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In this paper Pitman’s method of constructing and comparing tests
based on statistics which are asymptotically normal under the null hypoth-
esis and the local alternatives is extended to sequential tests of statistical
hypotheses. The asymptotic normality assumption in Pitman’s theory is
replaced in its sequential analogue by the weak convergence of normalized
processes formed from these statistics under the null hypothesis and the
local alternatives. Uniform invariance principles are developed for a large
class of statistics, and as an immediate corollary of these results, the desired
weak convergence assumption is shown to hold. Furthermore uniform
large deviation theorems are obtained for the test statistics and these results
guarantee that the sequential tests under consideration have finite expected
sample sizes under the null hypothesis and the local alternatives. As an
illustration of the general method, the two-sample location problem is
studied in detail, and the asymptotic relative efficiencies of the sequential
Wilcoxon test, the sequentia] van der Waerden test and the sequential
normal scores test relative to the two-sample sequential ¢-test are easily ob-
tained since one of our key results (Theorem 1) implies that the asymptotic
relative efficiencies of these sequential tests coincide with the corresponding
Pitman efficiencies of their nonsequential analogues.

1. Introduction. Let T and 7* be two nonsequential tests for the hypothesis
H,: 6 = 0, against the alternative § > ¢,, where ¢ is a real unknown parameter
of a probability distribution P,. The relative efficiency of T* with respect to T
is the ratio n/n*, where n and n* are the number of observations necessary to
give T and T* the same Type II error probability 8 at a fixed alternative ¢ for
a given significance level «. The concept of asymptotic relative efficiency is due
to Pitman [20]. He considers the limit of n/n* for a sequence of alternatives
6, converging to 6, in such a way that the Type II error of each of the two tests
converges to a limit 8 < 1. Pitman has shown that under certain conditions
this limit exists and does not depend on a and 8. His method is explained and
extended by Noether [19] and has been widely used in the study of nonparametric
nonsequential tests.
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In Section 2, we shall extend Pitman’s method to the study of sequential tests.
As the sample sizes are now random, we shall replace n and »* in the definition
of relative efficiency by the corresponding expected sample sizes under H,: 6 = 6,
orunder H,: 6 = 6,. Under certain conditions, we shall show that the limiting
ratio of the expected sample sizes of two given sequential tests under H, is the
same as that under H,, and we shall define the Pitman efficiency of the two
sequential tests by this limiting ratio.

A well-known tool in the study of Pitman efficiencies for nonsequential tests
is the uniformity in the convergence to normality for the normalized test sta-
tistics over a family of distributions P,, § ¢ ®, where © contains ¢, and the
sequence of alternatives ¢,. The counterpart of such tools in the sequential
case is uniformity in the weak convergence to Brownian motion of the nor-
malized processes formed from the test statistics. In Section 3, certain uniform
invariance principles are developed for a large class of test statistics, and as an
immediate corollary of these results, we obtain the desired uniformity in the
weak convergence of the corresponding stochastic processes.

The uniform invariance principles developed in Section 3 are based on certain
representation theorems of the test statistics. As will be shown in Section 4,
these representation theorems also yield uniform large deviation probabilities
for the test statistics. Such large deviation probabilities guarantee that the se-
quential tests under consideration have finite expected sample sizes under H,
and H,. Special cases of these general results and examples of Pitman efficiencies
of sequential tests will be given in Section 5.

The following notations will be used throughout the sequel. Suppose for each
rel (where I = (1,2, ...} or[l, o) is an index set), Y, is a random variable
defined on a probability space (Q,, .5, P,) and Y, converges in distribution to
arandom variable Y as r — co. Then we write Y, —, Y to emphasize that the
distribution of Y, is given by the measure P,. When there is no confusion as
to the measure defining the distribution of Y,, we shall simply write Y, = Y.
If Y,(-) = {Y,(r), t = 0} are stochastic processes instead of random variables,
then we also write Y,(+) = Y(+) (or Y,(+) =5 Y(+)) if

Vh >0, theprocesses {Y,(),0=<t<h} and {Y(1),0=1t=<h}
(1.1) belong to D[0,h] and {Y,(r),0<t¢<h} converges weakly to
{(Y(),0 <t < R}
We shall also let @ denote the distribution function of the (standard normal)
410, 1) distribution and W(.) = {W(t), t = 0} denote the standard Wiener
process.

2. Sequential analogue of Pitman’s method. Let X, X,, --- be i.i.d. with
distribution P, depending on a real unknown parameter §. We want to test
H,: 0 = 6,versusH,: § =0,, where 0, = 0, + r~t, r=r,(>0),isa family of
alternatives. For each sample size n, let T, = T,(X,, - - -, X,) be a statistic based
on the data so far observed. In analogy with the classical assumptions in the
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Pitman theory for the nonsequential case (cf. [4], page 980), suppose that there
exists a positive constant d and real-valued functions ¢,(6) > 0 and ¢,(6) such
that the following five conditions are satisfied:

2.1 lim, ., ($(0,) — ¢,(00))/o,(6)) = d;
(2.2) lim, ... 0,(0,)/o,(6) = 1;
(2.3) lim, . ¢,(00)/(r9.,(60)) = 03

(2.4) defining W, (1) = (T(,yy — t¢,(0)))0,(0), t=0 (T,=0),
we have (with the notations of weak convergence as in (1.1))

as r— oo,
Wr,ﬂo(') :P@O W(') and Wr,ﬁ,.(') EP.QT W(') ;

(2.5) for every ¢ >0, thereexist r, and a positive function g,(r)

€

such that (P g.(f)dt < oo and forall r=r, and =1,

Py W, 0(1) Z et] < 9.(0)
Pﬁ,,[Wr,é’,.(t) = _EI] = QE(I) :

In the classical Pitman theory, a sequence 6, = 6, + kN~* of alternatives is
considered with the index N being the sample size of the nonsequential test
under consideration. For sequential tests, since the sample size is now a random
variable, a natural modification of the Pitman formulation is to first parametrize
the set of close alternatives as ¢, = 6, + r~* and then see how the sample size
distribution varies with r as r — co. Thus we have used above a continuous
parameter r instead of a discrete index N. Obviously the weak convergence
assumption (2.4) implies that

(2.6) (Tw — ¢u(00))]0,(00) =5, ~#7(0,1)  and
(T, — ¢.(0,)]0.(0,) =, A470,1) as n—oo.

The conditions (2.1), (2.2), and (2.6) are the classical assumptions in the Pitman
theory for the nonsequential case. For the corresponding sequential theory,
besides strengthening (2.6) into the weak convergence criterion (2.4), we have
also added conditions (2.3) and (2.5) to control the tail behavior of the sample
size distributions for the sequential tests described below. As in the case of
the classical Pitman theory, many commonly used test statistics, when suitably
shifted and scaled, satisfy conditions (2.1)—(2.5). Some examples will be given
in Section 5.

