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ESTIMATION OF PARAMETERS IN THE ARMA MODEL
WHEN THE CHARACTERISTIC POLYNOMIAL OF
THE MA OPERATOR HAS A UNIT ZERO

By TuaN PHAM-DINH
Université de Grenoble
We consider the estimation of parameters in the time series model
X0 =XI_,a; Xt —j) +e(t) — e(t — ) — Dh_ycifelt —j) — et — j— 1}

where the ¢(¢) are independently identically distributed random variables
with zero mean and variance 2. We compute the exact log likelihood of
the model, propose and justify an asymptotic approximation of it. The
latter will be used to derive estimates of the parametérs which are shown
to be asymptotically normal and efficient.

1. Introduction. The estimation of parameters in the autoregressive moving
average (ARMA) time series model

X(1) = D510, X(t — J) + e(1) — Z5=ab;6(r = J) -
with ¢(f) being identically and independently distributed (i.i.d.) random varia-

bles of zero mean and finite variance, has been thoroughly studied by many
authors (e.g., Box and Jenkins (1970); Hannan (1970)) under the assumption

that the polynomials 1 — @,z --- —a,z?and 1 — b,z - .- —b,z? have no zeros
in and on the unit circle. We consider here the situations where the polynomial
1 — b,z ... —b,z* has a unit zero, i.e., where

1= D562 = (1= 2)(1 — Xizhe;2).

Thus we are concerned with the model

(1.1) X(0) = Diaa; X(1 = J) + () — (t = 1)
— Ziaelt— ) —e(t —j— 1)}
where the &(¢) are i.i.d. random variables of zero mean and variance o
This model is characterized by the fact that the variance of X(1) 4- --- +
X(n) remains finite as n tends to infinity. A simple example of it is the process
of events displaced by random deviations (Cox and Lewis (1966), page 204).
The time interval between events is given by

T, =a+ ¢ —¢€_,.

Our approach to derive estimates of the parameters of the model (1.1) is the
following:
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1370 TUAN PHAM-DINH

(i) We compute the exact log-likelihood function of the model by evaluating
the innovation

8() = X(1) — Ef{X()| X(1), - -+, X(r — 1)},
0 denoting (a,, ---,a, ¢, - -+, ¢,_;, 6*) so that under the assumption that the

observed series is Gaussian, the log-likelihood function of the model for a sample
of length N is:

Zn(0) = § Lililog (270, (0)} — § XLy C'(1)]04(1)
where g,() is the variance of (7).

(ii) We derive an asymptotic approximation L, to -, which satisfies the
condition:

(A) SUPy. 5 L5 0(0) — Ly“(O)| < (log N)Zy , i=0,1,2

where .£,? and L, i = 0, 1, 2 denote respectively &, and L,, the vector
of first derivatives and the matrix of second derivatives of ", and of L, |||
denotes any vector (matrix) norm, E is any compact set and {Z,} is some
sequence of random variables bounded in the L' norm.

(iii) We show that the L, function possesses all classical properties of a
log-likelihood function. By (A) the same is true for #7,. Thus there exists a
consistent maximum likelihood estimate which is asymptotically normal and
efficient, and a consistent approximate maximum likelihood estimate (i.e., the
one based on the maximization of L,) with the same properties. Using (A), we
can even show that the latter differs from the former by a term of order (log N)/N.
(See Theorem 3.)

It should be pointed out that in the special case where p = 1, b, = 1, i.e.,
when the considered model is

(1.2) X(t) = D5 a; X(t — ) + &(1) — e(t — 1),

then specific results can be obtained by straightforward arguments. We shall
deal with these in some detail.

2. Computation of the innovation. In this paragraph, we shall omit the
subscript 6 and denote by Z(t|s) the orthogonal projection (in the sense of the
L? scalar product) of the random variable Z(f) onto the linear space spanned by
x(), ---, X(s).

We put

#(r) = &(t) — <(t = 1)

V(0) = "(Vi(0), - V(1) = "(8(1), - -» $(1 + 2 — plre(t + 1 = p)).
Then the model equation (1.1) becomes
(2.1) X(t) = 29, a; X(t — J) + e(t) — TbV(t — 1)
where b =7(1 + ¢, ---, 1 + ¢,_;, 1), since e(t) = Vy(f) + - -+ + V().
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Thus, for ¢ > ¢,
Xt —1)= Xl a; X(t — j)—=TbV(t — 1|t — 1)
so that {(f) = X(¢) — X(¢t|t — 1), t > q is given by
(2.2) ) = X(t) — 29, a; X(t — j) + ToV(t — 1|t — 1)
(2.3) L) =¢e(t) = To(V(t — 1) — V(t — 1|t = 1)}.
On the other hand, using (1.1), we get
V() = BV(t — 1) + W(o)

where
¢, C--rc,y O 1
1 0 0o o0 .
B=|o 1... . .|; w(t) = |: | [X(1) — D9, a,X(t — )]
0 0... 1 1 0

Thus V(t|t) = BV(t — 1|t) + W(f)andsince V(t — 1|t) = V(t — 1|t — 1) +
K(){(#) where K(£){(t) denotes the orthogonal projection of V(¢ — 1) onto the
linear space spanned by {(f), we have the recurrence equation

