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ASYMPTOTICALLY EFFICIENT ESTIMATORS
FOR A CONSTANT REGRESSION WITH
VECTOR-VALUED STATIONARY
RESIDUALS

By RoLF K. ADENSTEDT
Lehigh University

Estimation of linear functions of a vector parameter § when an ob-
served discrete- or continuous-time vector-valued stationary process has
mean value Hf, H a known matrix, is considered. Large-sample compari-
sons of best linear unbiased estimators and estimators based on the sample
mean are made. Limits and rates of convergence of the variances of these
estimators are obtained. It is shown that under general conditions there are
asymptotically efficient estimators based on the sample mean, their form
determined by the spectrum at the origin. Conditions under which all least
squares estimators are asymptotically efficient are also given.

1. Introduction. Let X(¢) be an n X 1 vector-valued wide-sense stationary
random process, with possibly complex components, where the parameter ¢
ranges over either the integers (referred to as the discrete case) or the real line
(continuous case). The process has constant mean value vector m = Hf, where
H is a known n X p matrix of arbitrary rank r and # is a p X 1 vector of un-
known regression coefficients. The n X n matrix-valued covariance function
R(t) of the process is assumed to be a (componentwise) continuous function in
the continuous parameter case. All quantities are allowed to be complex.

Considered for this model is the estimation of linear combinations of the
components of ¢ from the observations X(¢) for t = 1, 2, - . -, r in the discrete
case and for 0 < ¢t < r in the continuous case. Attention is restricted to un-
biased estimators that are linear in the components of the observations. Of
primary interest are large-sample (r — oco) comparisons of best linear unbiased
estimators (BLUE’s) with estimators based on the sample mean

m=t"'Y;_, X(t), discrete case,

= 7' {; X(t)dt, continuous case,

which does not require knowledge of R in calculation.

Many authors have considered the fixed sample size regression model of a
single observed random vector X with mean value Hf. Such models arise in
numerous ways; a prime example is in the regression approach to experimental
design. In many situations, such as experimental design, the regression matrix
H does not have full rank. This means that more parameters than can be
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unbiasedly estimated have been introduced into the model. While a reparametri-
zation may serve to transform the model to a full rank one, it disguises the role
of the original parameters. Thus it is of interest to treat the case of nonfull
rank H and to consider the estimation only of certain linear combinations of
parameters.

One way in which the model being considered in this paper could arise is
when repeated (and stationarily correlated) observations are made with a fixed
sample size model as discussed above. Another situation that can be transformed
to this model occurs when there are known linear constraints on the mean of an
observed vector-valued stationary process. For example, let the n components
X;(t) of X(#) have means 6, subject to n — p linearly independent constraints of
the form a,,60, + ... + a,,0, = 0. Then some, though not necessarily every,
set of p means may be treated as independent unknown parameters, with the
remaining 6’s expressed in terms of this set. If, say, 6,, .-, 6, are the inde-
pendent means then the model of this paper is obtained. Note that H has full
rank in this example. As is shown in an example by Freiberger, Rosenblatt
and Van Ness (1962), the least squares estimator (LSE) for the unknown part
of the mean need not be asymptotically as good as the BLUE in the type of
situation just described.

There is a substantial literature comparing LSE’s with BLUE’s in regression
models. Zyskind (1967) and Kruskal (1968), among others, develop general
conditions for coincidence of these estimators in the case of a fixed sample size.
Watson (1967, 1972) also goes on to discuss the efficiency of LSE’s relative to
BLUE’s.

Large-sample studies deal generally with finding conditions guaranteeing that
LSE’s are asymptotically efficient relative to the BLUE’s for their expectations.
For observations in discrete time, with stationary residuals, Grenander (1954)
gives a thorough treatment for what has been called a stationary regression.
Rosenblatt (1955) extends Grenander’s results to the vector-valued case. It is
to be noted that the constant regression Hf considered here is a special case in
Rosenblatt’s model only if time is discrete and if each component of ¢ appears
in no more than one component of the mean value m. Various attempts have
been made to obtain continuous parameter versions of Grenander’s results; the
most general of these is Kholevo (1969).