Let W,(+) denote the Wiener process with drift coefficient 4, i.e., W,(t) =
W(t)+dt,t =2 0. Leta, = §(¢,(0,) + ¢,(0,)) and define (1) = (T(,,; — ta,)[o,(0,),
t = 0. The conditions (2.1), (2.2), and (2.4) imply that

(2'7) Tr(') TPy, W—d/z(') and Tr(') =’P9r Wd/z(') as r—oo.

As is well known, Wald’s sequential probability ratio test (SPRT) in terms of
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W(+) for the null hypothesis 6 = —d/2 against the alternative § = d/2 with
prescribed error rates (a, ), 0 < a, 8 < § (i.e., @ and B are the Type I and Type
IT errors respectively), stops sampling as soon as W,(t) = d~*log ((1 — B)/a) or
Wy(t) < d'log(B/(1 — a)), and this is the optimum test of the simple null versus
the simple alternative. In view of the weak convergence criterion (2.7), if we
want to test H, versus H, sequentially using the sequence of statistics T,, we
would use the following sequential test .7, which stops sampling at stage
(2.8) t, =inf{n: T, = d~%,(6,) log (1 — B)/a) + na,/r or
T, < d',(0,)log(B/(1 — a)) + na,jr},

and .7, accepts H, if T, < d~'¢,(6,) log (8/(1 — @)) + z,a,/r and accepts H, if
otherwise. We shall call the test .77, an asymptotic Wald test of H, versus H,

r

based on the sequence T, for the given pair (a, B).

The condition (2.5) guarantees that the test .7", has finite expected sample
sizes under H, and A, for all large r. To see this, we note that for0 < ¢ < 3d,
if t = t,and r = r,, then

Pyle. > rt] < Py [T,y > d70,(0,) log (B/(1 — ) + a,[r1]]r]
(2.9) = Po[Tir — 1,(00) = 31(9.(0,) — $.(6,)) — a,/r
+ d7a,(0,) log (B/(1 — a))]
= Py[Tiry — 19,(0) = eto,(0,)] < 9.(1)

using (2.1), (2.5) and the fact that a,/r = o(0,(6,)) by (2.1) and (2.3). Likewise
forO0<e< idandr=1t,r=r,

(2'10) Pﬂr[Tr > rt] é Pﬁr[T[rt] - t¢’r(0r) é —8[0',(01_)] é ge(t) :

Noting that a,/r = 0(s,(6,)) and that the event [r~'z, < r] depends on T, for
n only up to rt, it is not hard to see from (2.7) that

(2.11) roie, —p, ?(—df2)  and  rt, =, o(df2),
where for any real number ¢, we define
(2.12) () = inf{t = 0: Wy()) & [d- log (B(1 — @), d~*log (1 — B)/a)]} .
Furthermore the error probabilities of the test .77, are given by
(2.13)  lim,_ P, [.7", rejects H)| = a, lim,_. P, [.7, rejects H,] =f.
By (2.9), r'z, is uniformly integrable under P,. Hence by (2.11),
(2.14) E, t, ~ rEt(—d|2)

= 2rd?{(1 — a)log (1 — a)/B) — alog (1 — f)/a)} .
Likewise by (2.10) and (2.11),
(2.15) E, ©, ~ rEz(d|2)

= 2rd>{(1 — f)log (1 — B)a) — Blog ((1 — a)/B)}.
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The results (2.13), (2.14), and (2.15) therefore yield the following extension of
Pitman’s asymptotic relative efficiency to the sequential case.

THEOREM 1. Let X, X,, - - - bei.i.d. with distribution P, depending on an unknown
real parameter . Let0, = 6,4+ r=t, r = r,(> 0). Suppose T, = T, (X}, -+, X,)
is a sequence of statistics such that there exists a positive constant d and real-valued
Sfunctions ¢,(6) > 0 and ¢,(0) satisfying the conditions (2.1)—(2.5). Let T, * =
T, *(X,, -, X,) be another sequence of statistics satisfying (2.1)—(2.5) with d*,
0,%(0) and ¢, *(0) in place of d, ¢,(0) and ¢,(0). Given 0 < a, B < &, let T,
(respectively 7, *) be the asymptotic Wald test based on the sequence T, (respectively
T, *)of Hy: § = 0,versus H,: § = 0, corresponding to the pair (a, ) of error rates,
i.e., the stopping rule of 7", is t, defined by (2.8) and the stopping rule t,* of 7 *
is similarly defined. Then
(2.16) lim,_, P, [.7", rejects H| = lim,_, P[5 ,* rejects H)] = a,

lim,_, P, [77, rejects H,] =lim, Py [T * rejects H,]=§.

r—00 r

Moreover, for all a, B € (0, 1),
lim, ., (E, 7,/Ep7,*)
(2.17) — lim, .. (B, 7,/E, 7,*) = (d*/d)
= lim, ., {(¢,*(0,) — ¢,%(05))/0.*(0)F[{(¢.(0.) — ¢.(00))]a.(0,)} -
In view of Theorem 1 and in analogy with Pitman’s idea of comparing non-

sequential tests, we define the asymptotic relative efficiency of two asymptotic
Wald tests .77, and .7 * as follows.

DEerINITION 1. With the same notations and assumptions as in Theorem 1,
the asymptotic relative efficiency (A.R.E.), or Pitman efficiency, of 7" * relative
to .7, is defined as

(2.18) ARE. — tim,_ (&:56) = 9.2(0)/o,* O
{(#.(0,) — 6,(00)/o (B}

We note that the right-hand side of (2.18) is exactly the same as the usual ex-
pression defining the Pitman efficiency of the corresponding nonsequential tests
Z.* and .7, based on the statistics 7,,* and T,, i.e., .7, (respectively f/lm*)
rejects H, if T, (respectively T,*) is large. (See [4], page 980.) In view of (2.2)
and (2.4), (¢.(6,) — ¢,(0,))/s.(8,) can be interpreted as the difference in the
asymptotic drift of the process {T,,;, t = 0} (properly scaled by ¢,(¢,)) between
the null hypothesis H, and the alternative H,. Therefore the A.R.E. given by
(2.18) is simply the limiting squared ratio of the scaled change in the asymptotic
drift of {T%,;, t = 0} to that of {T(,,;, t = 0}. Since the scaled asymptotic drifts
are the intrinsic quantities determining the asymptotic behavior of the expected
sample sizes for the sequential (and nonsequential) tests based on the test statistics
under consideration, it is intuitively clear from this point of view why Pitman
efficiencies, both sequential and nonsequential, are related to these asymptotic
drifts.
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While Theorem 1 enables us to compare one asymptotic Wald test with an-
other, it is often desirable to compare an asymptotic Wald test with the SPRT
of H, versus H,. Let

(2.19) Z" = log {p, (X;)/ps,(X)} i=1,2,..,

where p, is the density of X; under P, (with respect to some common dominating
measure). Suppose the SPRT of H, versus H, has error rates («, 8) with 0 < «,
B < . Wald’s approximation of its expected sample size under H, is

(2.20)  m, = (1 = @) log (1 — @)/) — alog (1 — S)a)}/|E,, 2"

and Wald’s approximation of its expected sample size under H, is

221)  m/ ={(1 — p)log((1 — f)/a) — flog((1 — a)/B)}/E,, 2,7 .

