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The statistical analysis which is carried out in conducting a p1"1pz"s2 - - -
prrk factorial experiment in blocked designs requires that the treatment
combinations be randomly arranged for each treatment run. When the
nature of the process under investigation restricts the number of factor
levels which can be changed from treatment combination to treatment
combination, the usual technique of full randomization cannot be carried
out.

This paper presents methods of constrained randomization for
pi™pa™e - - - prrk factorial experiments in blocked designs when the require-
ment on adjacent treatment combinations is that the number, A, of factor
levels which can be changed is less than ¢, where ¢ = Zr o nipi — 1), If
A = ¢ this is ordinary full randomization.

The method of constrained randomization contained in this paper
requires the construction of an operational sequence in which A =1 for
the first and last treatment combinations in the sequence as well as for all
adjacent treatment combinations. The existence and construction of such
operational sequences present interesting graph theory problems whose
formulations and solutions are found in ‘this paper. This method of
constrained randomization provides a basis for a statistical analysis
utilizing the randomization model, which results in unbiased estimates of
treatment effects and an unbiased estimate of experimental error.

1. Introduction. The experimental design considered in this paper is one in
which treatments are applied to experimental units in a sequential manner, with
results of one treatment being observed before application of the following
treatment, and not all treatment combinations can be placed adjacent in the
consecutive order. Methods of constrained randomization for 2" factorials in
blocks and for 2"~# fractional replicates have been developed by Tiahrt and
Weeks [6]. The general frame and definition of the problem may be found in
this reference. However, these methods do not extend to p* factorials for p > 2
or, more generally, to a p™p.™ ... p," factorial. Methods of constrained
randomization for arbitrary values of the p,’s and n,’s in the p™p™ ... p,™
factorial are given in this paper.

Terminology and notations which will be used in further describing this
generalized problem are now given.
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NotATION. The phrases “treatment combination” and “treatment combi-
nations” will be denoted by tc and tcs, respectively. The phrase “p™ ... p,™
factorial experiment” will be denoted by FE(k).

DerINITION. Two tcs have order of adjacency A if the total number of changes
in the factor levels in the two adjacent tcs is equal to A.

The order of adjacency, A, is given by the sum A = Y%, 3% |x® — x|,
where tc i is denoted by (x{, x3, - - -, X X2, Xy e Xy e X X,
xg‘,;c) and where x{% €{0, 1, - .-, p, — 1} fors = 1,2, ... k.

Restricting the value of A to A <t = }}k_ n,(p; — 1) in a FE(k) induces a
compatibility condition on the sequence which prevents full randomization in
arranging the sequence of treatment combinations required to conduct the

experiment.

DEFINITION 2. An operational sequence is any sequence of the tcs which
satisfies the compatibility condition imposed on the design by the experimenter
and/or the experimental process.

The problem thus becomes one of constructing an experimental design which
will provide a method of experimentation under the restriction of the compati-
bility condition and a means of statistically analyzing the data. This paper
investigates the problem for arbitrary values of the p,’s, n;’s and A.

DEFINITION 3. An operational sequence is said to be a cycle if each tc appears
in the sequence and if the first and last tcs in the sequence, when placed in
adjacent positions, have order of adjacency A. Unless otherwise stated, a cycle
for a FE(k) will contain [[%_, p,* terms. (e.g., each tc will appear once in the
operational sequence.)

A factorial is said to be cyclic w.r.t. A < k if there exists a cycle for the
factorial which satisfies the compatibility condition A < k.

Methods of constructing operational sequences will be based on the results
of the next section, which investigates the existence or nonexistence of a cycle
for a given factorial and compatibility condition. Those theorems which establish
the existence of a cycle also reveal a method of constructing the cycle and hence
an operational sequence for the corresponding factorial.

2. Existence and Construction of Cycles. Without loss of generality, the first
term in each cycle will be taken as (0, 0, - - -, 0), the low level of each factor.

THEOREM 1. If p is odd, the p* factorial is not cyclic w.r.t. A = 1.