In the model here LSE’s are generally, not asymptotically efficient. When this
is the case one typically tries to find other easily computed estimators that have
optimal properties over as wide as possible a range of conditions. Vitale (1973)
and Adenstedt (1974) prescribe such estimators for the mean of a stationary
sequence. For the present model, under general conditions, it will be seen that
asymptotically efficient estimators for linear functions of # are to be found
among linear combinations of components of the sample mean . As is to be
expected, the form of the best combinations is determined by the spectrum at
the origin.
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In Section 2 the model is formalized and the notation is set. Section 3 con-
tains the regularity conditions to be imposed on the spectrum of the process
X(r) and a statement of the main results, which are proved in Sections 4 through
8. Theorem 1 deals with limits of variances of estimators while Theorem 2
deals with the rate of convergence.

The main tools employed in this paper are spectral representations and adap-
tation of a Hilbert space viewpoint developed in Adenstedt and Eisenberg (1974).
Also drawn on are fixed sample size regression results. To reduce length of
exposition, the discrete and continuous cases are treated simultaneously as much
as possible, with the notation directed toward this end. For conciseness, many
results are presented in terms of the Moore-Penrose pseudoinverse. Another
approach might have been reduction to a canonical full rank form of the model,
as carried out by Zyskind (1967) in the fixed sample size case. Lemma 3 and
the proof in Section 8 also indicate how the pseudoinverse might be avoided.

2. Definitions and notation. The random n X 1 vectors X(r) are regarded as
defined on some measurable space (Q, <2). If p, is a probability measure cor-
responding to the regression vector ¢, then the model may be described by

Yo X(1) dpty = HO
and
(o [X(r + 5) — HOX(s) — HOY dpty = R(7) -

The prime always denotes Hermitian transposition. This description of the
model as a process governed by one of a family of measures is statistically more
accurate than the usual view of the model as the sum of a regression Hf and a
residual X(r) — HO (see the discussion in Adenstedt and Eisenberg (1974) on this
point). When ¢ is a continuous parameter the function R(r) is assumed continu-
ous, so that the components of X{(¢) are continuous in mean under each 6. Thus
the sample mean 7 exists as a mean square integral.

The measure s, corresponding to # = 0 will play a special role in the sequel.
E will denote expectation with respect to 1, while equalities between and claims
of uniqueness for random variables are understood to be modulo y,. L*(¢,) means
L¥Q, <, p,) while the observation period is {1, 2, - - -, r} in the discrete case and
[0, 7] in the continuous case. Dependence on  is usually suppressed and, unless
otherwise indicated, limits are taken as © — oo.

As in Rao (1965), a linear parametric function has the form ¢ = b6 with b a
constant p X 1 vector. ¢ is estimable iff b is in the column space &' (H') of H'.
A linear unbiased estimator (LUE) for an estimable ¢ = 5’ is defined as any
random variable that either has the form

(l) SZ = ’Ile wv'X(tv) 4 H' Z w, = b

for some n x 1 vectors w, and parameter values 7, in the observation period,
or that is the limit in L*(g,) of such forms. In the latter case the same sequence
coverges in L?(y,) for each 6, so this definition makes intuitive sense. See Kuk
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and Petunin (1973) for a detailed discussion of how LUE’s are defined in this
type of model. Since

Var§ = { | — b0 dp, = E|J|?

does not depend on @ for the estimator (1), it is natural to regard E|J|* as the
variance of an arbitrary LUE.

If ¢ = b6 is estimable then there is an n X 1 vector w with H'w = b, and
w' is a LUE for ¢. The primary interest in this paper is in comparing per-
formance of w'ri with the BLUE ¢y, , i.e., the (unique) minimum variance
LUE for ¢.

The LSE 6, for 8 is a value that minimizes

Zi= [X(7) — HOT[X(r) — HO]
= L= [X() — A [X(1) — ] + (R — HO)' (i — HO)
in the discrete case and
§; [X(1) — HOY[X(r) — HO)dr
= {5 [X(t) — m)[X(t) — m]dt + «(rh — HE)'(n — HO)
in the continuous case, thus minimizes (#: — H6)' (i — H#). The LSE for an
estimable ¢y = b0 is then ¢, = b, Implementation of the criterion leads,
as in Watson (1967) to ¢, s = w'ris where w is in & (H) and H'w = b.
Results will be stated, and analysis carried out, in terms of well-known spec-
tral representations. Thus
(2) R(t) = § e dF(2),

where the n x n matrix-valued spectral distribution function has Hermitian
nonnegative (meaning positive semi-definite) increments dF(4). The integral in
(2) is understood to be over [ —m, 7] in the discrete case and over (— oo, co0) in
the continuous case, a convention used throughout for integrals with unspecified
limits. Similarly
X(t) = (e dZ(3),

where each component of the random n X 1 vector Z(4) is in the L*(s,)-linear
span of the corresponding component of X{(#) and (cf. Rozanov (1967))

