[¢q — ¢/,q + ¢] and P €
P(q, k, A). The numbers a; only depend on ag, - ,a4_;, i=1,- , k. In
particular,
o = 1
ay = q(P), ay=a, ,
2
a; a4 a
6.2 a'=——-, a'=—_.+ ,
( ) 2 ag 3 ag ag
aa a
g= -2 410222 157,
a9 9 a9

The proof of (6.1) is straightforward and therefore omitted.
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LEMMA 6.3. Let P, ,, P, ,, n € N, be p-measures on a measurable space (X, @).

Let
(6'4) Po,n < Pl,n’

1
(6.5) 8 i=12(Py = P1,n)/ (P10 + 1(p, ,=0})

where p, , are densities of P, , with respect to some o-finite measure for i = 1,2,
neN. If

(6.6) |g,] < a,n €N, for some constant a > o
and

(6.7) lim inf, /g2 dP, , > 0

then

1
J4 APT = [4, AP}, < 20(}(Jg2 dP, ,)?) — 1 +0(n~7)
Jfor every sequence of @"-measurable functions y, : X" — [0, 1], n € N.
ProOF. Let 1, =g, — in~3%g2 p , = f1,dP,, and o?, = [((t, — m, ,)°) 4P, ,

for j = 1, 2. Obviously, P, , has the density 1 + n‘%g,, with respect to P, , and
/8, dP, , = 0. This implies

”"o,n = 1. fgr% dPl,n + O(n_l)
2n2
1 2
”‘l,n= - lfg" dPl,ns
2n2
o2, = [g2dP, , + O(n2 forj =1,2.

For ¢ > 0 define

Cpei={(xp - -+, x,) € X" Moy py, u(%) > cllin 2, (X))}
Applying the Berry-Esseen theorem we obtain for j = 1, 2
(6.8) P.(C,.)

= Pj:'n{z';-l 108(1 + n_%g,,(x,.)) < —log c}

= p* 1

SHn

2'it-l(tn(')ci) - p_’j,n) < (_log ¢ — n%”’j,n + O(n_il))/oj,n

= (D((—log c— n%pj,,,)/aj,,,) + O(n‘il

uniformly for all ¢ > 0.
(6.8) immediately implies

69)  P[.(Cyo) — P1(C,) < 20(3(j52 dP, ,)?) — 1+ 0(n"3
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uniformly for all ¢ > 0 since
N(o,l)(,ll:_d,[.l‘"d) <N(0,1)(—d, d) for,uEIRandd > 0.

For ¢ = 1 we have equality in (6.9) up to terms of order O(n _21).
Let ¢, : X" —> [0, 1] be a sequence of @-measurable functions. Define ¢, > 0,
n € N, such that

(6.10) P;(C,.) — bni< [y, dPr, < P;.(C,.)

for some b > 0. Using a suitable version of the fundamental lemma of Neyman
and Pearson (see Pfanzagl (1974), Lemma 6, page 45) we obtain

f‘l’n dPln,n - Pln,n(cn,c,,) < cn(f‘l/n dPo’:n - Po’:n(Cn,cn)) < 0
(6.9) together with (6.10) implies
[4n AP}, = (4 dPS, < P (G ) = Pro(G ) + 0(n77)

1

< 20(}(fg2 dP, ,)?) = 1+ 0(n2).

COROLLARY 6.11. Let P be a p-measure on the Borel-algebra of R. Assume that
T,: R"> R, n €N, is a sequence of translation-equivariant estimators. Let t > 0. If
the assumptions of Lemma 6.3 hold true for P, , := _,3,Pand P, , :=, 3 P (that is

P shifted to the left and right, respectively, by the amount of n‘%t) then for every
kER

P*{(|T, - x| < n~31} < 20(1(/g2 dP, )7) = 1+ 0(n~2).
Proor. Lemma 6.3 applied for ¢, := 1,7 -, implies
P"{|T,— x| <n~3t) = P{T,+ n"3t >k} — P"{T, - n"t >«)
= P! (T, >} — P {T, >«}
< 20(3(/g? dPl’,,)%) —1+0(n"2).

LeMMA 6.12. For all sequences p, € R, v, >0, n €N, and constants p € R,
>0

N(umv%)(" ‘é’“ +L.)= 2¢(t(1 +4(1- S0k + (- u)z)))) -1

+O((max{|n%vn — o, n(p, — ;1.)2})%)

uniformly for allt > 0 and o > ¢ > 0.
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Proor. Use Taylor expansions of ¢ about z.[]
Givenr, , €N, i=0,---,/+LIEN, with0O=r,,<r ,<- - <ry,
=nletr(n) =(ry, -,y ) Let Ny, denote the /-variate normal distribution

with mean vector zero and covariance matrix (o; ,); j=,...,; Where Oijn=
r; ;
L"(l—-!—’:)forl<i<j<l.

n n

LeEMMA 6.13. Let P be a p-measure which fulfills (2.3) for some q € (0, 1). Let
Fowi=1,---,l,besuchthatr, ,~nq,andr, \,—r, ,~mfori=1_--.,1—

1 where n'=% > m > n® for some 6 € (0, 1). Leta, , ER,i=1,-- - ,I,n €N, be
such that

(6.14) lim inf”eN|2i.,,,a,.’n| >0,

and the sequence a; ,, n € N, is bounded for every i = 1,- - -, 1. Then for every
e>0

Pn{n%EIi-lai,nP(F_l( ri’;n ))(Zri,,:n _ F—l(ﬁ;,_n)) < t}
= N (e - - -5 %) ER 1B 1a, % <1} + 0(n=7+°)

uniformly for all t € R.