Proor oF THEOREM 1. Let p = 2k + 1 where k e I*. Ifa cycle exists for this
factorial, it must contain (2k + 1)* tcs and the last tc, (¢, ¢, - -+, ¢,), must
satisfy the condition }}*_, |c,] = 1. Moving through the cycle from one point
to the next is equivalent to the adding + 1 to one of the n components. Since
there are an odd number of points in the cycle, this must be done an even
number of times. However, this would mean that the last point, (¢, c,, ---, ¢c,)
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is such that };7_, ¢, is an even number. This contradicts the requirement so the
construction of such a cycle is impossible.

It should be noted for future reference that the proof was based solely on the
fact that a cycle cannot contain an odd number of terms if A = 1.

The following notations will be used in proving subsequent theorems. The
symbolism (a, b)s(a, b + k) will denote the sequence (a, b), (a, b + 1), (a, b +
2), --+,(ab + k) and (a, b + k)s(a, b) will denote the sequence (a, b + k),
(a, b+ k —1),(a, b+ k —2), .., (a, b). The notations (a + k, b)s(a, b) and
(a, b)s(a + k, b) are defined in a similar manner. Small Greek letters will be
used to denote row vectors. If a — (a,, a5, --+,a,) and B = (b,, by, - --, b,),
(a, B) is defined by (a, f) = (ay, a5, - - -, @, by, by, -+, by,).

THEOREM 2. If p is even, the p factorial is cyclic w.r.t. A < t where t > 1.

ProoF oF THEOREM 2. Let p = 2k where k € I*. It suffices to show that the
theorem holds for A = 1. This will be done by mathematical induction.

(a) If n = 2, each tc is denoted by (a, b) wherea, b {0, 1, ..., 2k — 1}. A
cycle for this factorial is the sequence (0, 0)s(2k — 1, 0), 2k — 1, 1)s(2k — 1,
2k — 1), 2k — 2,2k — 1)s(0, 2k — 1), (0, 2k — 2)s(2k — 2,2k — 2), 2k — 2,
2k — 3)s(0, 2k — 3), (0, 2k — 4)s(2k — 2,2k — 4), ---, (0, 2)s(2k — 2, 2), (2k —
2, 1)s(0, 1). Notice for the last tc to be (0, 1), p must be even as it is here.
The geometrical interpretation of a cycle for a 4* factorial is as shown.

(0,3) : (3,3)

(2,2)

(0,2)

Q1) (2,1) |}

(0,0)  (1,0) (2,0) (3,0)

(b) Suppose the theorem is true for n = r. Then each point in the cycle is
represented in r-dimensional space by an r-tuple of the form (a,, a,, -- -, a,)
where a,€{0, 1, - .-, 2k — 1}. This same point has a representation in (r + 1)-

dimensional space as (a;, a, - - -, @,, 0). Since A = 1, a pair of adjacent points
in the cycle will have a representation in (r + l)-dimensional space as
(a, ay, ---,a, --+,0a,0), (a,a, ---,a,+1,..-,a,0). Since there are an

even number of points in the cycle, there are (2k)7/2 disjoint pairs of adjacent
points where the first pair consists of the first two points in the cycle and the
remaining pairs consist of the remaining points taken two at a time in consecutive
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order. To construct a cycle in (r 4 1)-dimensional space, replace each pair

@y, ay - a,--+,a,0),(a,a, --+,a, 1, .--,4,0) by the following se-
quence: (auaz, Y ...’ar,O), (al,a2, Y Y AN 1)’ e, (al,az, cee,
a,---,a,2k —1),(a,ay ---,a, + l,---,a,,2k —1),(a,a,---,a,+1,---,
a, 2k —2), .-, (a,a, - ---,a,+1,.-.,a,0). Clearly this construction yields

a cycle for the (2k)"+! factorial which satisfies the condition that A = 1.

For future reference, notice that the last point in the cycleis (0, 1, 0,0, - - -, 0).

Although it was shown in Theorem 1 that a p* factorial is not cyclic w.r.t.
A = 1 if p is odd, a cycle for this factorial can be constructed if the condition
that each tc can appear only once in the operational sequence is removed. With
the freedom to repeat points wherever convenient, it is easy to see how any
number of cycles could be constructed.

However, due to the time and economic factors involved, the experimenter
may wish to have available a cycle in which repetitions are kept to a minimum.