EdZ(2)dZ(,)’ = dF(A) for 21=1,,
=0 for 2 * /21 .
Some of the results are described in terms of Moore-Penrose pseudoinverses of

matrices. This generalized inverse is descriptively defined for any rectangular
matrix 4 by

A+ = lim,_, (A'A + *1)' A" = lim, o A/(A4' + 3*),

where /, as throughout, represents the identity matrix of suitable dimension.
An alternate definition, useful for proving identities, states that 4* is the unique
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matrix satisfying the Penrose (1955) conditions: (AA*) = AA*, (ATA) = A*A,
AA*A = A and A*AA* = A*. A thorough reference on properties and appli-
cations of the pseudoinverse is Albert (1972). One pleasing use is in the possi-
bility of explicitly representing the LSE of an estimable ¢ = 4’6, namely by
$rs = b'H+m. Among other easily proven facts used are: (4')* = (4+) = A'*;
At = (A'A)rA'; AA*, AYA, ] — At4 and I — AA* are the projection matrices
respectively onto &(A), €(A4’), the null space .#7(A4) of 4 and _#7(A4’); and for a
projection matrix P, P(AP)* = (AP)* and P(PA’AP)* = (PA'AP)*P = (PA'AP)*.

3. Assumptions and results. As is well known, the n X n matrix-valued
spectral measure dF(4) in (2) may be decomposed by

dF(2) = dFg(2) + (27)f(2) dA .

Here the n X n matrix f(4) is Hermitian nonnegative for all 2 while (every entry
of)) the spectral measure dF(4) is singular with respect to di. dFg(1) encompasses
both discrete and singular parts of the spectrum.

The following regularity conditions are imposed on the above decomposition:

(C1) f(#) is continuous and nonsingular at 2 = 0;

(C2) Fy(2) — Fg(—2) is constant (= dF(0)) in 0 < 2 < ¢ for some ¢ > 0;

(C3) (discrete case) f(4) is nonsingular for almost all 2 and |g(2)]*/(2)~" is
integrable over [ —x, =] for some trigonometric polynomial g(2);

(C3) (continuous case) f(2) is nonsingular for almost all 4 and (1 +

A%)~%q()*f(2)~" is integrable over (— oo, co) for some positive integer d and func-
tion of the form g(2) = >}_, ¢, e~ "%,
These assumptions are the matrix equivalents of similar assumptions made in
Adenstedt and Eisenberg (1974). One may easily show that (C3) implies that
X(t) is a nondeterministic process. It should be noted that none of the conditions
is required for Theorem 1 (below) and that all are used only in the proof of
part (b) of Theorem 2.

When the spectrum contains a singular part, there may be estimable functions
that cannot be consistently estimated. The first theorem concerns the limits of
the variances of LUE’s of interest.

THEOREM 1. (a) For every n X 1 vector w,
3) lim,_., Var w'i = w' dF(O)w = y(w) .
(b) For any estimable ¢ = b'0,
(4) lim,_,, Var ¢y = inf {y(w): H'w = b} = 7, .

(c) For every b in & (H') there exists a w satisfying H'w = b and y(w) = r,.
For H'w = b, y(w) = 7, iff dF(0)w € &(H).

(d) lim Var ¢, = 7, for every estimable ¢ = b'0 iff Z(H) is invariant under
dF(0).
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It is shown in Section 4 that w satisfies H'w = b and y(w) = 7, iff it has the
form

(5) w = {I — [P, dF(0)P,]* dF(0)}H'*b + P,v,

where
P,=1— HH*

is the projection onto .#(H’),
(6) P, = P{I — [P,dF(0)P,]*P, dF(0)P}

is the projection onto .#(H') n _#(dF(0)), and v is an arbitrary n X 1 vector.
Also

(7) 7, = H*MH'*b ,
where
(8) M = dF(0) — dF(0)[P, dF(0)P,]* dF(0) .