V(t|t) = BV(t — 1|t — 1) + BK(){(1) + W(z).
By (2.2), (1) = TeW(t) + "bV(t — 1|t — 1) where e = 7(1, - .., 1) so that
(2.4)  V(t|t)=B{I + K(t)"b}¥(t — 1|t — 1) + {I + BK(t)Te}W(t), t>q.
To obtain K(¢), we introduce the covariance matrix Q(f) of V(r) — V(¢|?).
By (2.3),
K(r) = E(V(r — 1){(0)/o"{L(n)} = —Q(r — 1)b/a*{L(r)}
?{{(1)} = o* + TbQ(t — 1)b = d*(r), say.
Now, remarking that
V(f) — V(t|t) = B{V(t — 1) — V(t — 1|t — 1) — K(£)4(2)}
and that K(#){(¢) is also the orthogonal projection of ¥(t — 1) — V(¢ — 1]t — 1)
onto the linear space spanned by {(¢), we get
0(1) = B{Q(t — 1) — K(t)d* (1) "K(1)} "B, t>gq.
Using the above expressions for K(7) and ¢%(f), we obtain:
O(r) = B{Q(t — 1) + K() "bQ(¢t — 1)} "B
Q1) "B = B{Q(t — 1)b + K(t) TbQ(t — 1)b}
= BK(t){—d*(t) + TbQ(t — 1)b} = — BK(t)e*,
(2.5) K(t)y = —BQ(t) "B 'bje*, t>gq.
Suppose that Q(t — 1) is invertible; then we also have
(2.6) Q()TB'Q~Y(t — 1) = B{I + K(©) "8}, t>gq,
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so that using the expression (2.5) for K(¢),
Q(NTBQ(t— 1)+ b"b/e*} =B, t>gq.
We see that Q(¢) is also invertible and
Q) ="BQ(t— 1)+ bTb/e*}B*, t>q.

To solve the above recurrence equation, putting p(r) = ¢*7B'‘Q-'(f)B', we
obtain

(2.7) u(t) = p(t — 1) + "B OB, t>¢q,
wr) = p(q) + X5=, "BOTOB, 1> q.

Let us return to the recurrence equation (2.4) We remark that "eB = b so
that I + BK(f)"e = B{I + K(t)"b}B~' and thus by (2.6), the equation (2.4)
becomes

V(it|t)=Q()™B'Q~(t — H{V(t — 1|t — 1) + B'W(t)}, t>¢q
= B i(u(t — DBVt — 1]t — 1) + BW(@)}, t>q.
The solution of this recurrence equation is:
V(t]0) = Bu({Digrn 1 — DBW() + 1g)B~V(q]9)}

for t = ¢q. Using (2.2), we get:
(2.8) C(t) =Te{W() + BV(t — 1|t — 1)}

= TeB'p Nt — DT (j — DBW()) + p(9)B~"V(q| 9)}
for t > g. On the other hand, the variance ¢*(¢) of {(¢) has been shown to be
(2.9) o*(t) = o*{1 4 TeB'u'(t — 1)7B'e} .

One can compute {(¢) by (2.7) and (2.8). However, it is preferable to rear-
range (2.8) as follows: we have, by (2.7) and the fact that eB = 7b,

pu(j—1)=p(t — 1) — XiZ "B*eTeB* .
Thus

(1) = Djmgu "eBTW()) + TeB'p7(t — Dp(q)B~V(q]9)

— TeBYNt — 1) Do (TUT TB e TeBB-W(j), 1> q.

The last term of the above right-hand side is equal to
—TeB'uN(t — 1) Fizh, "B Te( Tk BW)))

so that if we put

(2.10) 6k) = DheenTeBIW(G), k>4,

then for t > ¢:

(211)  C(1) = &(1) + TeBp(t — D{s(g)B=V(q]9) — Dich e TBree(K)}

The term &(f) has a simple interpretation. Indeed let ¢(f), te Z be the
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solution of the recurrence equation:
(2.12)  §(1) — Drzie; (1 — j) = X(O) — Ti e, X(t — j), t>4q,

with the initial conditions ¢(#) = 0, t < g; then it can be easily seen that the
vector ¥(f) with components Vin=4(t+1—j),j—1,-..,p— land

V() = Z5, 8t + 1))

is equal to W(#) + BW(t — 1) + ... + B*=*"'W(q + 1). Thus

() ="eV(t) = T w b)) ;
and it follows that &(f), ¢t € Z is the solution of the recurrence equation
(2.13) §n — & — 1) — Tinie{e(t — j) — &t — j — 1)}

=X() — Xi,a; X(t—]) t>q,
with initial conditions &(f) = 0, t < gq.
REMARK. In the special case when p = 1, the expressions for {() and ¢%(f)

can be obtained by the following straightforward argument.
By the model equation (1.2), we have

214) )= X() = Djaa Xt — )+t —1]t=1), t>q,

which is a particular case of (2.2) by taking b = 1 and V(1) = &(¢).
Now ¢(¢] ) is proportional to {(f) since it belongs to the subspace spanned by
X(1), - - -, X(#) and is orthogonal to X(1), - - -, X(t+ — 1). Thus

e(t] 1) = [Ef=()U}/o*(9)]L() -
By (1.2) and (2.14) we have
Uy =e()) + (st — 1t = 1) —e(r — 1)}, 1>q,
so that if we denote by () the variance of ¢(f) — ¢(r — 1):
Efe(ni(} = o*, >4,
)=+ A(t—1), t>q.