The next theorem shows that such a cycle can be constructed by repeating
one tc once. Information which is crucial to the proof of the theorem is con-
tained in the following lemma.

LEMMA 1. Ina (2k + 1)* factorial with A = 1, a noncyclic operational sequence
can be constructed in such a way that the first point in the sequence is (0,0, - .-, 0),
the last point is (2k, 2k, - -, 2k), and each of the other (2k + 1)* — 2 points
appears exactly once.

Proor oF LEMMA 1. The proof is by mathematical induction in a manner
similar to that used for Theorem 2.
A theorem concerning a cycle with one repeated tc now follows.

THEOREM 3. If p is odd and A = 1, a cycle for the p* factorial can be constructed
by repeating one point once.

PrOOF OF THEOREM 3. Let p = 2k 4 1 where ke I*. To illustrate how the
cycle will be constructed, consider the case where k = 1 and n = 3. The cycle
for this factorial, starting at (1, 1,0) and ending at (0, 1, 0), is as follows:
(1,1,0), (1,1, 1), (1,1, 2), (0, 1, 2), (0, 2, 2), (1, 2, 2), (2,2,2), (2, 1, 2), (2,0, 2),
(1,0,2),(0,0,2),(0,0, 1), (1,0, 1), (2,0, 1), (2, 1, 1), (2,2, 1), (1,2, 1), (0, 2, 1),
(0,1,1),(0,1,0),(0,2,0), (1,2,0), (2, 2,0), (2, 1,0), (2,0,0), (1,0, 0), (0,0, 0),
(0, 1,0). In this sequence, each tc has a representation as (a,, a,, g;) and the
sequences in the 2-dimensional subspaces a; =0, a; = 1, and @, = 2 can be
thought of as cycles in which the (1, 1, a,) point has been omitted. The repeated
point is (0, 1, 0).

To prove the theorem in the general case, first consider a (2k + 1)* factorial.
If the point (I,1) is omitted, a cycle for this factorial is (0, 0)s(2k, 0),
(2k, 1)s(2k, 2k), (2k — 1, 2k)s(0, 2k), (0, 2k — 1)s(2k — 1,2k — 1), (2k — 1,
2k — 2)s(2k — 1, 1), (2k — 2, 1)s(2k — 2,2k — 2), - -+, (2, 2)5(0, 2), (0, 1).

Notice that this sequence has been constructed in such a way that any point in
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the form (0, a) where a is positive and even, is followed by the point (0, a — 1).
Hence the last point is (0, 1). If the sequence was reversed, the cycle would
omit (1, 1), and start at (0, 1).

In completing the proof, the following notation will be used. If $ is an
(n — 2)-dimensional constant vector, (a, b, 8)c(d, f, B) will represent a cycle in
the 2-dimensional subspace of an n-dimensional space which starts at (a, b, j)
ends at (d, f, 8), and omits the point (1, 1, ).

Now let ay, a,, - -+, @, where ¢ = (2k 4+ 1)*~%, be a sequence in (n — 2)-
dimensional space which satisfies Lemma 1 for a (2k + 1)*~* factorial.

The sequence which satisfies the conditions of Theorem 3 is (1,1, a)),
(L, Lay), (1,1, @), ---,(1,1,a,), (0,1, a)c©,0,a,), (0,0,a,,)O,]1,a,,),
0, 1, a,_;)c(0,0, a,_,), - -+, (0, 1, &,)c(0, 0, a,), (0, 1, a,).

Notice that there are an odd number of a’s and that the sequences
(a, b, ,)c(d, t, @,) have been constructed in such a way that if # is odd, b = 1
and a = d = f = 0. This justifies having the sequence (0, 1, a,)c(0, 0, ;) in
the last 2-dimensional subspace. The repeated point, (0, 1, a,), is compatible
with the first point, (1, 1, a,).

Although a p~ factorial is not cyclic w.r.t. A = 1 if p is odd and no point is
repeated, this is not the case for other values of A. The following corollary
deals with such cases.

CoROLLARY 1. If p is odd, the p" factorial is cyclic w.r.t. A < t where t > 2.

