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CONVEX SETS OF FINITE POPULATION PLANS

By H. P. WyYnNN
Imperial College, London

Let P; be a finite population sampling plan and V'a collection of subsets
of units. The inclusion probabilities for members of ¥ may be calculated.
For example, if ¥ comprises all single units and pairs of units we obtain
all first and second order inclusion probabilities s, 7:;. Another plan P,
is called equivalent to Py with respect to V" if the corresponding inclusion
probabilities for Py are equal to those for P;. However, P; may have fewer
samples with positive probability of selection, that is to say smaller “‘sup-
port.”” An upper bound is put on the minimum support size of all such Pe.
For P; simple random sampling, some examples are given for P; with small

support.

1. The problem. Since the introduction of unequal probability sampling by
Horvitz and Thompson (1952) the emphasis in the theory has been towards
working with the probabilities x, and r,; of units and pairs of units appearing
in the sample. Some selected further developments appear in Yates and Grundy
(1953), Durbin (1953), Grundy (1954).

Two different sampling plans can have certain inclusion probabilities equal.
It is possible for one of them to have a smaller number of samples with positive
probability of selection. Convexity properties of sets of sampling plans are
developed to obtain upper bounds on the minimum number of such samples
required. There are analogous results in the theory of continuous experimental
designs (Kiefer (1961), page 303). Indeed, it is the similar incidence structure
of sampling plans and experimental designs which prompts this analogy. The
notation, however, will be that of sampling theory.

Let S be a population of N units labelled 1, ..., N. A sample of size n is a
subset # of S. Identifying a sample with its labels we can think of » as a member
of the set U of all combinations of n distinct integers out of N. Thus different
permutations are not distinguished, and sampling is without replacement. A
sampling plan P allocates to each u in U a probability p(#) = 0 of being chosen.
Only one sample may be chosen so that

Zuevp) =1.
For any set of k units v = (i, - - -, i,) an inclusion probability is defined as
(1 Ty = Diuso P(H)

where the summation is over all # such that i, - .-, i, lie in 4. When k = 1 and
k = 2 we obtain respectively the first order and second order probabilities z;
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and r;; of units and pairs of units appearing in the sample. When k = n we
have =, = p(v). Thus for a given plan the sets of p(x) and =, completely deter-
mine one another, and two sampling plans are different if any of them are
different. Note that we only consider here plans with fixed sample size n.

Let V' be a collection of sets of units v = (i, - - -, §,) (k = N, but takes possi-
bly several values for different v € V). Two sampling plans P, and P, are said to
be equivalent with respect to V if :

1) — (2)
T, =7,

for all v e V, where the index refers to the sampling plan. Let .47(V) be the
number of subsets in V. Thus, when V' is composed of all singletons and pairs
equivalence means that all z, and =,; are equal between P, and P, and .#(V) =
iN(N + 1).

Define the support of a sampling plan P as those # for which p(x) > 0, that
is those # having a positive probability of being selected. We call the number
of such u the support size. For simple random sampling the support size is the
maximum possible, (7).

Given a sampling plan P, we may ask the following question: what is the
minimum support size of a plan P, such that P, and P, are equivalent with respect
to a given V?

2. Convexity. Given P, and P, and corresponding p'"(x) and p®(u) we use

the shorthand notation
P=(1 —a)P, + aP, 0=
to denote the sampling plan with
pu) = (1 — a)p(u) + ap®(u)

for all  in U. From (1) we see that for a given v, with obvious notation
@) 7, = (1 — @)z, 4 am,®.
For a collection I define a vector m(V) whose entries are all the inclusion prob-

abilities =, for v € ¥ in some order.

LEMMA. As P varies over all without replacement sampling plans of sample size n
the vector n(V) forms a closed convex set in a space of dimension .47 (V).

Proor. The dimension is merely the number of entries in the vector z(V)
which is .#7(V) by definition. For u e U let n({u}) be the vector n(V’) for the
special plan which selects # with probability unity. The entries of n({u}) are
unity for »  u and zero for any v ¢ u. From (2) for a general P

3) (V) = Zuev P(W)x({u}) »

and as P varies we obtain the convex hull of all the vectors z({u}).
Now Caratheodory’s theorem (see Rockafellar (1970), page 151) says that a
vector in R¥ lying in the convex hull of a set of vectors can be written as a
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convex combination of no more than M 4- 1 of them. Any n(V) is in the convex
hull of the vectors m({x}) and thus we obtain

THEOREM 1. For any sampling plan P, and a collection V of ¥ (V) sets of units
there is a sampling plan P, with support size no greater than ) (V) + 1 such that
P, is equivalent to P, with respect to V.

Equivalence with respect to certain sets in ¥ may imply equivalence with
respect to other sets. In more general terms there may be known linear con-
straints on the inclusion probabilities for sets in . For example, if V comprises
all 7, and z,; then we have the N + 1 distinct constraints ), ., 7,; = (n — ),
and )}, 7, = n. This gives the

CoOROLLARY. For a sampling plan P, there is a sampling plan P, with support size
no greater than sN(N — 1) with the same =, and w;; as P,.

