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A MONOTONE UNIMODAL DISTRIBUTION
WHICH IS NOT CENTRAL
CONVEX UNIMODAL

By DANIEL R. WELLS
Texas A & M University

For symmetric univariate distributions the usual definition of unimo-
dality due to Khintchine has several equivalent formulations. When these
concepts are generalized to higher dimensions in an attempt to define multi-
variate unimodality questions concerning their equivalence naturally arise.
Of particular interest in this area is the relationship between two concepts
first studied by Sherman and more recently by Dharmadhikari and Jogdeo.
They asked if requiring that a distribution belong to the closed convex hull
of all uniform distributions on symmetric convex bodies was the same as
requiring that the probability it assigns to a symmetric convex set decrease
as the set is translated away from the origin in a fixed direction. Sherman
conjectured that the two concepts were the same while Dharmadhikari and
Jogdeo felt that this was not so and they suggested a possible counterexam-
ple to Sherman’s conjecture. In this paper it is shown that their example
is indeed a counterexample.

1. Notation and terminology. A subset 4 of R* will be called symmetric if
xe A implies (—x) e 4. If A R denote by 4 the symmetric set 4 U (— 4),
let C1(A) denote its closure in the usual topology; V(A) will mean the Lebesgue
measure of 4 when defined. If 4, B C R" then by 4\B we mean A intersect
the complement of B. If x,, - .-, x, € R™ then [x,, - - -, x;] is the closed convex
hull generated in R* by these points. A collection of probability distributions
on R will be called convex if it is closed under finite mixtures and will be called
closed if it is closed in the topology of weak convergence.

2. Central convex unimodality and monotone unimodality. The following
definitions are based on the results of Sherman (1955) and were formulated by
Dharmadhikari and Jogdeo (1976).

DEFINITION 2.1. A distribution P on R" is called central convex unimodal if
it belongs to the closed convex hull of all uniform distributions on symmetric
convex bodies in R”.

DEFINITION 2.2. A distribution P on R" is called monotone unimodal if for
every symmetric convex subset K of R and every x € R” the quantity P(K 4 tx)
is nonincreasing in ¢ > 0.
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Sherman (1955) conjectured the equivalence of these definitions after having
proved

THEOREM 2.1. Every central convex unimodal distribution is monotone unimodal.

Dharmadhikari and Jogdeo (1976) suggest a possible counterexample to the
converse of Theorem 2.1. In the following section this example is given along
with a proof that their example is indeed a counterexample.

3. A monotone unimodal distribution which is not central convex. Let +x,,
i =1,2,3, be points in the plane which are the vertices of a regular hexagon
centered at the origin. Let A4 be the triangle [x,, x,, —X,] as in Figure 1 and let
A = A U (—A). Thestar 4 consists of 6 smaller triangles surrounding an inner
hexagon. Let P be the distribution supported by 4 which has density a on each
of the outer triangles and density 2a on the inner hexagon.

It is not difficult to show that P is not central convex unimodal; in the re-
mainder of this section a proof that P is in fact monotone unimodal will be
developed gradually.

Let the points +x;, +z,, i = 1, 2, 3, the outer triangles +7,, i = 1, 2, 3, the
inner hexagon H and the infinite regions D and +C,, i = 1, 2, 3, be as indicated
in Figure 1. All of the above regions will be taken to be closed. Let x € R* and
let K be a symmetric convex region of the plane which is open but which has
compact closure. By symmetry and a limit argument, it suffices to show that the
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quantity P(K + tx) is nonincreasing in nonnegative t when the ray {rx: r = 0}
passes through the interior of the line segment [x,, z,].

For notational convenience let K(f) = K + tx and for each S ¢ R? let S =
S U (—S). Assume also that « = 1 so that

(B.1)  P(K + tx) = P(K(1)) = 2V(H 0 K(f)) + X3, V(T, 0 K(2)) .

Since P(K(t)) depends continuously on ¢ it suffices to show that for every s > 0
there exists s’ > s such that P(K(f)) < P(K(s)) if s < t < s’. Throughout the
rest of this section the following lemma will be used to show that for each s = 0
such an s’ can be found.

LeMMA 3.1. Let s = 0 be given. If there exists s' > s and i = 1,2 or 3 such
that whenever s < t < s’ either

(3:2) V(G 0 K1) 2 V(C, n K(5)
or
(3:3) V(T, 0 K(1) < V(T, 0 K(s))

then P(K(t)) < P(K(s)) for s <t < s'.

Proor. For definitenesstakei=1. Lets <t < s’andletS,=C,UuHU T, u T,,
S,=T,U Hand S; = T, U H. Each of these regions is symmetric convex and
so by Theorem 2.1

(3.4 V(S, N K(t)) + V(S, n K(2)) < V(S, N K(s)) + V(S, N K(s))
and
(3.5) V(S, 0 K(1)) + V(S, N K(t)) < V(S, N K(5)) + V(S; N K(5)) .