ProoFr oF CoroLLARY 1. It suffices to show that the corollary holds for A <
2. If the point (0, 1, a,) is removed as the last point in the sequence constructed
in Theorem 3, the resultant sequence is clearly cyclic w.r.t. A < 2.

It should be noted that the resultant sequence is a noncyclic operational
sequence having order of adjacency A =1, (1,1, 0,0, - .., 0) as its first term,
and (0, 0, - - ., 0) as its last term. By reversing the terms in this sequence, an
operational sequence is generated which has (0, 0, ..., 0) as its first term and
(1,1,0,0, ...,0) as its last term.

Although these last remarks were not germane to the proof of the corollary,
they will be needed in extending these results to a FE(k).

THEOREM 4. If Y%, p, is odd, the FE(k) is not cyclic w.r.t. A = 1.

ProoF oF THEOREM 4. First note that p,* is odd if and only if p, is odd.
Hence []f.,p,~ is odd if and only if [J%, p, is odd. Thus, if a cycle for this
factorial exists, it must contain an odd number of terms. However, it was
shown in Theorem 1, independent of the form of the factorial whose factor
levels yield an odd number of tcs, that a cycle consisting of an odd number of
terms cannot be constructed if A = 1.

For convenience, the following notation will be used in the proofs of the
theorems which follow. If a is a constant vector and B, 8, -+, 8, is a
sequence having order of adjacency A =1, (a, 8,)C(a, 8,) will denote the
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sequence (a, B,), (a, B,), - - -, (a, B,). The order of adjacency for this sequence

isalso A = 1. (B, @)C(8,, a) will denote the sequence (8,, @), (85, @), - - -, (B, @)-
THEOREM 5. If p, is even fori = 1,2, ..., k, the FE(k) is cyclicw.r.t. A = 1.

Proor oF THEOREM 5. The proof is by mathematical induction.
(@) Let k = 2. It was shown in Theorem 2 that if p, and p, are even, the

factorials p," and p,* are each cyclic w.r.t. A = 1. Let a,, a,, ---, a,, where
g=pm™and a, = (0,1,0,0, ...,0) by a cycle for the p™ factorial. Let
Bi> By <+ » Bm» Where m = p,» be a cycle for the p,™ factorial. Then a cycle

for the p,™1p,™ factorial is given by the sequence (a;, 8,)C(ay, ), (@5, B»)C(ay, B1),
(@ BIC(@ss B)s (s Bu)Cltr B)s - -5 (s Bu)C(@pr ).

Notice that the sequence was constructed in such a way that if @ is even in
the subsequence (a,, 8,)C(a,, ;), b = m and f = 1. Hence the last point must
be (0,1,0,0, ...,0) and is compatible with the first point (0,0, ..., 0), and
the sequence is a cycle, as claimed.

(b) Assume the theorem holds for k = ¢t. Then the FE(t) is cyclic w.r.t.
A = 1. Now consider the FE(r 4 1). Replacing the cycle for the p,™ factorial
in part (a) by the cycle for the FE(f), and the cycle for the p," factorial in
part (a) by the cycle for the p;ii* factorial which, when reversed, starts at
©,1,0,0, ---,0), and ends at (0, 0, - - -, 0), the construction described in part
(a) yields a cycle for the FE(+ + 1). That the last point is (0, 1,0, 0, --., 0)
again follows from the fact that there are an even number of terms in the cycle
for the FE(?).

THEOREM 6. If p, is even and p, is odd, the FE(t) is cyclic w.r.t. A = 1.

Proor oF THEOREM 6. It was shown in Theorem 3 that a noncyclic operational
sequence having order of adjacency A = 1 exists for a p,™ factorial. Let this
operational sequence be denoted by 8,, 8,, - - -, B, where m = p,~ and 8, =
(1,1,0,0, ---,0). Let a cycle for the p/™ factorial again be denoted by
the a’s in Theorem 5. Then a cycle for the FE(2) is (a;, 8,)C(ay, Bn),
(er Bu)Clan B): (@ BIC(@ss B)s -+ > (@ Bu)C(e, Bo).

Here again, the last term in the sequence is (0, 1,0, 0, ..., 0). Since the last
term is compatible with the first, the sequence is a cycle, as claimed.