In [24] (pages 156-157), Wald has proved that for any sequential test with error
rates (a, 8) such that the test terminates with probability 1 under H, and H,,
m, and m,’ as defined by (2.20) and (2.21) are lower bounds of its expected
sample sizes under H,and H, respectively. Moreover, the expected sample sizes
of the SPRT under H, and H, are asymptotically equal to these lower bounds
under weak regularity conditions. If we divide the expression (2.20) (respectively
(2.21)) by the asymptotic expected sample size (2.14) (respectively (2.15)) of
the asymptotic Wald test .77, the quantities « and 3 disappear in the resulting
quotient. This leads us to define the asymptotic efficiency of .77, as follows.

DEFINITION 2. With the same notations and assumptions as in Theorem 1,
the asymptotic efficiency of .77 is defined as

(2.22) lim,_, min {m,/E, ,, m[E, t.}
= lim, o {(¢,(0,) — ¢(00)/o (00)[{2r max (|E, Z,"|, Ey, Z,")} .

As Example 4 in Section 5 would show, we often have E, Z," ~ |E, Z,"|
as r — oo. If p,(x) = e’*~*® is an exponential family of densities, then letting
Z(0) = log {py(X)/ps,(X)}, it is easy to see that
(2.23) E,Z(0) ~ |E, Z(0)| ~ $(0 — 60)°h"(6,) as 0—4,.

Since 0, = 6, + r~%, (2.23) implies that
(2.24) E, Z\" ~ |E, Z\"| ~ 4r0"(0,)  as r—oco.

In Section 5, for the two-sample location problem, we shall show that the
two-sample sequential z-test is asymptotically efficient (i.e., its asymptotic ef-
ficiency is 1) for the normal model. However, if the normal model is not true,
then the sequential 7-test can have very low A.R.E. relative to certain sequential
rank tests which we shall study in Section 5. On the other hand, for the normal

model, these sequential rank tests will be shown to have rather high A.R.E.
relative to the sequential z-test.

3. Uniform invariance principles for test statistics. Just as the asymptotic
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normality condition (2.6) in the classical Pitman theory is satisfied by many
commonly used statistics, the stronger weak convergence condition (2.4) also
holds for a large class of statistics. There are several approaches to prove such
weak convergence. One approach is to check directly tightness and the conver-
gence of the finite-dimensional distributions to the multivariate normal. This
can sometimes be done by noting certain probability structures exhibited by
W, 4(+) and applying known results in the theory of weak convergence. For
example, in certain cases, for all large r, W, ,(+) after suitable normalization
forms a martingale or reversed martingale under P, and one can then apply the
corresponding weak convergence theorems for martingales and reversed mar-
tingales (cf. [9], [18]). Such martingale structures have been utilized by Hall
[9] to solve this kind of weak convergence problems for certain nonparametric
test statistics.

An alternative approach, due to Hall and Loynes [10], is based on an extension
of Le Cam’s concept of contiguity. Let L, = [[7_; (py (X;)/ps,(X;)) denote the
likelihood ratio at stage n. To prove (2.4), it suffices to show the weak con-
vergence (as r — oo) for every k > 0 of (W, , (+), log L)) in D[0, k] X R under
H,: 6 = 6, to the Wiener-normal process (W(.), Z) such that the mean of the
normal random variable Z is minus one-half of the variance (cf. [10]).

In this section, we shall present another approach to obtain weak convergence
results of the type (2.4). To prove (2.4), it suffices to show that for some » > 0
and for every ¢ > 0 and k > 0, we have (by redefining the random variables on
a new probability space if necessary) as r — oo,

(3.1) Pylmaxg,c, [W, ,(1) — W(1)] > ¢] -0
uniformly for |6 — 6, < 7.

The uniformity condition (3.1) has itself an interesting implication on the behav-
ior of the sample size distribution and of the power function for the asymptotic
Wald test .77, of H,: 6 = 6, versus H,: 6 = 6, + r~* based on a sequence of
statistics 7T, satisfying (2.1)—(2.5). While (2.13) shows that the error rates of
7", converge to the corresponding quantities of Wald’s SPRT .7 with stopping
rule (2.12) for testing H: § = —dJ2 versus K: 6 = d/2 for the Wiener process
W,(+), itis natural to expect that the power of ., at the parameter § = 6, + ér—#
would also converge to the power of "~ at the point § = (¢ — 1)d, with the
convergence being uniform for £ in compact sets. We note that condition (3.1)
implies not only the weak convergence criterion (2.4), but also the uniformity
of such weak convergence, i.e., for all ¢, A, kK > 0,

(3.2) Pyprer-a[MaXog, i W,y ie-3(f) — W(1)] > €] >0 (as r — o0)
uniformly for [§]| < h.

With the above uniformity of weak convergence, we can establish the desired
uniform convergence for the power function of .77, (see Theorem 2 below).
Some applications of Theorem 2 will be given in Section 5.
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THEOREM 2. Let X, X,, - -- be i.i.d. with distribution P, depending on an un-
known real parameter §. Suppose T, = T, (X,, - -+, X,) is a sequence of statistics
such that there exists a positive constant d and real-valued functions ¢,(6) and ¢,(0)
(r = ry > 0) satisfying the following assumptions:

(3.3) &,'(60,) existsforall r=r, and lim,_, ¢,'(0,)/(rte.(0,) = d;
(3.4) lim,_., ¢,(0,)/(re,(6,)) = 0 ;
(3.5) 0.0y + ErH)o,(6,) > 1 uniformly for |§| < a (forall a > 0);
(3.6)  {(Er )7 d,(0 + Er1) — $,(6)) — 4, (B)}/(r0,(6:) — O (as r— o)
uniformly for 0 < |§| < a (forall a>0).
Moreover, letting W, (t) = (T(,, — t¢.(0))/0.(0), t = 0 (T, = 0), assume also that
(3.2) holds for all positive ¢, k, and h. Let a, = L{¢(0,) + ¢,(6, + r~H}. For
0 < a, B < 1, define the stopping time = by (2.8). Let Wy(t) = W(t) + dt, t = 0,
and define the stopping time t(0) by (2.12). Then setting d. = (§ — L1)d, we have
for every compact subset C of the real line, asr — <o,
(B.7)  Ppeeilr, < i3] — Pla(d,) < x]
uniformly for 0 < x < oo and £eC,
(3.8)  Ppoe [T, < d-'0,(6) log (B(1 — a)) + 7,a,/r]
— P[W,(c(d;)) = d~*1og (B/(1 — a))] uniformly for §eC.

REmARKS. (i) The condition (3.5) is a uniform version of (2.2), while the
condition (3.6) is a uniform version of
(3:9)  lim o (¢, (b0 + £r7) = §.(60) — ¢,/(00)}/(ra (0)) = O

for all £.

