The Annals of Statistics
1975, Vol. 3, No. 3, 669-679

CHOICE OF AN OPTIMUM SAMPLING STRATEGY—I

By M. K. RAMAKRISHNAN
University of Singapore

The problem of finding an optimum sampling strategy from the class
of all linear unbiased strategies with a given expected sample size is con-
sidered. The paper deals with the properties of admissibility, completeness
and strong admissibility of the Horvitz-Thompson strategies.

1. Introduction. One main feature of the theory of survey sampling which
distinguishes it from other parts of statistical inference is that the randomness
involved in survey sampling is deliberately injected by the statistician, and fur-
thermore, the nature of this randomness is within certain limits at the disposal
of the statistician. As a result, the problem in survey sampling is not just to
choose an optimum estimator but to choose an optimum combination of sampling
and estimation procedures.

In this series of papers we intend to study systematically the central problem
of the choice of an optimum combination of sampling and estimation procedures.
In this paper we discuss the problem of finding an optimum sampling strategy
from the class LH*(y) of all linear unbiased strategies with a certain expected
sample size ¢. After proving the admissibility of any Horvitz-Thompson strat-
egy (HT-strategy, for short) we show that the set of all such strategies is not
complete in LH*(y) in situations of practical interest.

After noting that there does not exist a hyperadmissible strategy in LH*(y)
we introduce a new criterion called “strong admissibility” which is stronger than
admissibility but weaker than hyperadmissibility. We prove that the set of all
HT-strategies in LH*(y) is complete in LH*(y¢) with respect to strong admis-
sibility.

2. Notations and definitions. Let U denote the population consisting of N
units, denoted by the integers 1, 2, - .-, N. If the variate value associated with
the unit i is y,, i =1,2, ..., N, then y = (y, y», - -+, yy) is a point in R, the
N-dimensional Euclidean space, and the population total is a function on R,
given by

(1) Y= Y(y) = 5

A nonempty subset s of U is called a sample and S denotes the set of all possible
samples s. A real function p on S, such that

2) p(s) =0 forall s, >pis) =1
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is called a (sampling) design. For a design p let

(3) 71'1’([)) = Zsai P(S) 1 é i é N
and
(4) n-ij(P) = Zs:—)i,y’ P(S) 1 é li] é N

where in (3) the sum is over all samples that contain the unit i and in (4) the
sum is over all samples that contain the units i and j. They are called the first
and second order inclusion probabilities respectively and they play an important
role in the choice of optimum sampling strategies.

The conventional problem in survey sampling is to estimate the population
total Y by observing the values of y, for which i e s, where s is a sample drawn
according to a design p.

DEFINITION 2.1. As estimator e is a real-valued function on S x R, which
depends on y only through those y, for which i e s, that is e(s, y) = e(s, y’) for
any two y, y’ such that y, = y,/ for all ie s.

From practical considerations it is evident that the estimate e(s, y) need not
be defined for those samples for which p(s) = 0. An estimator is said to be
linear if it is of the form

(3) e(s,y) = 21l b(s, i)y,
where b is a function on S x U such that b(s, i) = 0 if i ¢ s.

Let M(e, y) denote the mean squared error (mse, for short) of an estimator e.
If e is unbiased the mean square error is the same as the variance and is denoted
by V(e, y). Godambe (1955) has proved the celebrated result that for any design
p there does not exist a uniformly minimum variance (umv, for short) estimator
in the class L*(p) of all linear p-unbiased estimators of the population total.
However, later Godambe (1965), Hege (1965) and Hanurav (1965) pointed out
some exceptions to the theorem and gave nontrivial designs where best estimators
exist. Such designs were called unicluster designs by Hanurav (1965).

DEFINITION 2.2. A design p is said to be a unicluster design if s, 5, € S, 5+ 5,
implies 5, N s, = @ where § is the set of all samples for which p(s) > 0.

DEFINITION 2.3. With respect to a design p, an estimator e, belonging to a
class D of estimators is said to be admissible in D if for no other estimator e € D,

(6) M(e, y) = M(ey, y)
for all y € Ry, strict inequality being true for at least one y € R,,.

DEerFINITION 2.4. A design p together with an estimator e of Y is called a
(sampling) strategy for the estimation of Y and is denoted by (p, e) or sometimes
just by H.