It was established in Theorem 4 that if p,p, is odd the FE(2) is not cyclic
w.r.t. A = 1. However, as in the case for the p* factorial where p is odd, it
would be desirable to have a cycle for this factorial which repeats a minimum
number of points. The next theorem deals with this problem.

THEOREM 7. If p, and p, are both odd and A = 1, a cycle for the FE(2) can be
constructed by repeating one point once.

Proor oF THEOREM 7. Let 8, B,, - - -, 8, be the operational sequence of 5’s
described in Theorem 6. The order of adjacency for this sequence is A = 1
and the second from the last term is 8,,_, = (0, 1,0,0, ..., 0). Let a;, @y, - - -,

a,, where g = p™ be a similar operational sequence for the p,™ factorial. A

o
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cyde for the FE(2) is (ay, 8,)C(a,, Bm-1)s (X2 Bm-1)C(ss B1)s (a5, B1)C(55 Broy) - - -
(ags B)C(@ys Bui)s (ags Bm)C(ay, Br), (@4, Bn-y)- The repeated point is the last
point (e,, 8,,-,) = (0,0, ---,0;0,1,0,0, ..., 0) where the semicolon separates
the components of a from the components of 5.

It should be observed that the second from the last term is (0,0, ---,0;
1,1,0,0, ...,0). This will be needed in the next theorem, which is a generali-
zation of Theorem 7.

THEOREM 8. If p, isodd fori =1,2, ...,k and A = 1, a cycle for FE(k) can
be constructed by one repetition of the point (0,0, .-.,0;0,1,0,0, ...,0), where
the semicolon separates the last n, components from the preceding ones. The point
preceding the last (or repeated) point can be taken as (0,0, ---,0;1,1,0,0, -..,0).

Proor oF THEOREM 8. The proof is by mathematical induction.

(a) Theorem 7 establishes the case for k = 2.

(b) Suppose the theorem holds for k = r. Then there exists a cycle for the
papsts - - p,rpyiit factorial which repeats one point. Denote this cycle by
B> Bas -+ +» Bos Biwa where ¢ = H::;Pi"i’ Biyi = (0’ 0..-,00,1,0,0, - °) and
. =(,0,...,0;1,1,0,0, ---,0). Let a,,a, ---,a, be the operational
sequence used in Theorem 7 for the p,™ factorial. Replacing the points 3, _,
and B, in Theorem 7 by B, , and B, respectively, the construction of a cycle
for the FE(r 4 1) is identical to the construction shown in Theorem 7 except
that the last point is replaced by (a,, 8,,,)-

To complete the discussion of the problem of constructing cycles for a FE(k),
consider the case where []%_, p, is even and some of the p,’s are odd. Since the
statistical design is essentially unchanged by permuting the p,*’s we can assume
that those p,’s which are even occur first in the notation p,"1p,"2 - . . p,.

THEOREM 9. If p, is even fori = 1,2, ..., rand p; is odd for j =r 4 1,r 4
2, ---, k, the FE(k) is cyclic w.r.t. A = 1.

PrROOF OF THEOREM 9. Let a,, a,, - - -, a, where & = []7_, p,™ by a cycle for
the FE(r). That such a cycle exists for A = 1 was established in Theorem 5.
Let 8, By, - - -, B, where ¢ = [[%,,, p,"i be the sequence constructed in Theorem
8 omitting the last term, so that there is no repeated point. Replacing the a’s
and 8’s in Theorem 6 with the a’s and 8’s just described, the construction of
the desired cycle is identical to the construction shown in Theorem 6.

This completes the problem of constructing cycles for a FE(k) with A = 1.
The following corollary treats the case of constructing cycles for this factorial
if no points are to be repeated and the restriction that A = 1 is relaxed.

CoROLLARY 2. Any FE(k) is cyclic w.r.t. A < t where t > 2.

Proor oF CorOLLARY 2. It suffices to show that the corollary holds for A =
2. If T]%, p; is even, Theorem 9 establishes the desired result. If [[%, p, is
odd, the result follows from considering the sequence constructed in Theorem
8 with the last term (the repeated point) omitted.
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This completes the proof of the corollary.