The second result concerns the rate of convergence of estimator variances,
which should be of interest whether or not the estimators are consistent.

THEOREM 2. (a) For every n X 1 vector w,
%) lim,_, t[Var w'm — y(w)] = w/f(O)w = p(w) .

(b) For every estimable ¢ = b'0,
(1) lim,_. 7(Var oy — 74) = inf {o(w): H'w = b, 7(w) = 7.} = p, .

(c) For every b in Z(H') there is a unique w satisfying H'w = b, y(w) = r, and
p(W) = 0y-

(d) limz(Var ¢ s — 7,) = p, for all estimable ¢ = b'0 iff <(H) is invariant
under both dF(0) and Nf(0), where

N=1I-S8*S
is the projection onto the null space of
(11) S = dF(0) — M = dF(0)[P,dF(0)P,]* dF(0).

It seems natural to call the LUE w'r for ¢y = b'0 asymptotically efficient (rela-
tive to dyry) if (W) = 7, and p(w) = p,. This differs somewhat from the usual
definition, that Var ¢y, ,/Var w'rit — 1, but reduces to the same thing when dF(0)
is nonsingular or vanishes. It is shown that p, > 0 for b = 0, with

(12) 0, = O'{H'[Nf(O)N]*H}*b,
and that w'sm: is an asymptotically efficient LUE for 5’6 iff
(13) w = [Nf(O)N]*H{H'[Nf(O)N]*H}*b .

The right side of (12) reduces to the familiar &'[H'f(0)"'H]*b when dF(0) = 0.
Obviously the matrix S in (11), or more precisely its null space, plays an



ESTIMATORS FOR A CONSTANT REGRESSION 1115

important role in the model. As seen from (8), S is a measure of the perform-
ance of the sample mean #: for estimating the mean m, for dF(0) is the limit of
the covariance matrix of # while M is the limit covariance matrix of #ig, .

The above results are proved in the remainder of the paper as follows: Theo-
rems 1 and 2 (a) in Section 4; Theorem 2 (c) in Section 5, Theorems 2 (b) and
(d) respectively in Sections 7 and 8. Section 6 contains some lemmas needed in
the proofs. All quantities so far defined will have the same meaning in the
sequel.

.4. Proof of Theorems 1 and 2(a). In the discrete case
Var w'it = w' § c72| 31, e3 2 dF(A)w

and application of the dominated convergence theorem, with use of properties
of Féjer’s kernel, yields (3). By condition (C2),

T(W) = W § e T Dias €P dF(R)w
for some ¢ > 0, so that
o[Var Wi — p(w)] = W' s, 7| Sicy € dF (2w
+ W me) S e A(2) daw

(9) then follows by dominated convergence, properties of the Féjer kernel, and
assumption (C1). The proof of (3) and (9) for the continuous case are identical
to the above with 7 e** replaced by {; e** dt.

Now y(w) = w’' dF(0)w is just the variance of w'Y in the fixed sample size re-
gression model Y = HO + dZ(0), so y, is the variance of the BLUE for ¢ = 4’6
in this model. Parts (c) and (d) of Theorem 1 are therefore simply restatements
of results given by Zyskind (1967) in his Theorem 3 and Theorem 2 (part 8).

Albert (1972) in his Chapter VI shows that w satisfies H'w = b and minimizes
r(w) iff it has the form

w=[I — (VP)*V]H"*b + P,v,

where V' = dF(0)! (the unique Hermitian nonnegative square root), P, = I —
HH*, P, = P,[I — (VP,)*VP,], and v is an arbitrary n x 1 vector. As the pro-
jections P, and I — (VP))*VP, commute, P, is also a projection, namely onto
A(H'Y 0N A (VP) = A (H') n A4 (V). The representations given in (5) and
(6) follow from the above since (VP,)* = (P,V*P))*P,V = (P,V?*P))*V. Calcu-
lation of y(w) with w given by (5) also yields (7) after some use of pseudoinverse
properties. The right side of (7) may be reduced to &'[H’ dF(0)~'H]*b when
dF(0) is nonsingular, but some facility with pseudoinverses is required to prove
this.

The following almost obvious lemma is needed in the proof of part (b) of
Theorem 1.