Clearly (2.2), (3.3), and (3.9) imply (2.1). In fact, Pitman and Noether (cf. [19])
originally assumed these three conditions instead of (2.1).

(ii) The uniformity over compact sets in (3.8) can be easily extended to uni-
formity for & in the whole real line if the power function of the test .77, with

stopping rule r, is nondecreasing. A similar remark holds for the uniformity
in (3.7). ‘
PrOOF oF THEOREM 2. From (3.3) and (3.6), it follows that as r — oo,
a, — (0, + &r7Y)
(3.10) = #{¢.(00 + 174 — (00} — {900 + £r7H) — ¢.(60)}
— do(0)(5 — & + o(1)) .
where the o(1) term is uniform for § e C. Using (3.2), (3.4), (3.5), and (3.10),

it is easy to see that (3.7) holds. From these relations and (3.7), (3.8) follows
easily. []

The method which we use to establish the uniform invariance principle (3.1)
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for a large class of test statistics is based on the representation of 7, in terms
of sums of i.i.d. random variables plus a remainder term. We shall show that
for these statistics the remainder term when suitably normalized converges to
0 in an appropriate sense uniformly over a family of distributions satisfying
certain regularity conditions. This approach not only establishes (3.1) (and
therefore (2.4) as well), but it also has the extra bonus that the representation
arguments used can be modified to obtain the uniform large deviation theorems
of Section 4 which provide useful tools for establishing (2.5) and studying the
ASN function of our tests.

The following theorem gives a uniform invariance principle for sums of i.i.d.
random variables.

THEOREM 3. Let & be a family of distribution functions with mean 0 and unit
variance such that the following uniform square integrability condition holds:

SUPpeo Siaiza X dF(x) >0 as a—oo.
Let X}, X,, - - - bei.i.d. random variables with a common distribution function F ¢ &,
Forr=1andt =0, define { (1) = r~t };I"1 X,. Then for everye > 0andk > 0,
we have (by redefining the random variables on a new probability space if necessary)
asr— oo,

Pp[max,c,<, |W(t) — £.()] = ¢] -0 uniformly for Fe & .

REMARK. The proof is similar to that of Theorem 2 of [16] and makes use
of truncation and the Skorohod embedding scheme. Obviously the uniform
square integrability condition of Theorem 3 is satisfied if

SUPr. o Ep|X|*? < o0 for some > 0.

We now apply Theorem 3 and standard representation theorems to obtain
uniform invariance principles of the type (3.1) for linear rank statistics, sample
quantiles and U-statistics.

THEOREM 4. Suppose X,, X,, - - - arei.i.d. randomvariables with a common continu-
ous distribution function F and are independent of Y\, Y,, - .. which arei.i.d. witha
common continuous distribution function G. Let F,(x) = n™* 31 Iy <,y and G ,(x) =
m= Y1 Ly <) be the empirical distribution functions. Let J: [0, 1] x [0, 1] —» R
be twice continuously differentiable except possibly at the points (0, 0) and (1, 1)
such that for some 6 > 0 and C > 0,

|0*J[ax?| + |0%]/dy?| + |0%//0x dy|
(3.11) < C({max (x, y)}~#? + {max (1 — x, 1 — y)}=i+%),
O<x, y<1.
Let (m,) be a nondecreasing sequence of positive integers such that lim,_, njm, =
2>0,andlet J,: {0,1/n, ---, 1} X {0, 1/m,, ---, 1} — R be a sequence of func-
tions satisfying

(3.12) n 2 SUPye oy y Malifn y) — J(ifn, y)] = o(n7H).
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Define the generalized Chernoff-Savage statistic

(3.13) Py = §20 Ju(Fu(x), G, (x)) dF(x)

and represent it as

(.14) Ty = (2 J(F(x), G(x)) dF(x) + n7* T (hpo(Xe) — Ephp o(X0)
+m, 7 e (hEo(Ys) — Eohi o(Ye) + R,

where . hp o(u) = J(F(u), G(u)) — 3 (9J[ox)(F(t), G(t)) dF(t) and  h} 4(u) =

— 4, (9J/ay)(F(t), G(t)) dF(r). Then for every e > 0, as m — oo,

(3.15) Py o[sup,s. jHR,;| > €] — 0 uniformly for F,Ge &,

where & denotes the class of all continuous distribution functions. Let V, = n(I', —
(2. J(F(x), G(x)) dF(x))/o(F, G), where 6*(F, G) = Vary hy o(X,) + A Vargh} o(Y)).
Let &(a) = {(F,G): F,Ge & and o*(F, G) = a}. Then foranyec > 0,a > 0 and
k > 0, by redefining the random variables on a new probability space if necessary,
we have as r — oo,

(3.16) Py o maXyg,g, [r Vi — W(t) = ¢] -0
uniformly for (F, G)e &(a) .

REMARK. As shown in [14] (pages 834-842), statistics of the type (3.13) in
fact cover a large class of two-sample linear rank statistics. Chernoff and Savage
(cf. page 986 and Corollary 1 of [4]) have shown that P, [n}R,| = ¢]—0
uniformly for F, Ge &. Our conclusion (3.15) strengthens this uniform con-
vergence in probability into uniform almost sure convergence. While Chernoff
and Savage [4] use the uniform convergence in probability to obtain uniform
convergence to normality (which then implies a result of the type (2.6)) for
certain linear rank statistics, our uniform almost sure convergence result (3.15)
leads to the uniform invariance principle (3.16) and therefore gives a result of
the type (2.4) for such linear rank statistics. Braun [2] has raised the problem
of obtaining a weak convergence analogue of the Chernoff-Savage theorem on
uniform convergence to normality for certain linear rank statistics. He points
out (cf. page 54 of [2]) that the methods which he developed in [2] and [3] to prove
weak convergence of linear rank statistics do not seem to be able to produce
the stronger uniformity result. The method we use below to prove the uniform
invariance principle (3.16) is to apply Theorem 3 and to show (3.15) involving
the remainder R,. As shown by Chernoff and Savage ([4], page 977), if &’ > 0
satisfies (2 4+ 0")(0 — %) > —1, then

(3.17) SUPr gee {Epltr (X" + Eglhf,o(Y)[""'} < oo .
Hence Theorem 3 is applicable to the sample sums 37 &, 4(X,) and 37 k% (Y,).

ProoF oF THEOREM 4. To prove the uniform almost sure convergence result
(3.15), we let L = sup {n = 1: nt|R,| > ¢} (sup @ = 0). We shall show that

(3.18) SUPrgew Epgll < oo forall 7<d,
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where 0 is as defined by (3.11). Since
ProlSUP;zm AR > €] = Ppo[L = m] < m7E, g L7,

it is clear that (3.18) implies (3.15).

