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ON THE OPTIMALITY CRITERION IN
COMPOUND DECISION PROBLEMS!

By SusaN D. HorN
The Johns Hopkins University

This paper shows the asymptotic equivalence of the classical and
symmetric optimality criteria for the finite state, arbitrary action compound
decision problem.

1. Introduction and notation. We consider a compound decision scheme with
its component scheme defined as

(L.1) (5 @), P X, (¥, 0,,), L)

where: (i) &7 is a set and <Zis a o-field of subsets of 27; (ii) P = {P,|0 0}
is a family of probability measures P, on (2, <#). The set O is called the
parameter or state space; (iii) X is an Z~valued random variable which is distri-
buted according to P, for some 6 € ©; (iv) % is a set called the action space and
o, is a o-field of subsets of % (v) L(x, 8, a), the loss function, is a mapping
L:Z x ® x %7 — R* (nonnegative reals) such that L(.,6,.:) isa Zx o -
measurable function for each § € ©. Then the compound decision scheme of order
N is denoted

(1.2) (&, &), Gy, Xys (¥, 0,,), L)

where N is a positive integer and (i) 22" is the N-fold Cartesian product of the
space 2~ and <Z" is the product ¢-field in =277 generated by the o-field <7 in
&£ (i) Sy =1{P,, |0y € ©"} where ©Y is the N-fold Cartesian product of 0,
Oy = (0)1-, and Py =Py x -+ x Py5 (iil) Xy = (X, - -+, X) is an 277
valued random variable which is distributed according to P, for some 8, ¢ ©%;
and (iv), (V) (% ¢,,) and L are defined as in (1.1).

A compound decision rule is an N-dimensional vector function

(1.3) Ty(xy) = (T(A|Xy), -+, Ty(A|Xy))
where for each k, ] <k < N, T,:0,, x 2% — [0, 1] is a mapping such that
for each A€o, T, (A|-) is a measurable function with respect to the usual

Borel field on [0, 1] and for each x, € 2%, T\(+ |x,) is a probability measure
on (&7, ¢ ).
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768 SUSAN D. HORN

Associated with a compound decision rule is the average risk function
(1.4) F(@y, Ty) = N7 23110y Ty)
where r,(+, T): ©¥ — R* is defined by
1@y, Ty) = § on o L(x4 0y, @) dT(a] xy) dpP, (Xy) -

One important type of compound decision rule is a simple compound decision
rule (sometimes called a simple symmetric rule) with T,(4|x,) = T(4]x,),
k=1,...,N. We denote a simple compound decision rule by T,*(x,) =
(T(A| %))r-

Given a compound decision scheme (1.2) and a specified compound decision
rule (1.3), one asks if the rule is optimal in some sense. The most frequently
used optimality criterion is the classical optimality criterion, introduced by
Robbins (1951). It is

B*(@y, Ty) = F(@y, Ty) — r*(G,,) — 0
as N — oo uniformly for all 8¢e®~

where O~ is the countable Cartesian product of O, 8, is an initial N-section of
0, G,, is a probability measure on © which assigns to each § ¢ ® mass 1/N for
each occurrence of ¢ as a coordinate of the vector 6, and r*(G,,) is the Bayes
envelope with respect to G,,, i.e.,

r%(Goy) = inf, N-* S0, r(6,, T,) = infy . 7(8,, Ty*) .

Note that r*(G,,) depends only on simple compound decision rules.

Another optimality criterion has been formulated in terms of compound
decision rules T, with components T, | < k < N, which may treat the kth
observation x, in any manner, but which treat the other N — 1 observations in
a symmetric manner. To formulate this notion of symmetry mathematically,
define H, = {z | is a permutation of the integers (1, --., N)}. For a vector
Yy = (Y, -+, Yy) denote by 7Y, the vector 7Y, = (Y, - +» Yzu). In this
notation, a compound decision rule (1.3) is a symmetric compound decision rule
(sometimes called an invariant or equivariant compound decision rule) if

(1.5) 1T y(7Xy) = Ty(Xy)
or equivalently, if T (x,) = Ty(7x,) for all permutations = € H,, all x,, ¢ Z°7,
and all N.

Let S denote the collection of all symmetric compound decision rules, i.e.
S = {Ty| 7 'Ty(rxy) = Ty(xy) for all 7 € Hy, all x, € 27", all N}. Then the
symmetry standard is

B0y, Ty) = #(0y, Ty) — infr . 570y, T,')
where infy . .5 7(@y, T,') is called the symmetry envelope.