We thus obtain the recurrence equation

€0 = X(O) = D, Xt — J) + s L= ).
Now
At) = o*e(t) — e(t| 1)} = o* — a*{e(t] 1)}
— g2 a _ A t—1)

Friai—10 cxa—1 ‘7

This gives the recurrence equation

1 1 1
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which has the solution
A= — g+ 2(g), t>q,
g’ _ At —2) _ g +t—2—¢q

dFANt—2) 1462 (1—2) o2q+t—1—gq
Putting 8 = ¢’°27Y(q) — g — 1, we finally get
U9 = X(O) = Djma, X = )+ EEIo2C— 1), 1> g1,

This recurrence equation has the solution (taking into account (2.14))

so that

215 4D = Tieen 215 0000 - 23, ,X<k—1)}+ﬂ—t-"i—1e(q|q>

B+t B+t
On the other hand
N7t — 1) + 1
2.16 )=+ A(t—1) =2
(2.16) ()= o'+ 40— 1) = TOL
=*—-0, >q.
B+1 ' 1

3. Asymptotic approximation of the log-likelihood function. We shall de-
note by 6 the open set of R?*7 of values of § = (a,, - - -, a, €y, -+, €,_y, 0*) such
that ¢* > 0 and the polynomial 1 — @,z --- —a@,z? and 1 — ¢,z ... —¢,_ 2?7

have no zeros in the closed unit disc of the complex plane and have no common
zeros. This implies that the eigenvalues of:

€1 Ca-rCpy Cpy
1 0...0 0
C=|0 1 0 0
0 0... 1 0

are of modulus strictly inferior to 1.

Since the (), B, V(q]q), #(t), &) and (¢) introduced in Section 2 depend
on #, we shall use (when necessary) the subscript # to indicate this dependence.

We now search for an asymptotic approximation of the log-likelihood function
L.. For a sample of length N > ¢4, we have
(3.1 Ly(0) = —% Xilen10g {270,5(1)} — § 20l o041 Co'(1)/04(2)

— }logdet {22T"(9)} — 4 "X, T, (H)X,
where I (0) is the covariance matrix of the random vector X, = 7(X(1) - - - X(q))
and where ,(f) and ¢,%(7) are given by (2.8) to (2.11). By the formulas (2.8),
(2.10), and (2.11), it is clear that in order to obtain an asymptotic approxi-
mation of £, we should study the asymptotic behavior of 7eB‘y~*(t — 1) 7 B'e,
TeBip~Y(t — 1), &) and
(2L, TeBtu (1 — 1) Thred(k) .
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The results shall be described in Lemmas 1, 2 and 3. Since the proofs of these
lemmas are lengthy and technical, they are relegated to the end of the section
and only the statements of the lemmas are given here.

We find it convenient to introduce the following:

DEFINITION. Let U,(+) be a sequence of random functions on an open set 6
of R¥, every sample function of which is twice continuously differentiable and
Uy®(+), i =0, 1, 2, denote the vector whose components are the ith derivatives
of U,(+); we say that the sequence U, is O(¢(N)) in the L? norm if for any
compact subset E of 8, there exists a sequence of random variables Z,, bounded
in the L? norm such that

sup,; [Ux2(0)| < $(N)Zy, N1, i=0,1,2.

In particular, a sequence of (nonrandom) functions U,(-) is said to be O(¢(N))
if for every compact subset E of O, the sequences

{supsex [IUNVO)}/6(N), N =1 i=0,1,2
are bounded.
We shall partition the matrix B as

B=< o O>
T, , 1

where u,_, = 7(0, -- -, 1) and C is defined in the beginning of this section. It
is easily seen that the matrix B can be block diagonalized as follows:

= (Lo )G D 1)

where « = 7(I — C)™,_,. Clearly the first and last matrix of the above right-
hand side are inverse one to the other. Using this result, we get

LeEMMA 1. We have
TeBipH(r — 1) = (B(), (NG ™) >4
where the sequences of functions p(f), t > q and (1), t > q are O(t™") and the
sequence of functions y(tf) — t7*, t > q is O(t™*). On the other hand, the sequence
of functions
TeBtp~(t — 1)"Ble, t>q

is O(t™).

LEMMA 2. Let &,(1) be given by (2.13). Then the sequence of random functions
0 — &y(1), t > q is O(1) in the L* norm.

LEMMA 3. The sequence of random functions

0 — Nt {TeBip(t — 1)TBre — t7'Je(k), t> ¢

is O(t7) in the L* norm.
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The above results suggest the approximations to g,%(¢) and {,() by ¢* and
(3.2) 80 = () — + Dtz &)

Thus we propose as an approximation to :

N—gq

(3.3) Ly(0) = — 5 log (2z0%) — —2% T e 80 -

THEOREM 1. Let ¥, and L, be given by (3.1) and (3.3). Then the sequence
of random functions £ y(+) — Ly(+), N > q is O(log N) in the L* norm.

Proor. The difference .27 (<) — Ly(+) is
—% logdet {2zI',(0)} — 3 "X, T, ()X, — § Zilosa [10g {95%(1)/0} + 7(1)]

where
n0() = CAB)]ag () — E1)/a* -

Now, the function I' (.) being twice differentiable, it is clear that the
sequence

dy(+) = ylogdet (22T ()} + 3 "X, T, 7(:)X,, N>¢q

is O(1) in the L' norm. On the other hand, using (2.9) and the last result
of Lemma 1, it is not difficult to show that the sequence of functions ¢ —
log {0,(#)/d*}, t > q, 8 > 0,7%(f), t > q and 0 — a,7%(f) — 07, t > q are re-
spectively O(¢+7%), O(1) and O(t7*). Also the results of Lemmas 1 and 3 and
(2.11) show that the sequence of random functions

0 — 6C,(1) = Co(1) — éo(’) y I1>9q

is O(+™") in the L* norm and those of Lemma 2 and (3.2) show that the sequence
of random functions § — £y(f), ¢ > ¢ is O(1) in the L? norm. Now

20(t) = [{BL,(OF + 288,()Co(N]os~(t) + EA(D) oo (1) — 077}

so that, using the above results, one can easily see that the sequence of functions
6 — (1), t > g is O(¢™") in the L* norm (this comes from the fact that the de-
rivatives of the function @ — 7,(f) are sums of products of the derivatives of
6 — 3C,(f) or of 0 — ¢,7%(f) — o~ with those of § — {(#) or § — a,7%(1) or 6 —
82,(1)).

