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ESTIMATING A DISTRIBUTION FUNCTION!

By RUDOLF BERAN

University of California, Berkeley

It is shown that the limiting distribution of any regular estimator of
a continuous cdf on [0, 1] can be represented as a convolution of the
Brownian bridge process with another distribution on C[0, 1]. The result
is related to Hajek’s representation for limiting distributions of regular
parametric estimators.

1. Introduction. Let X, X,,- - be a sequence of i.i.d. random variables, each
having continuous cdf F on [0, 1]. Based upon (X;, X,, - --, X,), there exists a
well-known piecewise linear estimator F, of F such that the distribution of
n#[F,(x) — F(x)] converges weakly in C[0, 1] as n — oo to the distribution of
the Brownian bridge process B(x), which is Gaussian with mean 0 and covari-
ance kernel min [F(x), F(y)] — F(x)F(y). (For further details regarding F,, see
Billingsley (1968), page 104.) An interesting question is: to what extent is F, a
good estimator of F, at least in large samples?

Complicating the issue is the existence of cdf estimators which are super-
efficient at a specified distribution. For instance, consider the estimator £,
defined by

(1.1) F (x) = H(x) if sup, |F,(x) — H(x)| < n~#

= F,(x) otherwise,

where H is a cdf supported on the interval [0, 1]. If the data distribution is H,
then lim, _,, P[F, = H] = 1; otherwise n’[ F,(x) — F(x)] converges in distribution
in C[0, 1] to B(x).

Dvoretzky, Kiefer and Wolfowitz (1956) showed that the sample distribution
function, and hence F,, is an asymptotically minimax estimator of F under a
variety of risk structures. The theorem presented in Section 2 of this note per-
mits direct comparisons among asymptotic distributions of estimators of F;
however, the class of estimators is restricted to exclude superefficient estimators.
The theorem established is an analogue of Hajek’s (1970) theorem on parametric
estimation. It neither implies, nor is it implied by, the results of Dvoretzky et
al. (1956). '

2. The main result. Let ¢ be a measure on [0, 1] with respect to which the
continuous cdf F has density f; if necessary ¢ can be the measure induced by F.
Let % (1) denote the set of all densities with respect to . Let ([, d) be the
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set of all sequences of densities {f,, € & (p)} such that

(2.1) lm,, ., |[m(fu} —f*) — 0|l = 0,

where ¢ € Ly(¢) and is the L,(¢) metric. Existence of the limit in (2.1) re-
quires that ¢ be orthogonal to f* in L(u). Let & f) denote the union of all
sets {Z1(f, 0): 0e L,, 0 | [}

Pick an arbitrary sequence of densities {f,} € Z(f) and for each m, let F,
represent the cdf of f,,. Consider a corresponding sequence of sampling experi-
ments wherein the nth experiment realizes n independent random variables {X; ,;
1 < i < n} whose joint density is J]7, f,.(x; ). Let {F,} be any sequence of cdf
estimators such that F, is a function of the {X; .} and takes its values in C[0, 1].

DerINITION. The sequence of cdf estimators {£,} is said to be regular at f if the
distributions of the centered estimators {ni[ £,(x) — F,(x)]} converge weakly in
Cl[0, 1] to a distribution =2 which depends only upon f and not upon the choice
of the sequence {f,,} € €7 f) that determines the sampling scheme.

For the sake of brevity, we will speak of a regular estimator ¥, rather than
of a regular sequence of estimators {F,}. Note that the sequence of densities
{fm: fu = [ for every m} belongs to & f) trivially. Thus, the property of regu-
larity defined above can be viewed as a robustness or stability property: a cdf
estimator which is not regular at fis one whose centered distributions change
too severely when the data density is perturbed slightly from f in the Hellinger
metric. Such unstable behaviour is undesirable when it is necessary to approxi-
mate the distribution of a cdf estimator with the help of asymptotic theory and
the data. In particular, the property of regularity is not possessed by super-
efficient estimators such as (1.1).

Indeed, without loss of generality, we may assume that the cdf Hin (1.1) has
density 2 with respect to the measure p2. Let {#,} be a density sequence in &k, )
and let {H,} be the corresponding cdf sequence. By (2.8) below, the sequence
of joint distributions {T];-, %,(x;,,)} is contiguous to the sequence {[]7-, A(x; ,)}.
Thus, for the cdf estimator F, defined in (1.1), and under the sampling scheme
associated with the density sequence {A,,}, the process n*[ F,,(x) — H(x)] converges
in probability in C[0, 1] to the trivial zero process. Consequently, n[F,(x) —
H,(x)] converges in probability to the trivial process 2 {z (¢)h¥(t) dp. Since this
process has distribution depending upon, the choice of 4, the estimator (1.1) is
not regular at 4.

The following theorem provides a useful representation for the limiting dis-
tribution of a regular cdf estimator; a proof is given at the end of this paper.
Mathematically, this theorem is a strict nonparametric analogue of Hajek’s
(1970) representation for the limiting distribution of a regular (weaker sense)
parametric estimator.

THEOREM. For any regular estimator F, of the continuous cdf F, < can be re-
presented as a convolution <7, x 7, where Z is the distribution of the Brownian
bridge process B and 7, is a distribution on C[0, 1] depending only upon f.
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Evidently the piecewise linear estimator F, is regular (a contiguity argument
shows it) and has the property that its & coincides with &7, for all f. In view
of the theorem, this property is an optimality property: roughly speaking, no
regular estimator of F can have a centered limiting distribution which is less
dispersed than that of F,.