Several authors have studied how the expression

B(8y, Ty) — B*(8y, Ty) = r*(G,,) — infrycs F(@y, Ty')
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behaves as N — oo for each @ € ©=. It has been found that even though
infy s 7Oy, Ty') < infy  F(0y, Ty*) = r¥(G,,) forall N,

these two functions are asymptotically equal in the following cases.

Define the r x s compound decision scheme to be one with component schemes
of the form (1.1) with ® = {1, ..., r}, &= {1, ..., 5}, o, the power set of
7, and L(x, 6, a) a bounded, nonnegative, real function. In the special case
of the 2 x 2 compound decision scheme with zero-one loss function, Hannan
and Robbins (1955) showed that for every ¢ > O there exists an integer N *(e)
such that

r*(G,,) — e < infy s 7(0y, Ty') < 1%(G,,)
for all N = N*(e) uniformly in @ ¢ ©=. This result was partially extended by
Horn (1968) to the r x s compound decision scheme. It was further extended by
Hannan and Huang (1972a) to the arbitrary action, finite state compound de-

cision scheme. In this note we establish an alternative to Theorem 1 of Hannan
and Huang (1972a) using a simpler measure theoretic lemma.

2. The asymptotic equivalence of the classical and symmetry standards.
We consider the compound decision scheme (1.2) with component scheme (1.1)
with ® = {1, .., r}. From definition (1.5) it follows that T, ¢S if and only
if there exists a conditional probability measure t on o, x 27 x Z277~! which
is symmetric on 2277~ and is such that foreach k =1, ..., N

2.1 T(A|xy) = ((A] X Xy")
where X,* = (x), +++, Xpo1s Xpy1> 005 Xy), 1 £k < N
The average risk function (1.4) may be written as
F(Oy, Ty) = NP 20§ 27§, L(xy, Oy a) dT(a| Xy) dP,,(Xy)
=N ZklP9k=Pi {2 Sov-1V, L(x 6, @) dT(a| xy) dPoNk(xNk)

X dPy(x,)
where P, x = Pp x -+ x Py X Py X +-- xPy,k=1,..-,N.
For a given @y let N, = #{k|P, = P, 1 < k < N}fori=1,...,rand
Ng,LENJ—l' if J:l,
= N; if j+#1i.

Using the above, the average risk function of a symmetric compound decision
rule may be written as
F(Oy, Ty)
(2-2) = N7 2N o S Sewm1 Lixs 1 @) di(a] %, X))
X [15=1 dPNii(xy") dPy(xy) .
Since the integrand is symmetric in x,', the order of the P; in []5., dP;/4: is
inessential.
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The essence of the proof of our theorem is contained in the following measure
theoretic lemma due to Horn and Schach (1970). A product probability measure
o = [ p, is said to be recurring if for each i = 1, 2, - . . there is some j > i such
that p; = p,, i.e., each factor of p occurs infinitely often. We denote by U,
the o-field of sets in <= which are invariant under all permutations of the first
N coordinates.

LEMMA. Let p be a recurring product probability measure on (7=, &). If
probability measures A and v are absolutely continuous with respect to p, then

SUPgeyy |A(B) — v(B)| — 0 as N— .

The result which we shall employ is an immediate corollary of the lemma.
For any M > 0 we define Fy(M) = {f|f is a measurable function on 27,
0 < f < M, and f is symmetric on Z7"}.

CoOROLLARY 1. Under the same hypotheses on A and v as in the lemma, for each
N=1,2, ... and any M > 0 we have

(2.3) [§ 2 fyd2 = § oo fy dv| = MSUPeyy, [A(B) — v(B)|
for all f, € Fy(M), and hence
(2.4) [§ oo fydA — § s fydy| >0 as N— o

uniformly for all f,, € Fy(M).

Proor. It is clear from the lemma that (2.4) follows from (2.3), so this is
what we must prove. But it suffices to prove (2.3) for simple functions in
Fy(M),soletfy= 37, ¢;1p, where 0 < ¢; < Mand the sets B, ¢ Uy are disjoint.
Define J, = {i|1 < i < r and [4(B;) — v(B;)] = 0} and calculate

§fydd — S fydv = 251 c[A(B;) — v(B)] = 2ies, c[A(B;) — v(B;)]
=M3e, [4(B)) — v(B)] = M[A(U:es, B) — U(UieJ_,. B))]
< Msupg.y, [4(B) — v(B)] -

The calculation for the lower bound is similar.