Thus the derivatives up to second order with respect to 6 of

3y'(0) = D esa [10g {o,%(1)/0" + 76(1)]

can be bounded in absolute value on any compact Eof @by Z,,,/(g+ 1)+ --- +
Z,|N where Z,, t > q is some sequence of random variables bounded in the L!
norm. This gives the theorem.

We now turn to the proofs of Lemmas 1, 2 and 3.



ESTIMATION IN THE ARMA MODEL 1377

Proor orF LEMMA 1. Using the diagonalized form of B, we get from (2.7)

we-n=(3 Pae-n (L )
where

we—n=( " De@ (L N+zza(y DA )

a0

Let p,, denote the least upper bound of the moduli of the eigenvalues of C,
for 6 € E; then ||C,¥| < Kpz*, 6 € E where K is some constant. Since p; < 1, it
follows that if we put

N

Ao — 1) = (B0 =D Al )
/"21(t - 1) /"z(t - 1)
then the sequences ,(t — 1), t > ¢, @,(t — 1), t > g and fi,(¢t — 1), t > g are
O(1). On the other hand, f,(r — 1) = t — g — 1 + p,(q), #,(¢) being the element
on the last row and the last column of g(g). Now let

(= Dl (@ = Dl
=0 = (e T (e )

Then it can be verified that (the variable ¢+ — 1 being omitted)

{ﬂ_l}l = {4 — ﬂlZﬂZ_lﬂZI}_l
{ﬂ_l}ﬂ = T{ﬂ_l}zl = ""{/1_1}1!212!22_1
{ﬂ_l}z = /12_1 + llz_lﬂn{ﬂ_l}lﬂmﬂz_l .
Thus the sequence {#~*(t — 1)},, t > ¢ is O(1), the sequences {g#~'(t — 1)}, ¢ >
g and {g7(t — 1)}, t > g are O(¢+7?) and the sequence {z~(t — 1)}, — t7', ¢t > ¢
is O(t7?).
Now, using the diagonalized form of B
I 0\ /C 0\ I —a
ey = (L9 Yo ).
eBpT(t—1) = Te Mo 1)Fe=D,

Thus TeB'y~*(t — 1) is of the form indicated in Lemma 1 with
Ct
—TaC?

1) =e( o0, ) (= D+ {570 — D

5 = e (o) (a7 = D + {7 = D

Using the fact that ||CY|| < Kp;', 6 € E, with p, < 1 (E being a compact subset
of © and K being some constant), one can deduce that the sequences 5(¢), t > ¢
and y(?), t > ¢ are O(¢t™*) and the sequence y(f) — 7%, t > g is O(t7?).
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Finally, we have
resui(e — )7Be = B0, ) (o O) (I T)e

and thus the sequence "eB‘p~'(t — 1)"B'e, t > g is easily seen to be O(¢7?).
To show Lemma 2, we need the following result which is also useful later:

LEMMA 4. Let Y(f), t€ Z, be the process
Y1) = L a* Y1 — J) + () — Diziej*e(t — )
where a;*, c;* are the true values of a;, c;; then X(t) = Y(t) — Y(t — 1).
PRrOOF. Let w;, j = 0 be the coefficients of the Taylor development of (1 —
¥z oo —ck 2271 — a*z - - —a,*z9)7Y; then
X() = Lisoile(t — J) — et — j — 1)}
Y(1) = Liso;e(t — )
for which the result follows:

Proor oF LEMMA 2. We have seen that.
&() = Xho—w é,(k)

where (), t > g is the solution of the recurrence equation (2.12). Thus putting
V'(t) = T(@(1), - -, (¢t + 2 — p)), we see that V'(¢) satisfies

Vi) = CV'(t = 1) + ufX(1) — D50, X0 — )}, t>95  Vi(g=0
where u, = 7(1, 0, ---, 0). This gives
V() = 228 ClufX(t — k) — Y4, a;X(t — k — j)}, t>q.
Therefore ¢,(¢) is equal to
Uy Yk qn [ D07 Clund Xk — 1) — 25,0, X(k — 1 — J')}]
= Tuy T8 Colu[ Dz (X(k) — Do a; X(k — j)}] -
Using Lemma 4, we get
&(r) = "uy Bizd™ Gl Y(r — 1) — Y(9) + D3 a{Y(r — 1 — j) — Y(g — )]
= D50 [ L1371 95ONY(r — 1 — J) — Y(g — )}], say.

Now since ||C,}|| < Kpg, 6 € E with p, < 1, E being a compact subset of ©
and K being some constant (see the proof of Lemma 1), we have

SUPyc £ |19,,(0)| £ K'os', K’ = constant,

and the same result for the derivatives of g, up to second order. Since
S pst < +oo and the L? norms of Y(r — [ — j) — Y(g — ), 05 I< t— ¢,
t > g are bounded, the sequence 6 — &,(f) can be seen to be O(1) in the L?
norm.