Comparing (3.4) with (3.1) we see that (3.4) is the same as V(C, n K(t)) +
P(K(1)) < V(C, N K(5)) + P(K(s)). Thus if (3.2) holds so does the inequality
P(K(t)) < P(K(s)). Inequality (3.5) is the same as P(K(t)) — V(T, n K(1)) <
P(K(s)) — V(T, n K(s)), so (3.3) will also imply P(K(t)) < P(K(s)) and the lemma
is proved.

At this point we pause to give a brief sketch of the arguments to be used in
the remainder of the section.

Let s > 0 be given. Various cases will be considered which arise according to
whether or not the intersection of K(s) with various regions labelled in Figure 1
is void. The particular cases to be considered are those in which either
C,NK(s)= @, Dn ClK(s)] + @ or (£C,) N K(s) = @, i = 1or2. Ineach
case Lemma 3.1 will be applied to show for some s > s the inequality P(K(t)) <
P(K(s)) holds for s < t < s’. Given that none of these cases occurs, it will be
shown that there exists s’ > s such that V(T, n K(t)) < V(T, n K(s))if s < 1 < 5.
An application of Lemma 3.1 will then complete the proof that P is monotone
unimodal.

Throughout the rest of this section s will be a nonnegative real number.
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Suppose that C; N K(s) = @. Then for every ¢ > s inequality (3.2) will hold
for i = 3. Applying Lemma 3.1 we have

TueoreM 3.1. If C, n K(s) = @, then P(K(t)) < P(K(s)) for everyt > s.

To deal with the next case requires two additional lemmas.

Lemma 3.2. If C, N K(s) #+ @, then fort > s (—T,) n K(t) < K(s).

Proor. Lett > sand let x,e (—T,) N K(f). Let ze C, n K(s) and let z’ =
—z + 2sx. By symmetry z’ € K(s) and by convexity [z, z’] C K(s). On con-
sidering how z and z’ must be situated relative to — 7, from Figure 1 it is clear
that for some r > 0 we have x, + rxe [z, 2] C K(s). Since x,¢e K(f) we also
have x, — (t — s)x € K(s), so x, € K(s) since x, € [x, — (t — 5)x, x, + rx] C K(s).

LemMa 3.3, Suppose C, 0 K(s) + @ and that D 0 K(s) # @. Then T, 0 K(f) C
K(s)if t > s. )

ProoF. Lett > sandletx,e T, N K(r). Letze C, n K(s)andlet y e D N K(s).
Again we have 7z’ € K(s) where z/ = —z 4 2sx. The possible positions of the
points y, z and z’ relative to T, are all such that x, + rx e[y, z, z’] for some
r 2 0. By convexity [y, z, 2] C K(s) and since x, — (t — 5)x € K(s) it follows
that x, e K(s) which establishes the lemma.

Combining all of the previous results we obtain

THEOREM 3.2. If D n Cl[K(s)] # @, then P(K(t)) < P(K(s)) if t > s.

Proor. Using continuity we can replace the hypothesis D n C1[K(s)] # @
by D n K(s) # @. Lett > s. By Theorem 3.1 we may assume C, N K(s) = Q.
Together Lemmas 3.2 and 3.3 then imply that 7, n K(f) C K(s) and hence that
T, n K(t) c T, 0 K(s). The latter implies V(T, n K(r)) < V(T, n K(s)) and by
applying Lemma 3.1 the proof is completed.

In view of Theorems 3.1 and 3.2, to show that there exists s’ > s such that
P(K(t)) < P(K(s)) if s < t < s’ one may assume

(3.6) C,NKES)+ @
and
(3.7 D n CIK(s)] = @ .
Next we show that one may also assume
(3.8) (—C)NKGS)+ @, i=1,2
and
(3.9) C,NK@©S)+ @, i=1,2.

Observe that fort > sand i = 1, 2 (C;, N K(5)) + (¢t — s)x < (C, U D) n K(¢t).
Since by (3.7) D n C1[K(s)] = @, there exists s* > s such that s < r < s’ im-
plies D N K(f) = @. Forsuchrandi = 1,2 we have (C; n K(s)) 4 ( — s)x C
C, N K(t), whence V(C; n K(s)) < V(C, n K(¢)). This implies that if for i = 1
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or2 (—C;) N K(s) = @, then for s < t < s’ we will have
V(C; n K(s)) = V(C, n K(s)) < V(C; N K(?)) = V(C, n K(1))

which together with Lemma 3.1 implies that P(K(r)) < P(K(s)). This justifies .
assumptions (3.8). Assume then that for i = 1 or 2 x,€ (—C;) N K(s). Then
—x,e C;and —x, + 2sx e K(s). This last point will lie in C; U D but cannot
lie in D by (3.7). Therefore —x, + 2sx e C; N K(s) and (3.9) is justified.