COROLLARY 2. Let 2, v, and Fy(M) be as defined in Corollary 1, and define
sequences of product probability measures Ay and vy, N =1,2,3, .. as follows:
for each N, 2, and v, are formed from 2 and v respectively by (separate) permuta-
tions of the first N factors only. Then

|§ oo fvdAy — § oo fyydvy| >0 as N— oo
uniformly for all f,, € Fy(M).
Proor. For each fy € Fy(M), § o fy dAy = § o fy d4 and likewise for v.

THEOREM. Let a compound decision scheme be made up of N independent
component schemes of the type (1.1) with ® = {1, ..., r}. Assume that: (i) the
probability measures Py, 0 € ©, are mutually absolutely continuous and distinct, and
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(ii) the loss function L(x, 6, a) is bounded. Then for each ¢ > 0 and each 6 ¢ ©=
there exists an integer N(e, @) such that for all N > N(e, 6),

(2.5) r*(Gyy) — ¢ < infy 05 7(0,, Ty') < 1%(G,,) .

Proor. We shall prove the theorem by using Corollary 2 to construct for each
0 € ©~ and for each symmetric rule T, an associated simple rule T,* whose risk
at @y is close to the risk of T, at 8,. Let Nand T, c S be given and let ¢ be
the associated conditional probability measure defined in (2.1).

Let @ ¢ ©= be given and let K be any element of ©® which occurs infinitely
often in §. Let R be the smallest positive integer such that 8’ = (0,,,, 0, - - +),
the R-tail of the & sequence, is recurring; i.e., each element in 8, occurs in-
finitely often. Take p = P.® x P,,; then the measure 4 is recurring.

For any integer ! define ' = (0,, - -+, 0,_,,0,,,,0,,,, ---,). Let k and k* be
integers in {I, ..., N} and suppose ¢, = i and 0, = J with i, Je ©. Define
4= Py and v = Pye. Then 2 and v are absolutely continuous with respect to
p. Let Ay = [I5., P;%it X Py, and vy = [[j-, P;¥47 X Py, _,. Observe that 2,
and v, are formed from 2 and v, respectively, by permutations of the first N — 1
factors. Hence Corollary 2 guarantees that given ¢ > 0 there exists .47,(e, 6)
such that for all N > .#7,(¢, 6)

$o Von—1 L(xy, i, a)di(a] x,, X3") 152, dPNi(XyY)
= S Sow-1L(xy, 0, @) dt(a] x;, Xy') []52, dP; Y37 (X0 — €.

Notice that the .#”above depends on @ since 1« depends on #; it also depends
on i and J, the values of the components in 8, that were omitted, but not on
the indices k and k*. This is because we integrate 1 and v against functions
symmetric in the first N — 1 components and hence we may rearrange the order
of the first N — 1 measures in 2 and v without changing the value of the in-
tegrals. If we were not restricted to symmetric functions, then .#"could depend
on k and k* and max, ;. .#7,. could approach infinity as N — co. Also note that
the precise definition of J is inessential; all we need is some fixed element of ©
that occurs in @, and does not depend on i. We can, for example, let J = 6,
in 8,.

Therefore the average risk function (2.2) of a symmetric compound decision
rule has the lower bound

(2.6) 7Oy, Ty) = NP X5 N § o dPy(x) §, § o1 L(xy, 4, @)

X dr(a|x;, Xy') [[5-1dP¥7(xy") — e for N > max, ;.o.47,(c, 0).
Note that the inner measure on the right-hand side in (2.6) depends on x, but
not on i. Also for each conditional probability measure ¢ defined by (2.1), for
eachfixed Je ©, and forall N = 1,2, 3, . . . the set function { _»_1#(4| x,, X,%) X
[I5-1dP;¥i7(x,") is a conditional probability measure given (x;). So we may
rewrite (2.6) as

2.7 FOy, Ty) = N2 307 N, (. dPi(xy) §,, L(xy, i, @) dt*(a|x,) —¢.
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Taking the infimum with respect to all simple rules on the right-hand side in
(2.7) gives

(2.8) 0y, Ty) = r*(G,,) —¢..

The conclusion (2.5) of the theorem follows since (2.8) holds for all T, € S.

A comparison of our theorem with Theorem 1 of Hannan and Huang (1972a)
shows that we have a stronger hypothesis, i.e. assumption (i) in our theorem is
stronger than their assumption of pairwise non-orthogonality of <. We do not
obtain the full strength of their conclusions; for example, they found that (2.5)
holds uniformly for all € O~ and they found a rate of convergence. The major
difference lies in the respective measure theoretic lemmata used and compared
in the addendum to Hannan and Huang (1972b). We have a much shorter
lemma, but it obtains a weaker result.
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