ESTIMATION IN THE ARMA MODEL 1379

Proor oF LEMMA 3. By Lemma 1 and the diagonalized form of B:

TeBtu-(t — 1) "B = (B(1), 1(1)) ( et ‘1’> (o *‘1'>e

= (B(1) C*, {—B(1) "C*a + r(1)})e
= 7(t) + o(k, 1), say.
Thus the sequence considered in the lemma is

Dkmqnr {1()) — 17+ 8(1, K)Je(k) -

Now, since ||C,¥| < Kpg*, 0 € E, with p, < 1 (E being a compact subset of ©
and K being some constant), the derivatives of # — d(¢, k) up to second order
can be seen to be bounded in absolute value on E by Kk’¢,*/t. Thus let
go(k, t) = () — t7* + d(t, k) and g,(k, ) be the vector with components the
ith derivatives of g,(k, t) with respect to #; then by the above result and the
fact that the sequence 7(f) — t~* is O(¢~?), for any compact set E of ©, we have

T sy sl (ks ) = KJt, 1>, i=0,1,2

where K is some constant.
Now the derivatives of

241 Golks 1)E(1)
with respect to § up to second order, are sums of products of the derivatives
with respect to 6 up to second order of &,() and of g,(k, ¢), and thus by Lemma

2 and the above result are bounded in the L? norm. This is the result of the
lemma.

REMARK. In the special case when p = 1, the vector e and the matrix B both
reduce to the scalar 1, Q(f) = A(?), u(f) = 0*A7(t) = B + t + 1 (see the remark
at the end of Section 2), so that the results of Lemma 1 are obvious, and &)
is just

ieen {X(k) — D a; X(k — j)} = Ziegna W),
the W(k) now being scalars, so that using the simplified form of Lemma 4 with
all ¢;* = 0, one gets almost immediately:

(3.4) &) = Y(1) — Y(9) — Diaa;{Y(t — j) — Y(g — )}

from which the results of Lemma 2 are obvious. Also the proof of Lemma 3 is
considerably simplified since the considered sequence is reduced to

__B .
B Zendl()), 1>9

4. Asymptotic properties of the log-likelihood function. We now show that
the approximate (and thus the exact) log-likelihood function possesses all the
classical properties of a log-likelihood function, namely:

THEOREM 2. Let L,¥(+), i = 1, 2 denote the vector of first derivatives of Ly
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and the matrix of second derivatives of L, respectively, and 6* the true value of 0.
Then as N — oo
(i) N~L,™(6*) converges in probability to 0;
(ii) N-'L,®(6*) converges in probability to
_J= _((0*)"F 0 )
0 oy

where I is the matrix with general element
- (0 ) (" x{ ¢ (ezx) (/,0(8—11)} .l¢0.(eir)l—2 da,

where ¢ (z) = (1 — ¢,z - -+ —cp_lz"“)‘l(l —a,z--- —a,z%;
(iii) if the e(f) possesses a finite fourth cumulant x, then N=1L,(0*) converges
in distribution to a Gaussian random vector with zero mean and covariance matrix

((a*)”I‘ 0 )
0 3ot + (o))
PrOOF. We remark that ﬁ,(t) depends only on (a,, - - -, a,, ¢, - -+, C,_,). Let

,%(#), i = 1, 2 denote respectively the vector of first derivatives and the matrix
of second derivatives of {,(f) with respect to these parameters and

(4.1) L as1 Ca(DC™ (1) »
(4.2) v'(0) = L0 (1) 5
(4.3) 05 (0) = —— T 1 D)
(4.4) I'y(6) = () TCM () -

Then a direct computation shows that

(4.5) Ly2() = —(N—19) ({a, _Tg,(vf()g}z/<2«f*>) ’

T + O 1O
N = (T T o) -

The theorem then follows from Lemmas 5 and 6.

LEMMA 5. As N — oo, r5(6%), 74'(0%), 05*(0*%) and T'y~}(6*) converge in prob-
ability respectively t0 0, 0, (o*)* and T'.

46)  Ly(0) = —

LEMMA 6. If the ¢(f) possess a finite fourth cumulant, &, then as N — oo,
N T(Tyo(6%), 0,2(0%) — (0*)?) converges in distribution to a Gaussian random vector
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of zero mean and covariance matrix
<I‘(a*)’ 0 )
0 2% 4/

The proofs of Lemmas 5 and 6 involve the approximations to €,(f) and ge(o),
i = 1, 2 by ¢(¢) and some stationary processes &“(f), i = 1, 2 as described in

LEMMA 7. Let Y(1) be defined as in Lemma 4 and
&(1) = Do m;(0)Y(r — )
where m,(0), j = 0 are the coefficients of the Taylor expansion of (1 — ¢,z .-
—c, 2NNl — a,z - .- —a,z%); then

&) = &) — - Tt &o(6) + (1)

where the sequence of random functions 0 — 7,(), t > q is O(t™*) in the L* norm.