LEMMA 1. Letbe &€ (H'). If wisgiven by (5)and H'w, = b, then w, dF(0)w = 7,.
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Proor. Since dF(0)P, = 0, it follows from (5) and (8) that dF(0)w = Mw.
Also MP, = dF(0)P, = 0, whence

(14) M = HH*MHH* = HH*MH'*H' .
But b = H'w = H'w,, so from (14) and (7)
w/ dF(O)w = w/Mw = H*MH'*b = 7, .

Let ¢ = b'0 be estimable. Now (3) implies that lim sup Var G < 74, SO tO
establish (4) it suffices to show that Var ¢y, = 7,. In fact, it is enough to show
that Var ¢ > 7, for any LUE of the form (1). Since this is obviously true if 7,
vanishes, take y, > 0. For w given by (5) and the random variable ¢ =
w'dZ(0)[y, in L¥(1,) it is seen that E|¢|* = 1/y, and that EX(f)¢ = dF(0)w/r, for
all . From Lemma 1, therefore E¢$ = 1 when ¢ is given by (1). The Schwartz
inequality then yields E|J[* = 1/E|¢|* = 1,, as desired.

5. Proof of Theorem 2(c). The fundamental theorem of least squares states
that, for a given vector z and matrix 4 of suitable dimensions, there exists a
vector x, minimizing ||z — Ax||* = (z — Ax)"(z — Ax). Moreover, x, is unique
up to an additive vector in _#7(4).

As noted, H'w = b and y(w) = 7, iff w has the form (5). Therefore

p, = inf,||W{I — [P, dF(0)P,]* dF(O)}H'*b + WPp|*,

where W = f(0)t. The least squares theorem cited above implies that the in-
fimum is attained for some v, unique up to an additive y e .#(WP,). But W is
nonsingular by (C1), so that P,y = 0 for such a y. It follows therefore that the
w given by (5) with v = v, is the unique vector sought in Theorem 2 (c).

While it is possible to write this “best” w in terms of pseudoinverses, the
expressions are lengthy and reduction to (13) is tedious. Therefore proof of (12)
and (13), in another way, is deferred to Section 7.

6. Four lemmas. The results proved in this section are needed to establish
the remainder of Theorem 2.

LEMMA 2. (a) The Hermitian matrix S in (11) is nonnegative. (b) For H'w = b,
(W) =7, iff SwW=0. (c) s=dim.#(S)>=r=rankH. (d) rank H'K =r
for any n X s matrix K whose columns span 4 (S).

Proor. (a) Follows from (11) and the easily proven fact that Hermitian non-
negative matrices have Hermitian nonnegative pseudoinverses. (b) From (7)
and (14), w'Sw = y(w) — r, when H'w = b. (c) Choose linearly independent
vectors by, - - -, b, in (H’) and then n x 1 vectors w,, - - -, w, such that H'w; = b;
and y(w;) = To; forall j. The w; are in _#7(S) and are easily seen to be linearly
independent. (d) Let b,, ---, b, and w,, - - -, w, be as in the proof of (c). Then
clearly rank H'K, = r, where the columns of the n X s matrix K, include
Wy, - -+, w,and form a basis for _#7(S). The statement follows because K = K, B
for some nonsingular s X s matrix B.
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LEMMA 3. Let K be an n X s matrix whose columns form an orthonormal basis
for _A(S) and let Q be an n X r matrix whose columns form an orthonormal basis
for &(H). (a) H = QJ where ther X p matrix J has rank r and JJ* = I = J'*J".
(b) H* =J*Q'. (c) If A is a square matrix for which Q" AQ is nonsingular then
(H'AH)* = J*(Q'AQ)"'+. (d) If K'AK is nonsingular then (NAN)* =
K(K'AK)'K’. (e) rank Q'K = r.

Proor. (a) Clearly H = QJ where J = Q'H, and it is easy to see that
rank J = r. Therefore J* = J'(JJ')~* and JJ* = I. (b) and (c) may be verified
by the Penrose conditions with Q’Q = I, as may be (d) with ¥ = KK’. (e) Fol-
lows obviously from Lemma 2(d).

LEMMA 4. Let A, be a Hermitian positive definite matrix that converges to

[Nf(O)NT* as t — oo. Then
lim, . (H'A, Hy* = {H'[NfO)N]*H}* .