This last assertion can be made precise by introducing the Lévy concentration
function K_(¢), defined for 0 < t < oo as

(2.2) K (t) = sUP,ecpy Z[u: |lu — x|l = 1],

where ||+||, denotes the sup-norm in C[0, 1]. Evidently, K_(¢) measures the
maximum probability assignable by the distribution & to a ball of radius ¢ in
C[O0, 1]. The representation of < as the convolution &, x <, has the following
consequence: for even t > 0,

2.3) K1) < Ko (1) -
Indeed, if A, = {u: ||u||, < ¢}, then
2.4) K_(t) = SUp,eoro Z[4: + X]

= SUP;ec0,1] § @B[At + x — )’] dgl(.y) s

which implies (2.3). The argument remains valid if A, is replaced by any other
measurable subset of C[0, 1].

Another comparison between 7, and & can be made using risk functions.
Let w: C[0, 1] — R' be convex and symmetric and let B and T denote random
functions in C[0, 1], independently distributed according to &, and ), respec-
tively. The random function § = B + T is distributed according to . Then

2.5) E{w(B)} < E{w(S)} .
Indeed, by the properties of w (cf. Section 7 of Dvoretzky et al. (1956)),
(2.6) 2w(B) < w(B + T) + w(—B + T).

Since the distribution of B + T is the same as that of —B + T, (2.6) implies
the inequality (2.5). If w is also continuous on C[0, 1], it follows that
lim, ., inf Ew{nt[F,(x) — F(x)]} = E{w(B)} for every regular estimator F,. An
interesting question is whether this argument can be extended to provide a proof
for the heuristics in Section 7 of Dvoretzky et al. (1956).

We turn now to establishing the convolution representation for <. Let

(2'7) Ln =2 1Og H?:l [fné(Xz,n)/fi(Xz,n)] *

The following lemma, whose proof can be inferred from Le Cam (1969), will
be used.

LeEMMA. Let {f,} be a sequence of densities such that (2.1) holds for some d € L,.
Then for every ¢ > 0,

(2.8)  lim, o, P|L, — 2n7 F1 0(X,,)/fH(Xi0) + 2|10|f] > ¢] = 0.
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This lemma implies that for every density sequence {f,} € &1, 9), the sequence
of joint distributions {][7, f.(x; ,)} is contiguous to the sequence {[]7; f(x; )}
(see, for instance, Le Cam (1969)).

PROOF OF THE THEOREM. Under (2.1),
(2.9) lim,,_, sUpyc, <1 [P F,(X) — F(x)] — 2§5 o(¢)f*(¢)dp| =0,
where F, is the cdf of f,. Therefore, the characteristic functional of ni[F, — F,]
under f,, is
E,, exp[i §i i F,(x) — F,(x)] dv(x)]
(2.10) = E,exp[i {3 nt[F,(x) — F(x)] dv(x)
— i §odv(x) §§ 20(0)f¥ (1) dp + L,] + o(1),
v being any function of bounded variation on [0, 1].

Choose d(x) = o 'A[v(x) — (4 v(x)f(x) du]fH(x), where o = {§v*(x)f(x) dp —
[§3v(x)f(x) du]* and A is real. Note that 6 | f* and ||d||* = #*. By considering
only a subsequence if necessary, we can assume that under f, the processes
{(M[F(x) — F(x)], n=t 3r_, 0(X, ,)f¥(X,..))} converge weakly in C[0, 1] x R* to
a process (S(x), Z), depending on the chosen 4, such that Z has a N(O, 1) distri-
bution. It follows from (2.8) and the choice of d that the random processes
{ni[£,(x) — F(x)], L,} converge weakly to the random process (S(x), 21Z — 24?)
for every real A.

Evidently,

2.11)  Elexpli §ni[£,(x) — F(x)] dv(x) + L,]|

= 1 = Elexp[i {3 S(x) dv(x) + 2hZ — 2R*]| .
Moreover, there exists a probability space and versions of {(n*[F,(x) — F(x), L,)}
and (S(x), 2hZ — 2h*) defined on that space such that convergence with proba-

bility one holds as well as weak convergence (cf. Skorokhod (1956)). Since
(2.11) remains true for these versions, Vitali’s theorem gives

(2.12)  lim,_, E,exp[i {s nt[F,(x) — F(x)] dv(x) + L,]
= Eexp[i {} S(x) dv(x) 4+ 2hZ — 2]
Hence from (2.10), (2.12) and regularity of £,,
E expli {5 S(x) dv(x)]
(2.13) = Eexp[i {; S(x) dv(x) + 2hZ]
X exp[—2i {3 dv(x) {5 0(r)f¥(r) dpp — 2h7]
= Eexp[i {5 S(x) dv(x) + 2hZ] exp[2i {§ o(x) ¥ (x)v(x) dp — 2H7] .

For v a function of bounded variation and ¢ real, let o¢(v,?) =
E exp[i {5 S(x) dv(x) + itZ]. Equation (2.13) becomes
(2.14) ¢(v, 0) = Eexpl[i {; S(x) dv(x) + 2hZ] exp[2ihe — 2h] .

The right side of (2.14) is analytic in #, constant for all real 4, hence constant
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for all complex 4. In particular, the choice & = iz/2 yields

(2.15) (v, 0) = o(v, t) exp[—at + £*[2]

= ¢(v, 1) exp[(t — 0)’/2] exp[—07/2]
for all real t and all functions of bounded variation v on [0, 1]. The special
choice 1 = ¢ gives

(2.16) (v, 0) = (v, o) exp(—0c’/2) .

Evidently, ¢(v, 0) is the characteristic functional of & while exp(—d?/2) is
the characteristic functional of the Brownian bridge process B(x) and ¢(v, o) is
the characteristic functional of S(x) — B(x). Thus (2.16) is equivalent to the
theorem conclusion.

We remark that the proof above is related to Bickel’s proof for Hajek’s repre-
sentation theorem (see Roussas (1972) for a published version) rather than to
Hajek’s (1970) original argument.
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