In order to construct a cycle for a FE(k) with A = 1 and [J%, p; odd, it was
necessary to repeat at least one point. An operational sequence was defined
without any requirement of cyclicness, and consequently no repetitions are
required in order to construct an operational sequence.

THEOREM 10. An operational sequence having no repeated terms exists for any
FE(k) having compatibility condition A = 1.

ProoF oF THEOREM 10. If J]%, p; is even, Theorem 9 establishes the desired
result. If TI%.. is odd, the operational sequence constructed in Theorem 8 with
the last (or repeated) term omitted is an operational sequence having A = 1 and
no repeated points. :

3. Constrained randomization for a FE(k) in a randomized nonconsecutive
block design. This section presents methods of constrained randomization for
a FE(k) in randomized complete block designs where each block is independent
of the others.

Constrained randomization for a FE(k) in nonconsecutive replicates is per-
formed by the following procedure.

(1) A cycle for the factorial under consideration is constructed.

(2) For each replication, randomly assign n, factor names to the first n, com-

ponents x,, Xy, + -+, X, of each treatment combination in the cycle, randomly
assign n, factor names to the next n, components x, .1, X, 425 * * *» Xu 4n, OF each
tc in the cycle, etc.

(3) For each replication, pick an integer at random from the set {1, 2, - - -, P}
where P is the number of tcs in the cycle obtained in step (1).

Let K be the integer so chosen. From the sequence a;, @,, - - -, @, obtained
in step (2), construct the sequence ag, Qg 1, « - +5 Xpy Ay Xgy =+ Ay

The resulting cycle is the random sequence of tcs which was desired.

ExaMpLE 1. As an example of this method, consider the following randomi-
zation for the replication of a 222° factorial with A = 1.

(1) Since 2 -3 =6 is even, a cycle containing 36 tcs, none of which are
repeated, is needed. Such a cycle, which can be constructed using the method
discussed in the proof of Theorems 2, 3 and 6, is shown. (These, and the subse-
quent cycles, should be read consecutively from the bottom of one column to
the top of the next one.)

0000 1011 1100 O111
0010 1001 1110 0101
0020 1002 1120 0102
0021 1012 1121 0112
0022 1022 1122 0122
0012 1021 1112 0121
0002 1020 1102 0120
0001 1010 1101 0110
0011 1000 1111 0100
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(2) Suppose the random assignment in step (2) replaces the tc (x,, x;, X;, X,)
by the tc (x,, x,, x,, x;). The resultant sequence of tcs is

0000 1011 1100 0111
0001 1010 1101 0110
0002 1020 1102 0120
0012 1021 1112 0121
0022 1022 1122 0122
0021 1012 1121 0112
0020 1002 1120 0102
0010 1001 1110 0101
0011 1000 1111 0100

(3) Suppose the random number chosen in step (3) is 31. Then the new
sequence of tcs moves the 31st term of the intermediate sequence into the first
position. This new sequence is

0121 0012 1021 1112
0122 0022 1022 1122
0112 0021 1012 1121
0102 0020 1002 1120
0101 0010 1001 1110
0100 0011 1000 1111
0000 1011 1100 oO111
0001 1010 1101 oOl110
0002 1020 1102 0120

Note that the last sequence in the example is again a cycle with A = 1.
The theorem which follows will show that the randomization procedure will
always preserve this property.

THEOREM 11. The sequence of tCs resulting from constrained randomization of a
cycle having order of adjacency A = k (X k) is a cycle having the same order of
adjacency.

Proor oF THEOREM 11. Let the cycle constructed in step (1) be denoted by
a,, a,, - -+, ap. Step (2) is a rearrangement of the components of each tc and,
therefore, leaves invariant the order of adjacency of any adjacent pair of tcs,
a,, and a,+, say, where i* = (i 4 1) mod (P). This is a consequence of the fact
that every tc in the sequence received identically the same assignment of factor
names. Thus, x,, and x,,,, the rth components of «; and «,+, become the r'th
components x,,, and x,+,, of @, and «a,. after step (2). Hence |x, — x,+,| =
|%;r — X;+,.| and sO 3, |X,, — X+,| = 2, |X;w — X;+,.|- This holds for every
pair of adjacent tcs in the sequence and thus the sequence obtained from step
(2) is a cycle having the same order of adjacency as the cycle in step (1).