Toprove (3.18), we note that the estimates in [ 14] where we show the finiteness
of Ey ¢ L7 are all uniform for F, G e & (see the proof of Theorem 2(ii) in [14]
(pages 836-840), and set there ¢ = %). In this connection, it should be pointed
out that Lemma 3 of [14] which links the probability estimates with E, ;L7 can
be strengthened as follows: Let Z,, Z,, - - - be any sequence of random variables
and set 7({, e) = sup{n = 1: |Z,| = en‘} where ¢ > 0 and { is real. Then for
p >0 and a > 0, there exist universal constants 4, depending only on p and
A, , depending only on p and « such that

Eer(C, ) < A, Y7 0Pl Z,| = en];
Et?(a,e) < A, , 2v nP~'P[max;, |Z,| = 4en®];
Ex(C,e) < A4, , 27 nP'P[max g, j*~¢|Z,] = en]
(cf. Lemma 2 of [5]). Hence (3.18) holds.
It is easy to see that for every fixed [, max,_,, |T';| < max {|/,(x, y)|: n =
L ...,.Lx=1/n, ..., 1;y=0,1/m,, ..., 1} < co. Hence (3.15) implies that
for every e > Oand £ > 0, as r — oo,

(3.19) Py [maxy,,, ¥R, | = ¢]—0  uniformly for F,Ge & .

We note that inf; ¢, .., 9(F, G) > 0. Moreover by (3.17), ¢(F, G) is uniformly
bounded for (F, G) e (a). Hence the desired conclusion (3.16) follows easily
from (3.14), (3.19), and Theorem 2. []

THEOREM 5. Let 0 < p < 1 and let % be a family of distribution functions F
on the real line such that the equation F(§&) = p has a unique solution & = &, and
there exists a positive constant b for which

(3.20a) SUPye .- SUPyzp [F(Ep + X)| < o0,

(3.20b) inf,, F'(§;) >0, supg. .- F'(§p) < oo .

Let (k,) be a sequence of positive integers such that 1 < k, < n and

(3.21) k, = np + O(n?) .

Let X,, X,, - - - be i.i.d. with a common distribution function F e % and let Z, be

the k,th order statistic among X, - - -, X,.
(i) Letting F (x) = n=* 37 Iix, <01, We represent Z, as
(3.22) Zy =S +{(p — FLE)/F'ER)} + R, .
Then given any 0 < 6 < 3, there exist ¢, > 0 and n, such that for all n = n,,

(3.23) Pi[|R,| = n=+9] < exp(—c,n*?)  forall Fe ..



1038 TZE LEUNG LAI

(ii) Assume further that the family Z also satisfies the following condition:

(3.24) Fé,—x)—0 and Fép, +x)—> 1
uniformly for Fe & as x— oo.
Let 0, = p(1 — p)/(F'(§7)) and let V,, = n(Z, — &;)|o,. Then for any ¢ >0

and k > 0, we have (by redefining the random variables on a common probability
space if necessary) as r — oo,

(3.25) . Py[max, ., |[r ™V, , — W) =] >0 uniformly for Fe & .

PrOOF. Let [ (F)=[§{; —n #*¥ &, 4 n~4*¥]and set H, =sup,.; o [(Fu(X) —
F(&p) — (F(x) — F(§;))|. From (3.20a) and (3.20b), it follows that
SUPy. - SUP| ,—n 5 F/(X) < co. Making use of this fact and an argument similar
to that of Bahadur ([1], pages 578-579), it can be shown that there exist n, and
¢, such that for all n = n, and Fe &,
(3.26) P,[H, = tn~1] < Lexp(—c;n*?),
(3.27) P Z,¢1,(F)] £ Lexp(—c,n*?).
Let ¢, = F(Z,) — {F(§p) + (Z, — Ep)F'(&p)}). If |Z, — &, < min {b, n~}+¥},
then |e,| < (SUPpe - SUP <y [F(Ep + X)|)n~ 14 = o(n~t*%) since 6 < £, and so
(3.28)  p+ O(nF) = kyfn = Fo(§p) + F(Z,) — F(&p) + 0.H, (10, = 1)

= Fu(§r) + (Zo — €)F'(§p) + 0, H, + ¢,

From (3.26), (3.27), and (3.28), we obtain (3.23).

The condition (3.24) implies that for every fixed /,

(3.29) max, <, SUpp. - Pp[|Z; — &4 = x]— 0 as X — oo .
Since inf,, . F'(§;) > 0, (3.25) follows from (3.22), (3.23), (3.29), and Theorem
2. [0

THEOREM 6. ret h: R™— R be a symmetric kernel, i.e., h(x;, ---, x,) =
h(X, 0y *** 5 Xymy) for all permutations v of {1, ..., m}. Suppose X,, X,, --- are
i.i.d. with a common distribution function F ¢ <& such that
(3.30) SUPg. o, Eph*(Xy, + oy X,p) < 00 .

Let U, = () 2 h(Xil, cee, Xim) where Y’ stands for summation over all choices
of {i, -+, i} such that 1 < i, < nandi; +i,if j + k. Define

(3.31) O(F) = Ezh(X,, -+, X,), hp(x) = Eph(x, X,y -+, X)) — O(F)
U, = §(F) + (mjn) Tishp(Xs), R, =U, —U,.

Then for every ¢ > 0,

(3.32)  Sups., Pelsup,., jIR|f(l0g)) = 6] 50 as n—oco.

Consequently for every ¢ > 0,

(3.33) SUPp. ., Prmax, ., ., jIR;| = ¢logn] — 0 as n—oo.
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REeEMARK. The result (3.32) gives the uniform almost sure convergence to 0
of nR,/(log n). When & is a singleton (i.e., in the case of a single fixed distribu-
tion F), this result was obtained by Sen [21]. The result (3.33), which follows
easily from (3.32), leads to a uniform invariance principle for U-statistics which
we shall present in Theorem 8. To prove (3.32), we make use of the Chow-
Hajek-Rényi inequality as in ([21], page 391) to obtain that for n > 3

(3.34)  Prlsup;., jIR;|/(log )) = ¢] = ¢7* X5, (j/log N(Ex R;* — EpRj.) -

Since R, is a U-statistic with mean 0 corresponding to the kernel A,* = 4 —
hy — ¢(F) (cf. [7]), we can apply Hoeffding’s formula (cf. (5.13) of [12]) to
evaluate E, R’ and thereby obtain that E,R?*— E R ,6 < C(F)j=°, where

i =
supy. . C(F) < oo in view of (3.30). (See also (3.11) of [21].) Hence (3.32)
follows from (3.34).

4. Uniform large deviation theorems for normalized test statistics. In this
section, we shall obtain certain uniform large deviation probabilities of the fol-
lowing type: For some 5 > 0 and all ¢ > 0,

(4.1) P,[|W, ()] = et] < g.(7) forall |0 —6)| <n, =1
and all large r (say r=>r,),

where W, ,(t) is the normalized statistic defined in (2.4) and g, is a positive
function such that {{ g (f) dt < co. Obviously (4.1) implies not only (2.5), but
also the following stronger result:

Forevery ¢ >0 and />0, thereexist r , >0 and

(4.2) a positive function ¢, such that {pg(f)dt < oo and
P00+6r_%[|Wr.00+€r'5(t)l g ét] é ge(t) for all ¢ Z 1 ’ i§| é h
and r>r,,.