Proor. It is well known that ,(7) satisfies the equation
() — Dinic;e(t — ) = Y(1) — i, Yt — ) -
This is the same equation as (2.12) except that ¢,(), X(¢) are replaced by ¢,(1),
Y(#). Using an argument similar to that in the proof of Lemma 2, we get
&(t) = ", o0 Clu{Y(t — K) — Do, 0, Y(t — k — )},
Po(1) = "u, Tizt™ CludX(t — k) — 35,0, X(t — k — J)} -
Thus
&(t) — &t — 1) — (1) = Timey "4, ColtundX(t — k) — B a;X(t — k — )}
= X {X(g =10, - X(=Dlo(t — g = 1),
where g,(k) is the vector with components "u Cj*u,, —Tu,Cjluay, ---,
—Tu,Cy*u,a,. Consequently

&) = (1) — - T2 4) = Thria o dlk)

i 1 o, 1.
= &(1) — v Dithe &lk) — 9 —}; £4(9)

~ B (¥g — D). -+ X=D} | Dieree ok — g = D]

Now ||C¥| < Koz*, 6 € E with p, < 1, where E is any compact set of © and
K is some constant, it can be verified that the derivatives up to second order of

k
60— Z;c=q+179(k )

are bounded in norm in E by K’p,!/t (K’ being some constant). We deduce that
the last term of the above right-hand side is O(¢+~') in the L* norm.



1382 TUAN PHAM-DINH

PrROOF OF LEMMA 5. We shall denote by &“(r), i = 1, 2 the vector of first
derivatives and the matrix of second derivatives of the function § — &,(¢), at
6 = 0*. Now, since &,.(7) = ¢(r), by Lemma 7, we have

7)) — () = — i elk) + 07 = 3(1) + 0(7Y), say;

(4.8) Eo(r) — ety = —— Zk L E9(k) 4+ O(t™)

= 5‘”(1‘) + 0@, say (i=1, 2y,

where O(17") denotes a sequence of random variables such that rO(¢7") is bounded
in the L? norm.
Now the variance of d(r) is (t — ¢ — 1)(¢*)*/*, that of 9,V (¢) (resp. ;7(7)) is

Zk et1 Dicen R(k — 1) = — {qu q <1 - *q’_tltLISD R(s)}

where R(-) denotes the covariance function of the stationary process &;(f)
(resp. &2(r)). Since Y=, R(s) < + oo, the variances of d(r), 3,'(¢) and 6%(¢)
can be bounded by K/t, K being some constant. Thus

(4‘9) % vazqﬂ CA%‘(’) = % Zi\;q+1 52(’) + % Ziv=q+1 7/(’) ’
A R G080 = - B €08°0) + - D7),
(410) LB L GO0 = o T 0RO + - D 7O
1 1

Zt q+1 Co*(t)c ]k(t) = 37 Zt q+1 5(’)5(2)(” + — Zt g+1 Wm(t)

where the L' norms of (1), 7,/(¢), 7}(?), and 7};(¢) tend to 0 as t — oco. Using
the result

.1
llmﬁ(x,—k o+ xy)=0

if x, — 0, as N — oo, we see that the last term of the above right-hand sides
converges in L' to 0 as N — oco. On the other hand, the first terms converge
respectively almost surely to (¢*)?, 0, T';, and 0, the matrix I' = {I';,} being the
covariance matrix of £(0). Now, the stationary process £'(#) admits the spect-
ral representation

é(l)(t) — ei1t¢:9l')(ei2) dZY(Z)
where ¢,V(z) is the vector of derivatives with respect to ¢ of (1 — ¢,z
—c,_, 2?1 —a,z--- —a,z%) and Z,(4) is the process of orthogonal incre-

ments appearing in the spectral representation of Y(¢r). Thus I' is equal to the
expression given in Theorem 2. This completes the proof of the theorem.
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Proor oF LEMMA 6. From (4.9) and (4.10) we clearly have
N CA,,‘(I)CALI.’J-(I) = N D e(ne@(t) + N7 30 L 0(0)

N L {Go() — ()} = N7 EE 0 {20) — (%)} + NE ZEan(h)

where 7(7), 7,’(f) are seen to be
7(1) = 8%(r) + 20()e(t) + O(:~Y)
7;'(1) = 8(1)3;2(1) + 6(1); (1) + 6,2(1)e(r) + O(7Y)

do(r) and 0(¢) being defined by (4.7) and (4.8) and O(¢r~?) being a sequence of
random variables such that rO(s~?) tends to O in the L' norm as  — co:

Let Z(¢) be the random vector with components Z,(r) = ¢(1)¢, (1), j=1, - - -, q,
Z,,\(t) = (6*) — €t), then Z(r) is a stationary ergodic process with the martin-
gale property: E{Z(t)| Z(s), s < t} = 0. By Billingsley’s (1968, page 206) theo-

rem, the sum N-¥Z(q + 1) + ... + Z(N)} converges in distribution as N — oo
to a Gaussian vector with zero mean and covariance matrix

* 21" 0
EZITZI=<(0) )
2oz = (V0 004
Thus we obtain the result of the lemma if we show that
Nt 3N (D) and N2 3 ()
tend to O in probability as N — oo.

Now we have seen in the proof of Lemma 5 that the variances of 4(r) and of
0, () are bounded by K/t. Thus the L' norms of:

N-# Zf;qﬂ 52(1) and N-3 ZfV:Hl 5(1')5]-“’([)

are bounded by KN~%log(N/q), which tends to 0 as N — oo. Thus we need
only to show that the sums

N4 ZX L 6(ne(ry, Nt 8(ng V()  and
N7H 21 0;0(0)(0)
tend to 0 in probability as N — co. To do that we shall compute their variances.
Let ey, €y ; and ¢}, ; denote respectively the above sums. Then we have

oXen ) = % 2itlenr Diamqer (CoV {8(2), €;,7(s)} Cov {3(s), &,7()}

+ Cov {d(), d(s)}R(t — 5) + Cum {d(s), &;(s), 8(?), &,2(2)})

where R(-) denotes the covariance function of the stationary process &, (r).
The above result follows from the formula

