ISOMORPHIC $L_2(7)$ DESIGNS

BY PETER W. M. JOHN

University of Texas

Raghavarao (Ann. Statist. 1973) has given an L_2 design with b = v = 49, r = k = 9, $\lambda_1 = 3$, $\lambda_2 = 1$. It is shown that this design is isomorphic with a design given by Archbold and Johnson (Ann. Math. Statist. 1956).

Raghavarao (1973) has produced a partially balanced design with the L_2 scheme having parameters $b=v=49, r=k=9, \lambda_1=3, \lambda_2=1$.

Archbold and Johnson (1956) also obtained a design with these parameters. Raghavarao points out that it is not known whether or not these two designs are isomorphic. In this note we show that they are indeed isomorphic.

The incidence matrix of the Archbold-Johnson design, which we shall henceforth call the AJ design, is presented in diagram 3 of their paper with blocks for rows and varieties for columns. For convenience we shall number the blocks 1 through 49; the authors number them differently by associating each block with a 'prime' in a geometry. The first seven rows of the incidence matrix consist of seven square submatrices A, 0, B, C, 0, 0, where 0 has every element zero and

1 1 0 1 0 0 0	0001101	0 0 1 1 0 1 0
0 1 1 0 1 1 0	0 1 0 0 0 1 1	1 1 0 1 0 0 0
0 0 1 1 0 1 0	1 0 0 0 1 1 0	0 1 0 0 0 1 1
$A = 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1$	$\mathbf{B} = 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0$	$C = 1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0$
1000110	1 1 0 1 0 0 0	1 0 1 0 0 0 1
0 1 0 0 0 1 1	1 0 1 0 0 0 1	0 0 0 1 1 0 1
1 0 1 0 0 0 1	0 0 1 1 0 1 0	0110100.

The first block consists of varieties 01 02 04 18 19 21 24 25 27. To obtain the next set of seven blocks (8 through 14) these submatrices are moved cyclically one place to the right, giving 0, A, 0, B, C, 0, 0, and so on. We denote these sets of seven blocks each by I, II, ..., VII.

In Raghavarao's design the varieties are represented, following Bose (1939) by i_j where $0 \le i \le 6$ and $1 \le j \le 7$. He obtains seven sets of seven blocks by developing cyclically seven initial blocks. We shall show in the next section that these sets are isomorphic with I, II, ..., VII.

The isomorphism. In Table 1 we show the mapping of the varieties from Raghavarao's scheme into the AJ design. Raghavarao's 0₂ maps into 18 in the AJ design, and so on.

Received August 1973; revised June 1974.

AMS 1970 subject classifications. Primary 62K10; Secondary 05B05.

Key words and phrases. PBIB designs, isomorphic designs, Latin square schemes.

www.jstor.org

TABLE 1

		Rag	hav	arac)			Ar	chbo	old-J	ohn	son	
01	11	21	31	41	51	61	01	02	03	04	05	06	07
0_2	1_2	$\mathbf{2_2}$	3_2	4_2	5_2	6_2	18	21	20	19	16	15	17
0_3	1_3	2_3	3_3	43	5_3	6_3	41	40	42	36	39	38	37
0_4	14	24	34	44	5_4	64	24	25	23	27	22	28	26
05	15	25	35	45	5_5	65	33	31	29	30	35	32	34
06	16	26	36	46	56	66	44	48	46	49	45	47	43
07	17	27	37	47	57	67	14	08	12	10	13	09	11

The jth of Raghavarao's seven initial blocks is

$$(0_j, 1_j, 3_j, 0_x, 1_x, 3_x, 0_y, 1_y, 3_y)$$

with $1 \le j \le 7$, x = j + 1 and y = j + 3 (x, y are reduced mod seven).

The set of blocks generated by the second initial block is mapped into the blocks of set III of the AJ design, taken in the order 18, 20, 19, 16, 15, 21, 17. The complete correspondence of the blocks is shown in Table 2.

TABLE 2

Initial block	Set in AJ	Order of blocks in AJ							
1	I	1, 2, 3, 4, 5, 6, 7							
2	III	18, 20, 19, 16, 15, 21, 17							
3	IV	24, 22, 27, 26, 28, 25, 23							
4	II	14, 12, 9, 10, 13, 8, 11							
5	V	30, 35, 29, 34, 32, 31, 33							
6	VII	48, 45, 46, 49, 44, 47, 43							
7	VI	40, 39, 42, 36, 38, 37, 41							

REFERENCES

- Archbold, J. W. and Johnson, N. L. (1956). A method of constructing partially balanced incomplete block designs. Ann. Math. Statist. 27 624-632.
- [2] Bose, R. C. (1939). On the construction of balanced incomplete block designs. Ann. Eugenics 9 353-399.
- [3] RAGHAVARAO, D. (1973). Method of differences in the construction of $L_2(s)$ designs. Ann. Statist. 1 591-592.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF TEXAS AUSTIN, TEXAS 78712