This kind of uniform large deviation probabilities leads to the following analogue

of Theorem 2 concerning the uniform convergence of the normalized ASN func-
tion for asymptotic Wald tests.

THEOREM 7. With the same notations and assumptions as in Theorem 2, assume
further that (4.2) holds. Then setting d, = (§ — %)d as in Theorem 2, we have for
every compact subset C of R — {1}, as r — oo,

(4.3) Ey i er-i1(7,[r) — E(d,) uniformly for &e C.

ProoF. Takee >0,a > 1 + 3cand b < 4 — 3e. Thenfor b <& <1 — 3¢
we obtain using (3.4), (3.5), (3.10), (4.2) and an argument similar to that used
in (2.9) that for all large t and r (say t = t,, r = 1),

(4'4) P00+€1‘_5[Tr > rt] é P00+6r_%[T[rt] - tgbr(eo + Sr_%) g %t(% - é)dar(ao)]
< Ppiertl W, pgreri(t) = det] = ga?) -
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Likewise if £ 4+ 3¢ < & < a, then for all large ¢ and r,
(45) P00+€r_%[7r > rt] é P00+$r"}[Wr,00+€r_5(t) é —d&f] é gde(t) *
From (3.7), (4.4), and (4.5), the desired conclusion follows easily. []

We now establish uniform large deviation probabilities of the type (4.1) for
U-statistics, sample quantiles and Chernoff-Savage statistics. The following
lemma, which is a consequence of a theorem of von Bahr ([23], page 811),
establishes the corresponding results for sample sums.

LeMMA 1. Let ¢ > 2. Let X, X,, X,, --- be i.i.d. random variables with a
common distribution function Fe 7, where =4 is a family of distribution functions
such that

(4.6) E,X=0  forall Fe .7 and supg, . E; |X|'< oo.
Then there exists a positive constant B such that
E >, X,J* < Bnv*  forall nz=1 and Fe ..

THEOREM 8 (U-statistics). With the same notations as in Theorem 6, let .,
be a family of distribution functions such that

(4.7)  supp. ., Eglh(Xyy -+, X)) < 0o and inf,, . Varghy(X,) >0,

where § > 0. Let¢,* = m*Var,h,(X,) and define V, = n(U, — ¢(F))jo, forn = m
and V, = 0 if n < m. Then given any ¢ > 0 and k > 0, we have (by redefining the
random variables on a new probability space if necessary) as r — co,

(4.8) Pp[max,c,, [r7 V. — W()| = ] — 0 uniformly for Fe 7.
Furthermore there exists a positive constant C such that
(4.9)  Pr iV, =< Crmeto2 forall t=1, r=zm and Fe.7;.

ProoF. In view of (4.7), the uniform invariance principle (4.8) follows easily
from Theorems 3 and 6. We now prove (4.9). Let 2/ be the largest positive
even integer such that 2 4+ 0 > 2/. Then sup,, -, Eq|A(X,, - -, X,)|* < oo.
Making use of this and the fact that R, is a U-statistic with kernel h,* = h —
hy — ¢(F), it can be proved by an argument due to Grams and Serfling (cf.
Theorem 1 of [7]) that there exists a positive constant 4 such that £, R * < An~*
for all n = m and Fe .5,. Therefore by the Chebyshev inequality, for > 1
and r = m,

(4.10) Pe[rH|[rt] Rl for Z 3] = (4o )" A1

By (4.7), Lemma 1 is applicable with 4 =2 + . From Lemma 1 and the
Chebyshev inequality, there exists a positive constant B such that

(4.11) Pplmr 4 T he(Xi)l[or = 31] = (2mfog)*H*Bt=207

forall t =1, r = m, and Fe .%*,. Since 2l > (2 4 0)/2 and inf,, . 0, > 0,
(4.9) follows from (4.10) and (4.11). []
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THEOREM 9 (Sample quantiles). Let 0 < p < 1. With the same notations as
in Theorem 5, let .~* be a family of distribution functions F on the real line such
that the equation F(§) = p has a unique solution § = &, and there exists a positive
constant b for which

(4.12) inf,, .inf, _, F'(§, + x) >0 and SUpyp. . F'(§p) < o0 .
Then given ¢ > 0, there exist n > 0 and ry = 1 such that

(4.13) . Pr iV, =et] e forall t=1, r=ry and Fe 5%,

rtl

Proor. Let B(n, p) denote the binomial random variable with mean np (n =
number of trials). We note that for r,r = 1,

PplZ,y < §p — Feopr™] = P[B([r1], @,) = k(]

wheren, = F(§p — je0,r™%) = p — feopr-ig(r, F)andinf,,, inf, _.g(r,F) >0
in view of (4.12). A similar result holds for P;[Z,,, = &, + ico,r*]. Noting
that inf,, ..o, > 0 by (4.12), the desired conclusion then follows by an easy
application of Bernstein’s inequality (cf. [22], pages 204-205). []

THEOREM 10 (Generalized Chernoff-Savage statistics). With the same notations
and assumptions as in Theorem 4, for every a > 0 and ¢ > 0, there exist { > 0 and
ry = 1 such that

(4.14) Poolr= Vil = et] < e
forall t=1, rz=r, and (F,G)e &(a).

While our estimates in [14] of the remainder term R, in the representation
(3.14) of generalized Chernoff-Savage statistics have readily given us the uniform
invariance principle in Theorem 4, they are not sharp enough to prove Theorem
10. Making use of these estimates and Lemma 1, we are only able to obtain a
uniform algebraic rate of convergence of the form

Poglr Vil = 1] < 7@ forall r>1, r=zr, and (F,G)e €(a),

where 6(9) is a positive constant depending on the ¢ given by (3.11). To prove
Theorem 10, we need a different representation of Chernoff-Savage statistics to-
gether with some new estimates on the tail of the empirical distribution function.
The details of the proof are given in [17], where it is also shown that these new
estimates also provide another proof of the uniform invariance principle (3.16) for
generalized Chernoff-Savage statistics under weaker conditions than Theorem 4.

5. Applications and examples. In this section, we shall illustrate how the
general ideas of Section 2 and the general theorems of Sections 3 and 4 can be
applied to specific testing problems. While the same kind of argument would
work for most other problems, here we shall only consider the two-sample loca-
tion problem to indicate the argument used. Our basic tools in the subsequent
analysis are therefore Theorems 4 and 10 on generalized Chernoff-Savage sta-
tistics. Obviously by applying our corresponding results for U-statistics and
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sample quantiles, we can similarly construct and analyze asymptotic Wald tests
based on these statistics.