A strategy (p, e) is said to be unbiased for Y if e is p-unbiased for Y. The
expectation, variance or mean square error of a strategy are defined as the
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expectation, variance or mean square error of the corresponding estimator.
Analogous to the Definition 2.3 of admissibility of an estimator we have

DEFINITION 2.5. A strategy H, belonging to a class 57 of strategies is said to
be admissible in 52 if for no other strategy H ¢ 57,

() M(H,y) < M(H,, y)
for all y € Ry, strict inequality being true for at least one y € R,,.

A principal hypersurface (phs, for short) of R, is defined as a linear subspace
of all points y = (y,, y,, - - Yy Withy, =y, = ... =y, =Owhere0 <k < N
and (i, i,, - - -, i,) is a subset of (1,2, ---, N). Clearly the whole space R, cor-
responds to the case k = 0 and there are, in all, 2¥ — 1 phs’s of R,. Let 5% be
a class of strategies for the estimation of Y.

DEFINITION 2.6. H, e &7 is hyperadmissible in 57, if it is admissible (Defini-
tion 2.5) in 22" when we restrict y to any of the 2% — 1 phs’s of R,.

DEFINITION 2.7. A subclass 227, of 2# is said to be complete in 57 if for
any H,e 57 — 27, there exists an H, € 57, such that

(8) M(H,, y) = M(H,, y)
for all y e R,. Further, if every H, e 57, is admissible in 57, 97, is called a
minimal complete subclass of 57

Evidently if one wants to search for an optimum sampling strategy from
among members of 57" one may restrict one’s attention to any complete sub-
class of 57.

3. Completeness of unbiased strategies. A strategy H = (p, e) is said to be
linear unbiased if e € L*(p). The expected sample size of a strategy H = (p, e)
is defined as p(H) = Y], n(s)p(s) where n(s) is the number of units in s. Let
AH(p), H*(¢) and LH*(y) respectively denote the classes of all, all unbiased and
all linear unbiased strategies with expected sample size g, a given number.

THEOREM 3.1. The class H*(u) is complete in AH(p) if and only if p = N.

PROOF. Suppose p < N and that H*(x) is complete in 4AH(¢). Let p, be a
sampling design with expected sample size ¢ and p,(s,) = (¢ — 1)/(N — 1) where
s, denotes the sample consisting of all the units in the population. Consider the
strategy H, = (p,, ;) where

e(s,y)=Y  for s=ys,
=34 for s+,

and J a nonzero real number. By hypothesis there exists an H, € H*(z) such that
©®) V(Hy y) = M(Hy, y) = (N — p)/(N — 1)(6 — Y)*.
If Hy = (p, e) it follows from (9) that e(s, y) = é for all s and y except perhaps
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for the sample s,. Since H, is unbiased it is clear that p(s;) > 0 and e(s,, y) =
(Y — 3(1 — p(s0))/p(s0) s0 that

(10) V(Hy y) = (1 — p(s0))/[p(s0)(3 — Y)*.

Comparing (9) and (10) we get p(s)) = (N — 1)/(2N — ¢ — 1). The expected
sample size of Hy = Np(s,) + 1(1 — p(s))) = 1 + (N = 1)}))2N—p — 1) > p, a
contradiction. If y = N, clearly H*(x) has a member H, with V(H,, y) = 0 for
all y e Ry. The proof of the theorem is complete.

REMARK 3.1. From the above theorem we see that H*(u) will not be com-
plete in AH(u) except in the trivial case ¢ = N, that is, when we have a complete
census. In practice, # < N, and so one cannot exclude biased strategies from
the point of view of mean square error criterion alone.

4. Horvitz-Thompson strategies. A particular unbiased estimator suggested by
Horvitz and Thompson (1952) has received much attention recently. It is called
the Horvitz-Thompson estimator (HT-estimator, for short) and is defined by

(11) €(s, ¥) = Xies Vil ™

where 7, i = 1, 2, - .-, Nare the first order inclusion probabilities for the units.
In the sequel the HT-estimator will always be denoted by é. Any strategy
H = (p, &) where & is the HT-estimator for the design p is called a Horvitz-
Thompson strategy (HT-strategy for short) for the estimation of Y and its vari-
ance is given by

(12)  V(H,y) = N(

i~ )t B E (S~ )y

THEOREM 4.1. Any strategy H, = (p,, €) € H*(y) is admissible in H*(u).
Proor. Given any strategy H, = (p,, e;) € H*(¢) with

(13) 2 pi(s)e(s; ¥) = X1 pul$)€(s> ¥)

for all y we shall show that the strict inequality in (13) cannot hold at any point
y. Applying (13) at the origin and remembering that e, is an estimator, we have,
for every s with p,(s) > 0

(14) e(s,y)=0 if y,=0 forall ies.