Step (3), as a cyclic permutation of the sequence obtained from step (2),
preserves the relative position of the tcs in the cycle. Hence a pair of adjacent
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tcs are again adjacent after step (3) and so their order of adjacency is unchanged.
Thus, the sequence of tcs resulting from the randomization procedure of a cycle
having order of adjacency A < k is a cycle having the same order of adjacency.
This completes the proof.

A result which is basic to the development of the randomization model is
presented in the following theorem.

THEOREM 12. For a FE(k), let R = [k, n,!. Then, over all distinct cycles
obtained by the constrained randomization procedure, each tc appears R times in
each position of the sequence if there are no repeated points. If T],_, p;* is odd and
A = 1, repeated tcs will occur 2R times in each position of the sequence.

Proor oF THEOREM 12. Let 8 and y be two tcs in the cycle constructed in
step (1) of the randomization process. Let ' and y’ be the tcs which result
from applying step (2) to 8 and y. Since step (2) assigns the same factor names
to every tc in the cycle, g’ =y’ if and only if 8 = y. Thus, if 8 and y are
distinct points, 5’ and y’ are also distinct and the number of distinct points is
unchanged after applying step (2) of the randomization procedure.

Assuming each tc appears only once in the sequence, then over all cycles
generated by applying step (3) to one of the R cycles obtained from step (2),
each tc will appear once in each position. Hence in applying step (3) to all of
the R cycles resulting from step (2), each tc will appear R times in each position
of the cycle.

In the case where the cycle contains a repeated tc, over all cycles generated
in applying step (3) to one of the R cycles obtained from step (2) the repeated
tc will appear twice in each position. Applying this to all of the R cycles
resulting from step (2), the repeated tc will appear 2R times in each position
of the cycle.

4. The randomization model. Consider a FE(k) where [][%, p; is even or
A < k (k > 1), or both. The population of inference under the randomization
model is the set of experimental units actually used, or a larger population from
which experimental units are randomly chosen. Each tc appears in only one
experimental unit in each replication since there are no repeated points for this
factorial under the method of constrained randomization.

Let y,;, denote the population response (conceptual yield) to tc k on experi-
mental unit j in replication i. Let N = []%, p and suppose there are r
replications. Thenk =1,2,..-,N;j=1,2,.--,N;andi=1,2, ..., r.

Using methods identical to those presented in [6], the following statistical
properties may be obtained.

(1) An unbiased estimate of any factorial effect x, x,.-. x, is given by
3 TV Where 3, m, = 0, and the value of =, is determined by the value of
k and the type of effect being estimated.

(2) The average variance of the estimate for x, x, - - - x,

(/DS 2 m® — Dhker 2w T /(N — 1)] .

is
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(3) An unbiased estimate of S* may be found from the usual analysis of
variance and tests for individual factor effects and interactions may also be
obtained. When [];_, p; is odd and A = 1, the cycle which is obtained by the
randomization process contains one repeated point. The repeated point is not
randomly chosen from all the tcs available but is determined by the methods
for construction of cycles as developed in the first section. Moreover, after the
repeated point has been determined, the relative positions of the two experimental
units to which the repeated tc is applied remain unchanged after step (2) in the
randomization process.

This lack of randomness in the selection of tcs and experimental units deprives
the corresponding model of many of the properties obtained in the previous
sections where no tcs were repeated. However, unbiased estimates for factorial
effects can still be obtained using a randomization model.

Since after step (2) in the randomization process the repeated tc is known,
the expectations which yield the unbiased estimates are conditional expectations,
the conditional event being that the repeated tc is the one observed.

Using the notations and definitions presented for the randomization model
with no repeated points, one may write y,;, = ¢ + b, + 4, + (J;;, — J...) Where
i=1,2,...,r, ]: ,2,.-..,N+1, k=1,2,..., N. As before, Zzbz:
Ykt = 0. The random variable d¥%; is defined by

ok =1 if tc k is an experimental unit j of rep i
=0 otherwise.
Denoting the repeated tc by k*,
yuokh =1, and yilok, =2 if k=k*
=1 if k#k*.
With y,, the observed response of tc k in replication i, one has
Yo = 25 05V = 200 + 2b; + 28, + ey, if k= k*
=p+ b, +t,+ e, if k +# k*

where e, = X3, 6%(J;;. — J...). Note that 3], e, = 0.
Distributional properties of 6%, and y; follow.