Suppose X, X,, - - - arei.i.d. with a common continuous distribution function
F and are independent of Y, Y,, - .. which are i.i.d. with a common continuous
distribution function G. We wish to test sequentially H: G = F versus K: G(x) =
F(x + 0) for all x and some positive §. Some commonly used nonsequential
tests of H versus K include the r-test, the Wilcoxon test, the normal scores test
and the van der Waerden test. We shall now describe their sequential analogues
in the following examples and show that the test statistics used in these sequential
tests satisfy the conditions of Section 2. For simplicity, we shall assume the
vector-at-a-time sampling scheme, i.e., at each stage prior to stopping, a pair
of observations (X;, Y,) is taken. We shall let R, ..., R ™ denote the ordered
ranks of the X's in the combined sample of 2n observations X, - -, X,, Y;, - .., Y,.
Also let

F(x)=n" 21 [[Xisx] ’ G,(x) =n"t 10t IEYigx]

denote the empirical distribution functions.
EXAMPLE 1 (Sequential Wilcoxon test). Consider the Wilcoxon statistic
T, =17 Dy R = 1 {2, J(F(x), G,(x)) dF,(x) ,
where J(x, y) = x + y. Obviously J satisfies (3.11) with § = 5. Hence the as-

2
sumptions of Theorems 4 and 10 are satisfied. To test H versus K, take positive

numbers b, 4, and ¢ and stop sampling at stage

(5.1) t=inf{n=1:T,>cn+b or T, < cn—b'}.

We reject Hiff T, = ¢t 4 b.

By Theorem 4, we can write

(3:2) T, = nf} + {22 G(x) dF(x)} + 27 {G(X,) — (= G(x) dF(x)}
— LH{F(Y)) — (Z. F(x) dG(x)} + nR,,

where R, satisfies (3.15). Since G(x) = F(x + ), we set

(5.3) #r(0) = § + (Z. G(x) dF(x) = § + (=, F(x 4 0) dF(x) ,

(5.9 vp(0) = Var, G(X;) + Var, F(Y)).

The continuity of F implies that p,(6) and v,(6) are continuous functions of
and v,(0) > 0 for all /. We note that for all F,

(5.5) mO) =1, 0 0) =},

Let 6, = 0 and define for » > 0

(5.6a) ,(0) = rus(6), 0,(0) = {rvg(0)}};

(5.6b) Wolt) = (T — 16,00 ,(0). 0.

Writing the probability measure P, ; as P, for fixed F, we obtain from Theorem



PITMAN EFFICIENCIES 1043

4 that (3.1) holds for all , ¢, kK > 0. Moreover, Theorem 10 implies that given
¢, 7 >0, (4.1) holds with g,(r) = e~**. Obviously condition (3.4) is satisfied,
and by the continuity of v,, condition (3.5) also holds.

Assume that F satisfies the following condition:

5.7 pr'(0) = lim,_, 6= (=, (F(x 4+ 0) — F(x)) dF(x) exists and is positive.

—o0

Then (3.3) and (3.6) obviously also hold with
(5-8)  d(=lim,_.4./(0)/{r's,(0)} = lim,_..{§,(r~}) — ¢,(0)}/0,(0)) = 6tx,'(0) .

Hence conditions (2.1)—(2.5) are satisfied and by our results in Section 2, given
any continuous distribution function F satisfying (5.7) and 0 < @, B < 4, the
sequential Wilcoxon test with stopping rule (5.1) is an asymptotic Wald test with
asymptotic error rates (@, 8) of H,: 6 = 0 versus H,: 6 = r~+ if in (5.1) we set
T = ¢, and

= b, = (6¢/(0))"'rt log (1 — B)/ar),
(5.9) b =5, = (6p5'(0))7rt log (1 — a)/B)
¢ =¢, = Hur(r™?) + 1(0)) = 1 4 §r-2"(0) + o(1) .

Since we have shown that the conditions of Theorems 2 and 7 are satisfied, the
uniform convergence properties (3.7), (3.8), and (4.3) for the normalized ASN
and power functions of the sequential Wilcoxon test hold.

While (4.3) gives the uniform convergence of E,,—y(z./r) for & in compact
subsets of R — {1}, it turns out that for the sequential Wilcoxon test, we also
have uniform convergence of E,,—4(r,/r) for £ in compact neighborhoods of 3.
To see this, take 0 < p < 1 and define

(5.10) L,=sup{n=1:|nR,| = n} (sup @ =0),

where R, is as defined in (5.2). Then using the uniform estimates in [14, page
836] (which are applicable since J(x, y) = x 4 y is a C* function on the whole
of the unit square [0, 1] x [0, 1]), it can be shown that given any r > 0,
SUPr e EL,” < co. Therefore by a simple modification of the argument used
in the proof of Theorem 1 of [15], we obtain the desired uniform convergence
of E,,—y(z,/r) for & in compact subsets of R.

Some of the above asymptotic results for the sequential Wilcoxon test have
been obtained recently by other methods by Holm [13].

EXAMPLE 2 (Sequential van der Waerden test). Define the functions J and J,
(n=1,2,..)on[0,1] x [0, 1] by

J(1,1) = J0,0)=J,(0,0) =0, Ju(1, 1) = @'(2n/(2n + 1)),
J(x,y) = @7 (FH(x + ) s Ju(x,9) = @7 (n(x + y)/(2n + 1))
for (x, »)e{(0,0), (1, 1)}. Let
T, = Dt @R @0 + 1) = 1 {2 J(Fy(x), G,(x)) dF,(x)
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denote the van der Waerden statistic. Clearly J satisfies (3.11) with § = £, and
by Lemma 5(ii) of [14], J, satisfies (3.12). Hence the assumptions of Theorems
4 and 10 are again satisfied. With the sequence {7,} of van der Waerden sta-
tistics, define the stopping rule r by (5.1). The sequential van der Waerden
statistic stops sampling at stage = and rejects Hiff T, = ¢t + b.

By Theorem 4, we have the representation (3.14) for I', = T,/n with the
functions %, , and A} ; as in Theorem 4. Since G(x) = F(x 4 6), we set

(.10) - pel8) = V7. J(F(x), G(x) dF(x)
= SF(a:)+F(x+0)<2 (I)_l(%(F(x) + F(x + 0))) dF(x) ’
(5.12) vp(0) = Varg h, o(X,) + Varg b} o(Y7) .

With this choice of x, and v, define ¢, and ¢, as in (5.6a). We note that
Let 6, = 0 and assume that F satisfies the following condition:

(5:14)  pr'(0) = imy_s 07" §piaspainr<a PTHEFEF(x) 4+ Flx + 0))) dF(x)
exists and is positive.

Then assumptions (2.1)—(2.5), and in fact also the stronger assumptions in
Theorems 2 and 7, are again satisfied with

(5.15) d(= lim,_, ¢,/(0)/{rte (0)} = lim,_ {¢,(r~t) — ¢,.(0)}/5,(0))

= 2i4,(0).
Hence given any continuous distribution function F satisfying (5.14) and 0 < «,
B < %, the sequential van der Waerden test with stopping rule (5.1) is an asymp-

totic Wald test with asymptotic error rates (a, 8) of H,: 6§ = O versus H,: § = r—#
if in (5.1) we set

(5.16) b= (2¢/(0))7'r* log (1 — B)/a) ,
b = (2py(0))rtlog (1 — a)/B), ¢ = dpe(rh) ~ 3r73p:/(0) .