Next consider a point y’ which has only one non-vanishing coordinate, say y,’.
Unbiasedness of e, at y’ together with (14) gives >7,,, p,(s)es(s, y') = y,/, so that
by the Cauchy inequality

(15) Dissi Pi(8)e(s, ¥') 2 ¥ mi(py) -

Applying (13) at y’ and using (15), we get =,(p,) = =, (p,). Since i is arbitrary
and p(H,) = p(H,) it follows that

(152) m(p) = 7p) =7 (s2y) s I<i<N.
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We also obtain that the sign of equality must hold in (15) and consequently
(15b) e(s, ¥) = yi/m,

for any s with p,(s) > 0 and any point y such that the set of coordinates Vis
j € s include only one non-vanishing coordinate y,. Next consider a point y”
which has only two non-vanishing coordinates, say y,”, y,””. Unbiasedness of e,
at y” together with (14) and (15b) gives },., ; pi(s)e(s, ¥') = 7, ,(p)(y." |7, +
yi'[x;), so that by the Cauchy inequality

n "\ 2
(150) Zsai,j Pl(s)elz(s’ vy = ”ij([’l) <y7;— + _}’;_) .

3 7r’

Applying (13) at y” and using (15a) we get

"2 12
(154)  Banes (s, ¥) S mlp) (L5 + 20 4 22l gy
T, T; T, T,

Comparison of (15¢) and (15d) gives x,;(p,)y.”"y;” < 7,4 po)y:""y;"> and since the
sign of y,’y,”” may be positive or negative it follows that =,,(p,) = 7,,(p,). As i
and j are arbitrary we see that the first and second order inclusion probabilities
of p, and p, coincide. Let ¢, be the HT-estimator for p,. Then ¥, p,(s)2(s, y) =
21s Po(5)&%(s, y). Thus the strict inequality cannot hold in (13), for otherwise &,
would be inadmissible for the design p,. Hence the theorem.

REMARK 4.1. From Theorem 4.1 it follows that there does not exist a best
(in the sense of uniformly minimum variance) strategy in H*(y) for there are at
least two, in fact infinitely many, HT-strategies belonging to H*(p).

REMARK 4.2. Neither of two HT-strategies with the same expected sample
size is better than the other since both of them are admissible.

REMARK 4.3. Given an unbiased strategy H with p(H) < p, one can easily
construct another strategy H' € H*(¢) such that V(H’, y) < V(H, y) forally ¢ R,,.
Hence it follows that Theorem 4.1 remains valid with H*(u) replaced by H*(< y)
where H* (< ) denotes the class of all unbiased strategies with expected sample
size less than or equal to p.

Let HT(z) denote the class of all HT-strategies with expected sample size .
The following theorem shows that in situations of practical interest we cannot
exclude strategies other than the HT-strategies using the criterion of minimum
variance alone.

THEOREM 4.2. The class HT(p) is complete in LH*(y) if and only if 4 = 1 or N.

Before proving the theorem we digress a little to prove a generalization of a
result due to Joshi (1966). Removing the condition of unbiasedness and con-
sidering squared error as loss function we establish the admissibility of a par-
ticular strategy in the class AH(z) of all strategies with expected sample size ..
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In the sequel e* will denote the estimator given by

16 *(s,
(16) e¥(s,y) = ()Z Vi

where n(s) is the number of units in s. Concerning this estimator Joshi (1966)
has proved the following two theorems.

THEOREM 4.3. For any design p, the estimator e* is admissible for Y in the class
A(p) of all estimators.

THEOREM 4.4. For any design p of fixed size u, the strategy (p, e*) is admissible
for Y in the class AH(y) of all strategies H with expected sample size p(H) = p.