LEMMA 2. Under the constrained randomization procedure for a FE(K) with
bk, p,oddand A =1,

1 E[0%; | k* is the repeated point (rp)] = 2 if k=k*
O (9% peated p P
N+1
|
= if k + k*
vyt Tk*

2) Ele, | k* isthe rp]=0.
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ProorF oF Lemma 2. All the probabilities are conditional probabilities
determined by the constrained randomization procedure after step (2), in which
the repeated tc, k*, is observed.

Proor oF (1). By Theorem 12, each nonrepeated tc appears on each experi-
mental unit j with equal frequency and, therefore, P[tc k is on experimental
unit j|k # k*] = 1/N + 1. That the repeated tc appears twice as frequently
as each nonrepeated tc was also established in Theorem 12. Hence P[tc k is on
experimental unit j| k = k*] = 2/N 4 1.

E[d%|k* isthe rp] = 1. P[% = 1|k* is the rp] = — 2 N
+
1 .
= if k k* .
N+ 1 *
Proor oF (2). Consider
Elew|k* s the 1p] = X1, FIO% K" is the 1pI(%. — i)
= 7, if k= k*
N+ N 2 Puae = Fu)
= y, if k£ k*
N +1 2 Pije = Piad) 0 k£
=0 forall k.

This completes the proof of the lemma.
The following theorem presents estimates for tcs.

THEOREM 13. Unbiased estimates for t, are given by

. N+l . .
Ay i = + Fowe — Fouif k= k

(2) e =Ju t oo T = Je U ke kE
Proor oF THEOREM 13. First consider y,,.

- 1 .
V.k:-}-Ziyikzz.u-i—zﬁcv‘f‘—r—zl'eikv if k= k*

=#+tk+"‘l—zieik lf k;ﬁk*.
or
Since by Lemma 2, E(e,, | k* is the rp) = 0,
E[J..|k* isthe rp] = 2 + 2t  if k = k*
=p+t if k= k*.

Now consider )7"

oo = Z Y = |:(N + D+ Xt + te + — Zk 2 zk:|
+
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Proor oF (1). For k = k*

E[f,] = E[N;]”Vl Fuwe — Fu | K* s the rp}

N+1
2N

N +1 1 <N—1 1>
2 2t,.) — — —tl. = — — )t = b -
e + ) N ¢ Nk N N/ k

Proor oF (2). If k + k* ®

” _ 1 - _ )
E[7,] = E|:)’.k + W}’.v — J..|k* is the rp}

1 N1 1
= t —2 2t*—
(e« + k)+2N(.U+ ke) N

p——ﬁtk.ztk.

This completes the proof of Theorem 13.
The following theorem gives estimates for factorial effects.

THEOREM 14. Given that k* is the repeated tc, an unbiased estimate of any main
effect or interaction X, X, . - . X, where XXy X, = mteand 3, =0, is
2k T Tk — 3T Fope = 2ik Tl

PROOF OF THEOREM 14. It need only be shown that the contrast of the 7,’s is
2k Tk Pk — 3P Thus consider

. N4+1 _ - _ 1 _ _
2 T = W (T—;« Yur — Jou) + Dk erkr T (}’.k + ~2—]\7J’.k* — )’..)

1 -
= IN (Ter + Dk ktkr Tp)Poen

= (T + Zhowre kp)Po. + 3 Tk + D bkrir TPk
1 _ _ _ _
= (2% ™) <*2W Vaier — y..) — 3 P + 20k Tk Pk

= 2 TP — %”k*)_’.kv .

Due to the randomization constraints imposed on the design, variance esti-
mates for this case have not been obtained.

Extensions. Preliminary investigations indicate that the constrained randomi-
zation procedures contained in this paper can be used to design confounding
schemes for simple p* factorials (for instance, a 3° factorial) under the restriction
that A < ¢ for some values of t.

The possibility of extending these results to confounding schemes for a FE(k)
which is restricted by the condition A < tis open to further study.
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