EXAMPLE 3 (Sequential normal scores test). Let J be defined as in Example 2.
Forj=1, ..., 2n, let u,(j) = EO-Y(U,,), where U,, is the jth order statistic in
a sample of size 2n from the uniform distribution on [0, 1]. Define for r, se
{0, n7%, 2071, ..., 1},

J(ry 8) = u,(n(r + 5)) if (r,s5) # (0,0), J.(0,0)=0.

By Lemma 5(iii) of [14], condition (3.12) still holds for the present choice of
J, and J. The sequential normal scores test is similar to the sequential van der
Waerden test, the only change being the replacement of the van der Waerden
statistic by the normal scores statistic Y;7_, #,(R,"). Since Theorems 4 and 10
are again applicable, the results of Example 2 also hold for the sequential normal
scores test.
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EXAMPLE 4 (Two-sample sequential t-test). Let k, be a sequence of positive
constants such that k, ~ 2n. Let 7, = T, = 0 and for n = 2 define
(5.17) X,=ntyrX,, Y,=n'31Y,,
st =k HET X - X+ B (Y= T, Ta=nX, = 1,)s,.
With T, thus defined, define the stopping rule z as in (5.1). The two-sample

sequential r-test stops sampling at stage ¢ and rejects Hiff T, = ¢t + b.
Assume that F satisfies the following condition:

(5.18) (=, Xt dF(x) < oo .

Let 6, = 0, ¢*(F) = Var, X, (> 0 since F is continuous) and define for r > 0,
(5.19) 6.(0) = r0jo(F)y,  a,(8) = (2r)}.

Clearly ¢, and ¢, thus defined satisfies (3.3)—(3.6) with

(5.20) d(= lim,_.. {¢,(r™}) — ¢,(0)}/0,(0)) = (2¢°(F))~*.

Since G(x) = F(x + @), we can write Y, = X;* — 6, where X;* has distribution

K

function F. We note that for n = 2 and rt = 2,
(5:21) 5=k, DI (X, — X))+ T2 (X* — X,*)} > o¥(F) as., and
(5:22) W, o()(= {Tiry — 19.(0)}/0.(9))

= —rt0)(2'a(F)) + (2rst,) ML (Xo — Xi¥) + [re]6} .
From (5.21) and (5.22), it follows that for all ¢, 4, k > 0, we have (by redefining
the random variables on a new probability space if necessary) as r — oo,
(5.23) Plmax, , . | W, ..-1(t) — W(t)] > ] -0 uniformly for |§| < A.

Hence (3.2) holds.
Using (5.18) and Theorem 5 of [5], we obtain that for all 6 > 0,

(5.24)  (0fi(ndt < oo where [i(f) = P[sup,s, |s,* — o*(F)| > 4].

In view of (5.22), given ¢, 2 > 0, we can choose é > 0 sufficiently small and
B, r, sufficiently large such that for all » > r,, t = 2 and |§| < 4,

(5.25)  PW, s(0)] Z 1] < [,(0) + PIIZT (X0 — Xi*)| Z etrio(F)]
< fi(r) + Br 2.

The last inequality above follows from the finiteness of EX* (see Lemma 1).
Hence (4.2) holds.

We have therefore shown that conditions (2.1)—(2.5), and in fact also the
stronger assumptions of Theorems 2 and 7, are again satisfied. An alternative
proof of the weak convergence criterion (2.4) for the two-sample t-statistic 7,
has been given earlier by Hall [8] using the Hall-Loynes sequential extension
of the contiguity concept.

By our results in Section 2, given any continuous distribution function F
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satisfying (5.18) and 0 < a, 8 < 3, the two-sample sequential ¢-test is an asymp-
totic Wald test with asymptotic error rates (a, 8) of H,: ¢ = Oversus H,: § = r—#
if in (5.1) we set = = 7, and

(5:26) b= b, =2r0(F) log (1 — H)f).
' =5, = 2rte(F)log ((1 — a)/B), ¢ =c, = (20(F))~rt.

Letting 6, = r~¥r > 0), we now show that the above two-sample sequential
t-test is an asymptotically efficient test of H,: ¢ = 0 versus H,: § = 0, for the
case where the underlying distributions are normal. Let F be the distribution
function of the .#7(x, ¢%) distribution and so G is the distribution function of
the .7 (¢ — 6, ¢%) distribution. We assume that ¢? is known but x and ¢ are
bothunknown. Let W, = X, — Y,,n= 1,2, ..., s0 that W, has the .47(0, 20°)
distribution. Let py(w) = (4mo?)~t exp(—w?/40?) and p,(w) = py(w — ). Then
(w,, -+, W,) is Fraser-sufficient for ¢ for every sample size n and the optimum
test of Hy: @ = 0 versus H,: § = 6, in this normal model is Wald’s SPRT in-
volving the log likelihood ratio

Z," = log {py (Wo)[p(W:i)} = (2r=W, — r7%)/(40%)
(cf. [6], pages 246-248 and 252-253). It is easy to see that
(5.27) E, Z\" = r'4eo* = —E,Z\" .

Putting (5.20) and (5.27) in (2.22), we obtain that the asymptotic efficiency of
the two-sample sequential r-test is equal to 1.

In the preceding examples, we have shown that for the sequence of Wilcoxon
statistics, or van der Waerden statistics, or normal scores statistics, or two-sample
t-statistics, conditions (2.1)—(2.5) are all satisfied. Let us now compare the
sequential rank tests in Examples 1, 2, 3 with the two-sample sequential #-test
which we have seen is asymptotically efficient for the normal model. Let ¢
denote the asymptotic relative efficiency of the sequential rank test under con-
sideration with respect to the two-sample sequential 7-test. Our results in Section
2 say that ¢ is given by (2.18) and is therefore equal to the Pitman efficiency
for the corresponding fixed sample size tests based on these statistics. Hence
in the particular case of the sequential Wilcoxon test, ¢ is 3/x (= .95) when F
(and therefore G also) is a normal distribution. When F is not necessarily
normal but is continuous and satisfies (5.7) and (5.18), ¢ is always = .864 (cf.
[11]). In particular, if F has a density f, then (5.8) and (5.20) imply that ¢ =
126*(F){{=. f*(x) dx}* which can be made as large as we please by choosing o(F)
large while (=, f*(x) dx remains bounded (cf. [11]). The situation is even more
favorable for the sequential van der Waerden test. Here ¢ is 1 when F is normal
and is always > 1 when F has a density f and satisfies (5.14) and (5.18) (cf.
[4]). In fact, (5.15) and (5.20) imply that ¢ = o*(F){{=., J,/(F(x))f*(x) dx}*, where
J, = @77, and so we can again choose F to make ¢ as large as we please. The
same results obviously also hold for the sequential normal scores test which is
asymptotically equivalent to the sequential van der Waerden test.
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