PrOOF. 1. We shall first prove the assertion for the case of the uniform
distribution Q on (0, 1). The theorem in Reiss (1975) implies for every ¢ > 0

(6.15) Q"{n%2£~-.a.-,,.(zr,,,:n - r_n“) < ’}

=Ny + M:(,,)){(xl, cre,x) ERG S g X < t} + O(n‘il"")

where M, is a signed measure with
l €

uniformly over all /-dimensional Borel-sets B.
(6.16) implies that for Borel-measurable functions S, : R' >R, i = 1,2, and
everye > 0

(6.17) M:<"){Sl + 5, <t}
= My { Sy <t} +0(m™2**N,({ S, < 1}A(S, <1}))

1 €
= [("){Sl < t} + O(m_2+ N[(n){ISl -1 < |S2|})

uniformly for all ¢ € R.
Applying (6.17) for Sy(x;, - -, x):= (Zli-lai,n)xl and Sy(xy, - - -, x) =
31, J(x; — x;) we obtain

(6.18) Mr(n){(xl, cet,x) € R’ 2{’-1‘11',nxi < t}
= O(m= T N (IS, = 1] <[Sy)} + n~3+Y)
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since the theorem in Reiss (1975), applied for k = 1 and k = /, yields
(Nyimy + M) (S, < 1} = Nyo( S, <1} + 0(n"2+%)
for every e > 0.
Lemma (7.21) in Reiss (1975) implies
1
m\z2te -1
(6.19) NC(”){|S2I > (—;)2 } =0(n"2)

for every ¢ > 0. (6.19) together with (6.14) implies for every ¢ > 0

NS — 1 < |Syl} = 0(2@((—"’11)%“) - 1) - o((%)%”).

This together with (6.15) and (6.18) implies the assertion for P = Q.
II. Using the probability integral transformation for order statistics we obtain

(6.20) P"{n%Z’,--.a,-,..P(F"(i“))(Zr,,, in " F_l(h)) < ’}

- (o) () <

where F ~! denotes the generalized inverse of F.
According to Lemma (7.9) in Reiss (1975)

Q"{ Z

r; 1

.1 <il”} =1+0(nY.
nz2

Since F~! is differentiable on (¢ — ¢, ¢ + &) and (F~")® fulfills a Lipschitz

condition on (¢ — ¢, ¢ + ¢’) for some ¢ > 0 we know that

(6.21) Q"{ F—I(Zr,,,.:n) _ F‘l(%)
- (Z,“;,. - )/p(F"'(r’_n"_))l < n—1+e} = 1+0(nY)
for every ¢ > 0.

Part I of the proof, (6.20) and (6.21) immediately imply the assertion for P, in
general.

ri,ll:n

ri,n
n

REMARK 6.14. A closer examination of the proof of Lemma 6.13 shows that the
assertion holds true uniformly for all p-measures P which fulfill (2.3) and the
condition p(q(P)) > ¢ > o for some fixed constants C, &, and ¢, and, furthermore,
uniformly over every family L of sequences (a, ,,* - -, a;,), n €N, for which
lim inf, c\|lim $_,a; ,| > 0 and sup |q, ,|, n € N, is bounded for i =1, - -,/
where the inf and sup ranges over L.

7. Concluding remarks. The results of the present paper are far away from
being the final word on the subject. We mention some open questions and indicate
consequences of results in Reiss (1978) concerning one-sided tests for quantiles.
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Except for the negative result in (3.1), we have excluded the case of k = 1 and
A > 1/4q(1 — g). It would be interesting to know whether under these conditions
quasiquantiles—defined with m of order ni—are more concentrated on intervals
[— tn‘%, tn‘%] than sample quantiles as far as differences of order n"1 are
concerned. For comparison we need asymptotic expansions to two terms of the
distribution of sample quantiles and quasiquantiles. Asymptotic expansions of the
distribution of sample quantiles can easily be derived from Theorem 2.7 in Reiss
(1976) (under appropriate regularity conditions).

In view of the relative deficiencies in the cases k = 1, 2, 3 which were obtained
in Section 3, we conjecture that sample quantiles have deficiencies of order
n*/@+D for P € P(q,k, A), k €N (with respect to an optimal estimator
sequence). This also leads to the following question: assume that all derivatives of
the distribution function exist and all derivatives are uniformly bounded by some
fixed number. Are sample quantiles inefficient then?

An answer concerning the order of the deficiency of sample quantiles can be
given if we base our measure of performance of estimators on covering probabili-
ties with respect to any interval which contains the unknown quantile. Applying
Lemma 6.13 we find for any ¢, " > 0 and k = 2, 3 sequences m(n), n € N, of
order n®*~V/2¢ gych that

(7.1) P"{ q(P) — “’( )<Q <q(P) + t""(P)}

nz n2

> (") = O(F) + n 3 # (' 9(t") + o(r)
uniformly for every P € 9(q, k, A) for some B > 0. Notice that for ¢ = ¢” we
found estimators such that (7.1) even holds true for n~1/@*+*D in place of n~'/%,
On the other hand, by means of results in Reiss (1978), concerning one-sided tests,
one can prove that (7.1) is the best obtainable result in the following sense: let
Q € P(q, k, B) and P(Q, ¢) be defined as in Section 1. Let 7,, n €N, be
translation-equivariant estimators which are asymptotically median unbiased of
order o(n‘%") uniformly over ?(Q, &) N P (g, k, A) with B < A (e.g. estimators
which fulfill (7.1) uniformly for all #, ” > 0 have this property). Then for every
k=234,

(1.2) Q"{q(P) YoP) ¢ 7 < o(P) + ’”"(P)}

n2 n2
< (") — B(r') + 0(n~ (1" 9(t") + 1'p(t)))
uniformly for all #, ¢” > 0.

Thus, estimators which are accurate with respect to every interval containing the
true quantile are less effective on symmetric intervals (and vice versa).
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