Next it will be shown that with (3.6)—(3.9) assumed there exists s’ > s such
that V(T, n K(t)) < V(T, n K(s)) for s < t < s’ This will be done by construct-
ing a symmetric convex set R U T'with V(R n T) = Oand T C T,. Theorem 2.1
will then be used to show that for each 7 in some open interval (s, s') the ine-
quality V(T n K(f)) < V(T n K(s)) holds. That fors <t < s’ V[(T\T) n K(1)] <
VI(T\T) n K(s)] will also be established, hence V(T n K(t)) < V(T, n K(s)) for
such ¢. Since the construction of the region R U T differs only slightly in the
two cases C, N K(s) = @ and (—C;) N K(s) + @, in place of (3.6) and in addi-
tion to (3.7)—(3.9) it will be assumed that

(3.10) CNK@s)+ @ .

As a first step in constructing the region R U T we prove that (3.7)—(3.10)
imply
(3.11) 2,, 2,, —z; € K(5) .

Indeed, by (3.8)—(3.10) we may choose points y,, ---, y;€ K(5) lying, re-
spectively, in the regions C,, C,, C;, —C, and —C,. Obviously the pentagon
[J1s - -+ ys] Will contain both z, and —z, as well as the point z;. Thus, —z,, 7,
z,€ K(s). To see that z, € K(s), let z,’ = z, + 2sx and z/ = —2z; + 2sx. By sym-
metry z//, z’ € K(s) and so Q C K(s) where Q is the parallelogram [—z,, z,, z,/, z/].
Because of (3.7) z,’ cannot lie in the region D and so the side [z//, z;] of Q will
intersect [x,, z,]. Since [x,, ], [—2,, z;] and [z/, z,] are all parallel and of equal
length, it must be that z, € Q. Thus (3.11) is established.

Next we note that since —z, ¢ K(s) by (3.11) and since (—C,) N K(s) = @ by
(3.8), there is a point —y € K(s) lying on the segment [—x,, —z,]. Hence y +
2sx € K(s) and y € [x,, z,]. By (3.11), z,, z, € K(s) so that [z,, z,, y + 2sx] is con-
tained in K(s). Since y lies in the interior of this triangle, y € K(s). This shows
that there is a y such that

¥, —y e K(s) and yelx,z].

Let R be the parallelogram [y, z,, —y, —z]. Then R c K(s) and since K was
assumed to be open there exists s’ > s such that if s <t <& then R C K(¢).
Let ¢ lie in this interval and let T = [x,, y, z,]  K(s). The region R uU Tis
symmetric convex so V[(R U T) n K(r)] < V[(R U T) n K(s)] as a consequence
of Theorem 2.1. By choice of t, R — K(s) N K(¢) therefore

(3.12) V(T n K(1)) < V(T 0 K(s)) -
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Now T\T = [y, z,, z,] C K(s) by (3.11) and choice dfy, whence (T\T) n K(t) C
T\T = (T\T) n K(s). It follows that

(3.13) VICTAT) 0 K()] < VITAT) 0 K@)

By Lemma 3.2 we also have

[(=T)\T] n K(t) c (—T,) N K(t) C K(s)

so that

[(=T\T] n K(t) < [(—=T)\T] N K(s) -
Consequently, \
(3.14) V([—TH\T] 0 K(t)) < V([(=T)\T] 0 K(s)) .

Combining (3.12), (3.13), (3.14) and the fact that T c T, we obtain
(T, n K(t)) < V(T, n K(s)). Applying Lemma 3.1 we have P(K(t)) < P(K(s))
if s < t < s. Thus it has been shown that for every s = O there exists s’ > s
such that P(K(f)) < P(K(s)) if s < t < s’ and the proof that P is monotone uni-
modal is complete.

4. An open question and a reference for related problems. Sherman (1955)
proved that the class of central convex unimodal distributions was closed under
convolutions. Since monotone unimodality does not imply central convex uni-
modality one wonders if the convolution of monotone unimodal distributions
is again monotone unimodal.

A summary of the work done on multivariate unimodality along with a list of
unsolved problems in this area is given in Dharmadhikari and Jogdeo (1976).

REFERENCES
[1] DHARMADHIKARI, S. W. and JOGDEO, K. (1976). Multivariate unimodality. Ann. Statist. 4
607-613.
[2] SHERMAN, S. (1955). A theorem on convex sets with applications. Ann. Math. Statist. 26
763-767.

DEPARTMENT OF MATHEMATICS
TexAs A & M UNIVERSITY
COLLEGE STATION, TExAs 77843