Proor. By (Cl) and Lemma 3 (¢), both K’f(0)K and Q’K[K’f(0)K]'K’'Q are
nonsingular. K and Q here are as in the previous lemma. Therefore

_—

(15) [NO)N]* = K[K'f(O)K]'K’

and

(16) {H'INFONT*H} = JHQ'K[K'(0)K] K" Q)™
by Lemmas 3 (c) and (d). Also

(17) (H'A.H)Yt = JH(Q'4,.0)" '+,

and it is not difficult to see that the right side of (17) converges to the right side
of (16).

LEmMA 5. lim__. [f(0) + ¢S]~ = [Nf(O)N]*.

Proor. Note f(0) + =S is nonsingular because f(0) is. A direct proof may be
based on diagonalizing S. More concisely, use of a perturbation theorem in
Albert (1972), page 50, yields

[A(0) + «S17! = [f(0) + =S]* = [PAO)P]" + O(z7")
as r — oo, where P = I — (S})*St = N.

7. Proof of Theorem 2(b). The proof of (10) will require a number of steps.
At the same time (12) and the representation (13) of the “best” w will be estab-
lished. In this section e Z(H’) and ¢ = b'0 are regarded as fixed. For the
present define

By = V{H'NON]*H)*b ,
the quantity on the right of (12).

Let w be given by (13). With aid of (15), (16) and part (a) of Lemma 3 one
obtains H'w = b. Also Nw = w, i.e., Sw = 0, so y(w) = r, by Lemma 2 (b).
A straightforward calculation shows that po(w) = w'f(0)w = B,, so one can
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conclude that 8, = p,. Since Theorems 1(c) and 2 (a) imply that

lim sup,_,, 7(Var &BLU — 7)) = 0>

the desiderata will follow from

(18) liminf,_, z(Var ¢z g — 735) = Bs
Note that in the notation of Lemma 3, (12) can be written as
(19) o = WQ{Q'K[K'O)K]K'Q} Q"W

when H'w = b. This form vanishes iff w e .#(Q’) = -#(H’), hence iff b6 = 0.
Let ¢ be the LUE given by (1). Using (7), (11), (14) and assumption (C2),
one finds that

Zv,p wv, SI1|<5 ei(t,,—tp)l dFS(Z)w,M = Zu,,u wvlsw,u + Tb
for some ¢ > 0, and hence that
(20) Vard — 7, = 3, . w,'[S + (2x)1 § et f(2) dA]w,, .

Used here is the fact that {;,, dFy(4) is nonnegative. The right side of (20) is
just the variance of ¢ calculated under the hypothesis that

1) F)=0 for 21<0,
‘ =S for 220

A little reflection now shows that, in order to prove (18), it suffices to assume
(21) and prove that then

(22) liminf = Var ¢g o = B, -

Therefore let F¢(4) be given by (21) in the rest of this section. This is equivalent
to assuming that M = 0, hence that all estimable functions are consistently
estimable.

Suppose that Y = Y_isa random p X 1 vector with components in L*(y,) that
satisfies

(23) EX()Y' = H

for all ¢ in the observation period. Then E$Y’ = &' for every LUE of the form
(1), hence for every general LUE. If 6. = EYY" is the covariance matrix of Y,
then .
0= ElSZBLU — Ve tY|' = Ekz;m.ul2 — bo b,

or Var ¢y, v = bo.*b. If Y can be constructed so that ¢, = vH’A_ H, where the
A_ are Hermitian positive definite matrices that converge to [Nf(0)N]*as 7 — oo,
then (22) will follow from Lemma 4.

Following Rozanov (1967), denote by L*dF) the class of 1 X n row vector-
valued functions u(4) with § u(2) dF(A)u(d) < oco. For such a u(2), § u(2) dZ(2)
exists and is in L*y,). The random vector Y referred to above will be con-
structed in the form Y = H’ { U(4) dZ(4), where the n X n matrix function
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U(4) = U.(4) has rows in L¥dF). (23) will certainly be satisfied if
(24) § e~ U(2) dF(2) = U(0)S + (2z)~ § e " U(A)f(A) dA = I

for all ¢ in the observation period. Note (21) is used here. Also EYY” then has
the required form tH’A_ H, where

(25) A, = 1§ U(2) dF()U(AY
= e W(0)SUOY + (2xz)~ § UA)Q)U(AY dA .

It will be necessary to show that this expression is nonsingular and approaches
[NFO)N]*.

Because of assumption (C1), the matrix (25) will certainly be nonsingular if
U(4) is continuous and nonsingular at 2 = 0. This will easily be seen to be true
for the U(4) displayed below.