Cov (X, X,, X;X,) = Cov (X, X;) Cov (X,, X,) + Cov (X, X,) Cov (X,, Xj)
+ Cum (X, X,, X;, X,)

for any zero mean random variables X, X,, X;, X,.
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Now,

Cov {5(2), &;78; (1)} = — ZiZesa Efe(k)E;(5)} -

By using the fact that &,*(s) can be expressed in the form
§0(5) = Litodue(s — k)
with Y5 |d,| < + o0, we have
2 | Efe(k)e; ()l = K, Vs (K = constant).
Thus |Cov {4(?), &;V(s)}| < K/t and consequently
| 22t a41 Ziilgsr Cov {3(2), £;,4(5)} Cov {a(s). &2 (D}
S Don Blleny = (BLen Ky < (Klog 7

On the other hand, the covariance between d(¢) and 4(s) is:
(7%~ {min (s, ) — ¢ — 1)

and is thus bounded in absolute value by K/max (s, f), K being some constant.
It follows that

| 2% 1 D g4a Cov {8(2), S(S)}R(2 — 5)|
é 2 iv=q+1 'Iti { :=q+1 |R(t — S)l § K’ lOg (.;i)}

where K’ is some other constant.
Finally, the cumulant between d(s), d(?), &;*(s), and &,*(¢) is

R0~ Cum (e(1), e(1), &), £(9)
S

By using the fact that éV(¢f) = ;& die(t — k), 2157 d2 < +oo, We get:
|2, Cum {e()), £,2(1), (1), V() = X Kld, 1 d, | < +o0
where K is some constant. Thus
ICum {3(f), &,%(2), 8(s), &,2(s))| < Et K’ = constant ,
s

and consequently
N 2
S LT Cum {6(0), &0(1), 8(s), &;P(s)} < (K log _) .
q

The results above show that o%(ey ;) >0 as N— oco. A similar argument
shows that ¢%(cy) — 0 as N — oo. It remains to consider

9X(0y.,5) = o {N~H Tl 411 0,0(0e(0)} = (0 L R 0,0}
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since the random variable ,"(7) is independent of ¢(f). Now the variance of
0,(t) is bounded by K/t where K is a constant. It follows that the variance of
¢y, ; is bounded by K(a*)* log (N/q)/N which tends to 0 as N — oo.

This completes the proof of the lemma.

REMARK. In the special case when p = 1, the proof for Theorem 2 can be
somewhat shortened. Indeed C}(t) in this case can be seen to be a linear
function of @,, - - -, a,. We have, by (3.2) and (3.4),

(4.11) £,(t) = Uft) — T3, a; U, (D),
where
1 .
(1) () = Y0 = ) = 4 Dtz Yk = ) = L5 v - ),
j =0,..., q,
Y(¢) being defined in Lemma 4. Since &,(t) — Y(t) —a,Y(t — 1) --- —a,Y(t —q)

in the present case, the result of Lemma 7 is trivial. Also, {,®(¢) and &,*(r)
are now null so that we need not consider them in the proof of Lemma 5.
Finally, the matrix I of Theorem 2 in this case reduces to

RO R() Rl 1)
R1) RO R
Rg—1) Rg—2)-- RO)

where R(.) is the covariance function of the stationary process Y(z).

5. Estimation of the parameters. We estimate § by maximizing the approxi-
mate log-likelihood function L,, or more frequently by solving the equation
Ly™(6) = 0. Using (4.5) and remarking that y,(6) and ¢,%#) depend only on
a="@a,---,a,)andc = "(c;, - -+, c,_,), theresulting estimate by = (dy, &y, 647
is given by

7x(@ys €y) =0
6y' = 0,'(dy, &)
where we have written y,(a, ¢) and ¢,%a, ¢) in place of r,(6) and o,%(6).

One should remark that in the special case when p = 1, the equation
L,"(8) = 0 has a explicit solution. Indeed, using(4.11), a direct computation
shows that the estimate 6, = (dy, 6,4*) which maximizes L is the solution of:

(5- 1) 2k {ZEV:qH Uj(t)Uk(t)}dk = Ziv—qﬂ Uj(t)UO(t) ’

(5.2) &= o §%(2) -

Using the fact that
i (S e U(OUNE — a*) = T Ca()US(0)
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# = s (D GO — Dt — U0
1 ~ 2 A (1\E
= N — q Zt=q+l Co(t)ct?‘(t)
- N-—l— q [Zi\]:q+1 Ai'(t) - g=l (éJ - ai*){2£v=q+1 Uj(t)éﬂ‘(t)}] ’

and the fact that {V(r) = —7(Uy(?), - - -, U,(?)), the results of Lemmas 5 and 6
give:

Suppose that T is invertible, then the estimate 0, = (4, Gy*) is consistent and
N¥Oy — 6*) converges in distribution as N — oo to a Gaussian vector with zero
mean and covariance matrix

<(a*)2l‘—1 0 )
0 2(c*) ++x/°
However, in the general case, the existence of a consistent approximate

maximum likelihood estimate (i.e., satisfying the equation L,™(#) = 0) is not
immediate. To show the existence of such an estimate, we need this result:

LEmMMA 8. There exists a function g: (0, §o) — [0, o] with g(r) | O as r | 0 and
a sequence of random variables M, N > q bounded in the L' norm such that

Vo, ||6 — 6% < r: NYLy®(0) — Ly20%)| < 9(r)M,, .