3. Simple random sampling. Simple random sampling (SRS) puts p(x) = (¥)~*
for all » in U. Consider a balanced incomplete block design (BIBD). Imagine
the blocks as samples and treatments as units. The blocks define a possible
support for a sampling plan. If for each sample so defined p(x) = 1/b where b is
the number of blocks we obtain a sampling plan associated with the BIBD. The
following result is given by Chakrabarti (1963) and discussed also in Avadhani
and Sukhatme (1973). It is also implicit in the work of Youden (1956) on con-
strained randomization.

THEOREM 2. A sampling plan with p(u) uniform over the samples u in the support
is equivalent to SRS with respect to all first and second order inclusion probabilities
if and only if it is associated with a BIBD, with N = t and n = k, which has distinct
blocks.

The following theorem covers the extreme case when the support size is < N.
It shows that if the support size is N then we can dispense with the uniform p(u)
condition in Theorem 2.

THEOREM 3. There is a sampling plan P with support size N equivalent to SRS
with respect to all w; and w; if and only if there exists a symmetric BIBD with t =
b = N. No such plan exists with support size less than N.

Proor. The sufficiency of the existencé of a symmetric BIBD follows from
Theorem 2.

Let P have support size N. Label the samples in the support u'®, ..., u",
Let Q be the incidence matrix with (i, j) entry 1 if unit 7 is in ¥ and zero other-
wise. Let D = diag (p(u'"), - - -, p(u'™)). Then if II is the matrix with diagonal
element 7, and off-diagonal elements r;

II = QDQT.

Now consider maximising det (II) over all plans with sample size n. Let
A4, = -+ = 4y be the ordered eigenvalues of II so that det (II) = 2,4, - - - 4.
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The conditions on 7; and «,; give

(i) trace(Il) = 3 4, =n
and
(if) ¢"Ilg = n?, where g is the N X 1 vector of ones.

But (ii) gives 2, = sup, -, x’IIx = »*/N. For given 4,, det (II) is maximized
subject to (i) when 2, = ... = 2, = (n — 4))/(N — 1). Then as a function of
4, det (II) is maximized subject to 1, > n*/N when 2, attains the boundary value
n*/N. This is certainly achieved when II has the form for SRS. In this case,
then, det (QDQT) is maximized. But Q is N X N and thus det (QDQ") =
(det (Q))* det (D). Moreover det (D) = p(u)p(u®) - - - p(u™) and the maximum
of this subject to }; p(u) = 1 occurs when p(u®) = ... = p(u™’). By Theorem
2 this must correspond to a symmetric BIBD.

When the support of P is less than N, rank (II) < N whereas det (II) for SRS
is positive, giving a contradiction.

ExampLE 1. When no BIBD exists satisfying 6 < #(t — 1)/2, it is clear from
Theorem 2 that the minimum support size plan cannot be uniform. Many such
examples exist. The smallest r = N for which no such BIBD exists is for t = 8,
n =k = 3. The bound from the corollary to Theorem 1 is 28 whereas the
smallest BIBD with these parameters is the irreducible one corresponding exactly
to SRS. The support size of the latter is b = (§) = 56.

After some inspection the following plan was found with N = 8, n = 3, sup-
port size 24, unequal p(x) and equivalent to SRS with respect to all =, and =;.
The sets of 3 numbers below represent samples in the support. Those with the
same p(u), expressed as multiples of 1/56 are grouped together. Note that by
writing down each sample the number of times indicated we in fact obtain a
BIBD with 1 = 8, k = 3 but only 24 distinct blocks. Such a design does not
appear to have been given before.

u p(u) X 56
125 456
236 167 4
347 278
148 358
245 157
136 268 »
247 357
138 468
123 567
124 568 1
134 578

234 678
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ExampLE 2. Advadhani and Sukhatme (1973) discuss various methods of
reducing the support size. A simple method is to take a convex combination of
a stratified sampling plan and a cluster sampling plan in which clusters and strata
are identical.

Suppose it is possible to divide the population S into L disjoint sets S, - - -, S,
of equal size M, so that N = LM. Suppose also that there are integers /, m and
n such that mL = Ml = n. Consider two plans of sample size n, P, which is
stratified random sampling with SRS of sample size m in each stratum S, (r =
1, ..., L) and P, which is cluster sampling which selects / out of L entire clusters
S,, -+, S, according to SRS. The sampling plan in the notation of Section 2:

P =aP, + (1 — a)P,

where a = (N — L)/(N — 1), is equivalent to SRS with respect to all 7, and x;.
This is seen by equating x,; across and within the S,.

Note that P does not imply taking both a stratified and cluster sample but one
or the other with fixed probability. When N = 1 or L we clearly revert to P, or
P,. This confirms a vague notion that the cluster and stratified sampling “cancel
each other out.”
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