In the following let C, = [f(0) + =S]~*. To exhibit U(2) the discrete and con-
tinuous cases must be considered separately. First consider the discrete case.
There is no loss of generality in writing the trigonometric polynomial in (C3) as
9(2) = Xy oc, e ** and, because of (Cl), in assuming that ¢(0) == 0. Now let

U() = 9(0)7'9(2) Lz €C.1o fIO)(A).
Clearly this matrix has rows in L¥dF) and it satisfies (24) forr = 1,2, ..+, r,
as direct calculation verifies. With this U(2) in (25),

(26)  t(z + @), = (c + a)C.,,SC.,,
+ Cr+af(0) S Kt+a(l) ‘Mrf(l)—l dlf(o)ct+a ’
9(0)

where K (1) = (27)7'| X5, €"*[? is Féjer’s kernel. By assumption (C1), proper-
ties of Féjer’s kernel, and Lemma 5 the second term on the right side of (26)
approaches [Nf(O)N]*f(O)[Nf(O)N]* = [Nf(O)N]*. The first term on the right
of (26) is identical to C,,, — C.,, f(0)C.,, and approaches zero. Thus indeed
lim 4, = [Nf(O)N]*.

The continuous case is similar. The constants 7, in the function g(1) =

¥_1c,e”"* may be taken nonnegative, with ¢(0) = 0. Defininga = max {t,,- - -,
1}, let

U(2) = 9(0)79(D)g+o( (1, + 2)7Ceyasaa ONA)
where d is the integer in (C3) and
9:(2) = §5 e dt + FI () I(—1) + €]
Clearly U(4) has rows in LXdF). (24) for 0 < ¢t < r now follows from the fact

that
2a) 7§ e g (A1 + ) ¢di=1, 0<Zt< 7,

as shown in Adenstedt and Eisenberg (1974). These authors also show that
27) lim, _., (272)7 § |91 + 2)=*h(3) di = K0)
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for any function A(2) that is continuous at 2 = 0 and integrable over (— co, o0).
(25) now becomes

A =t (t+a+ 2d)zcr+a+2dSCf+a+2d

Ceraraaf(0) § L(4 _‘I@
+ Coraras0) § LD |48

2

A d2f0)C s at2a s

where L (1) = (277)7"g,..(A))*(1 + 2*)~*¢. By an argument as for (26), with use
of (27) and Lemma 5, it follows that lim 4, = [Nf(O)N]*.

8. Proof of Theorem 2(d). As noted in Section 2, " H*r is the LSE for an
estimable ¢ = #'0. Clearly r(Var ¢, — 7,) converges iff Var ¢, — 7,, and by
Theorem 2 (a) the limit is the o(H’*b). Because of Theorem 1(d) it suffices now
to assume that &(H)is invariant under dF(0) and then to show that p(H'*b) = p,
for every b e &(H') iff (H) is invariant under Nf(0).

The set of all LSE’s ¢, coincides with the set of wHH*rm for w an n X 1
vector. Since &(H) is now assumed invariant under dF(0), by Lemma 2 (b)
SHH*w = 0 for every w, hence SHH* = 0, SH = 0, and NH = H. Thus in-
variance of (H) under Nf(0) is the same now as invariance under Nf(O)N.

In the notation and representations in Lemmas 3 and 4,

o(H'+H'w) = wHH*Nf(O)NH'+H'w

= w'QQ'KK'f(0)KK'QQ'w .
Since Q’Q = I, this expression coincides with p,,,, given by (19), for all w iff
(28) Q'KK'f(0)KK'Q = {Q'K[K'f(0)K]'K'Q}*.

Consider now the full-rank fixed sample size regression model in which an
observed random s x 1 vector has mean value K'Qd, with § an r x 1 parameter,
and covariance matrix K'f(0)K. The right side of (28) is just the covariance
matrix of the BLUE 4, for 6 in this model while, since Q’KK'Q = Q'NQ = 1,
the left side is the covariance matrix of the LSE 4,5. Applying a result of
Zyskind (1967), therefore (28) holds iff &(K’Q) is invariant under K'f(0)K.
Since N = KK’ and K'K = I, the last is seen easily to be equivalent to invariance
of €(NQ) = &(Q) = & (H) under Nf(0).
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