Proor. Using (4.6) and (4.1)—(4.4), and remarking that if the sequences
U(r), t > q and V(?), t > q of random variables are bounded in the L? norm
then the sequence

1
+ DL UKD, N>g

is bounded in the L! norm, we obtain the result of the lemma if

(i) the sequence i;;;)(z), t>q,i=0,1,2is bounded in the L? norm;
(ii) there exists a function g: (0, o0) — [0, co] with g(r) |0 as r | 0 and a
sequence of random variables U(z), t > ¢, bounded in the L* norm such that

VO, [0 — 0¥ < r (GO — CR@ S o(U(n i=0,1,2.

Point (i) is a direct consequence of Lemma 2 and (3.2); as for point (ii), it
can be proved using the mean value theorem if we have shown that for some
r, > 0, the sequence

Supo:no—frllsro”io(s)(t)” » >4

is bounded in the L* norm. That this is true can be shown by an argument
similar to that in the proof of Lemma 2.

The above result and Theorem 2 permit us to show, by a standard argument
(see, e.g., Aitchison and Silvey (1958)) the existence of a consistent estimate 0,
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function of X(1), - - -, X(N) only and satisfying Ly®(6y) = O with probability tend-
ing to one. The sequence 0 is unique in the sense that for any other sequence 6,’'
with the same properties, P{6, = 6,'} tends to one as N — oo. By Theorem 1,
the same results hold for the function .%°,. Thus, there exists also a consistent
maximum likelihood estimate 6. A standard argument using Theorem 2 also
shows that 9N as well as 6, are asymptotically normal and efficient. Moreover:

THEOREM 3. Let 6 and G, be defined as above, then the sequence N(log N)~*(0,, —
6y) is bounded in probability.

Here a sequence U, is said to be bounded in probability if
lim,_,, lim sup,_,, P{|Uy|| >a} =0.
Proor. By the mean value theorem

3 &
a0, 36,96,

where 6, is some point on the segment joining 6, and , and thus tends to §*
as N — oo. Using the results of Theorem 2 and Lemma 8, we get

N-L,®(6y) = —Jy(0y — Oy)

LN(éN) = Zp LN(0N’)(5N”5 - éN,ﬂ) ’

where —J,; tends in probability to the matrix —J of Theorem 2.
Let E be a compact neighborhood of 6* and Z, be the sequence of random
variables of Theorem 1 such that

SUPyez (|27 (0) — Ly®(0)|| < (log N)Zy .
If 6, € E and Zx(6y) = 0 then

N(log N)|6y — 84|l < V4|1 Zy = Ry, say.
Thus

P{N(log N)||,, — 0| > a} < P{£, V(@) # O} + P{f, ¢ E} + P{R, > a}.

The sequence R, can be shown to be bounded in probability since the
sequences ||K,!|| and Z, are. On the other hand, P{.,(8,) = 0} tends to
one and 6, — * as N — oo, so that

lim sup, ., P{N(log N)~!||§,, — 6,|| > a} < limsup,_., P{R, > a} .

The above right-hand side tends to 0 as @ — oo, which gives the result.

In conclusion, one should remark that the main results are Theorems 1 and
2 and Lemma 8. They ensure that we can estimate parameters by standard
methods as in the case of an ordinary ARMA process, provided that we take
the {,(1) defined by (3.2) as the residuals. In particular, we can obtain estimates
of 4 by nonlinear regression (see Box and Jenkins (1970)) as follows:

Let 6, = (ay™, cy™, (0,*)™) by the n-step estimate of ¢; then

ay™ty ay™ (m) (m)1-1 () (n)
= — {Ta(ay™, ex™)}ry(ay'™, ey )

cN(n+l) cN(n)
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where 'y, and 7, are given in (4.4) and (4.1). If the estimate 6, is N-
consistent, in the sense that N#(6,® — 6*) is bounded in probability, then it
can be shown that N¥(#,® — 6,) tends to 0 in probability as N — oo (see Pham-
dinh (1975)).

REMARK. In the special case when p = 1, the above iteration is unnecessary
since the approximate maximum likelihood estimate 6, of @ can be computed
directly by (5.1) and (5.2). Now the matrix 'y

1

N e U;(NUL() sk=0,.--,9,

Lyje=

which is involved in the computation of 9N, is not a stationary matrix (i.e.,
'y i is not of the form Ry(j — k)). However, I'y ;, is a consistent estimate of
R(j — k) so that it is more convenient to replace it by

) 1 )
Ry(j — k) = N 2 Un(t — Ut — k)
where
Up(t) = 2iei — X(k) if 1<t<N,=0 otherwise.
Thus for j < t < N 4+ j:
Ugv(’ -N=

By replacing X() by Y(f) — Y(t — j) (see Lemma 4), one can show that the
L? norms of Uy(t) — Uy(t — j), j=0,1, ..., 9 are bounded for all r = g +
1, ..., Nby K/(t — q) where K is some constant. It can then be shown that:

Zk-m L Xk — j)-

. N .
NE|PN,jk—RN(]—k)|§K10g<7>’ Jik=0,---,q

where K is some constant.
Thus, if we define L, by

L, = _iV_ log (27a®)

{Za 1 D=1 8;a Ry(j — k) — 2 2%, a;Ry(j) + Ry(0)}

then it is not difficult to see that the sequence L,'(+) — L,(+), N > qis O(log N).
Following the same argument as that of Theorem 3, if 6, denotes the estimate
which maximizes L,’ then N(log N)=(8, — 6,) is bounded in probability. The
use of R,(j — k) in place of I'y ,, thus produces an equally good estimate and
has the advantage of simplifying the numerical computation.
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