We now generalize the latter of these two results to cover some cases when p
is not of fixed size.

THEOREM 4.5. Let p be a design of expected size pt, put m = [p] (= the integral
part of p) and f = p — m (= the fractional part of ), suppose that

(17) Vy(n(s)) =f1 = f) -
Then the strategy H = (p, e*) is admissible in AH ().
In order to prove the theorem we require the following

LEmMA 4.1. (Joshi (1965)). If

(a) Y1 Ya» + -+ yy are independently and identically distributed random variables,
(b) ¢,(y) is a real function of y,, y3y + -+, Y, forn=1,2, ..., N,
©) J.=A/n) 22,y forn=1,2, , N,

(d) for every common finite discrete frequency function w of Vi Vas + 0> Voo
'anw(¢n(y) - 0)2 é Zn:l :Ew(yn - 0)2 ’
E,, denoting the expectation, 6 the common mean of y,, y,, -+, yy and Ay, Ay, - - -,
A, being arbitrary constants, then for every y = (yy, ¥y +++» Yy) € Ry we have

?.(Y) = J, for all n for which A, + 0.

Proor oF THEOREM 4.5. Suppose the theorem is not true. Then there exists
a strategy H' = (p/, ¢’) such that y(H’) = x and
(18) M(H',y) < M(H,y) forall yeR,
with strict inequality for at least one y. Let S’ be the set of samples s for which

P'(s) > 0, and let S denote the corresponding set for the sampling design p.
Evidently

(19) Vp(n(s)) =f(1 _f) = Zs:n(s)=k P(s) =1 —f for k=m
=f for k=m-++1.
Clearly

(20) 2 n(s)p'(s) = Zn(s)p(s) = m + f
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and

(1) L PE)E(sy) = Y) = 5 pis)(er(s, y) — Y)

where strict inequality holds for at least one y € R,. Taking expectations on
both sides of (21) with respect to a prior distribution on R, under which
Y1» Ya» -+ +» Yy are distributed independently and identically with mean 6 and
variance ¢°, we get

(22) L P(OEE(s, y) — Y) < X p(s)E(e*(s,y) — Y)*.
Defining
(23) g'(5,y) =[N —n(®)] (€5, ¥) — Zies Vi)

and making use of the fact that y,, y,, ---, y, are independently distributed,
we get

(24) E@(s,y) — Y)) = (N — n(s))’E(9'(s, y) — 0)* + (N — n(s))a*.
Similarly

(25) E(e*(s,y) — Y)' = (N — n(s))’E(J, — 0)* + (N — n(s))o*

where J, = (n(s))™! X;e. ;- Now substituting (24) and (25) in (22) and cancel-
ling out the common terms, (22) becomes

(26) X PEWN — nE))EQ'(s,y) — 0) = 2 p)N — n(s)E(Q, — 0)* .
Putting ¢’(s, y) = J, -+ #/(s, y) and noting that E(y, — 0)* = ¢*/n(s) we have from

(26), after cancelling out the common term,

P ()N — n(s)lE(h™(s, y))

(27) +22P®W—”®WWVJMM—M+WWQ}T?
aIN? f f
=N ( + m 4 1>
Clearly
(28) F PO — s pt
n(s)

where p, = Y1 p/(s) where the summation is taken over all those samples s
which contain exactly i/ units. One can easily check that

(29) mrbiz il Lo

Combining (27), (28) and (29), we have
(30) X PN — n(s)E(h™(s, ¥))
+ 22 PN — n($s)yE(R (s, y)(F, — 0)) = 0.

The inequality (30) is equivalent to the inequality contained in clause (d) in
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Lemma 4.1 and hence using the lemma, it follows that for all s such that
P'(s) > 0 we have

(31) H(s,y) =0
so that for such samples s we get ¢'(s, y) = y, and by (16) and (23)
(32) e'(s,y) = e*(s, y) if p'(s) > 0.

Because of (31) the first two terms in the left-hand side of (27) vanish, and hence
due to (29) the sign of equality must hold in both (27) and (29), so that the
sampling design p’ is such that

(33) V() = f = 1)

We shall now show that the strict inequality in (18) cannot hold. Since e* is a
linear estimator the mean squared errors of the strategies H’ and H are quadratic
forms in y,, y,, - - -, yy given by

MH',y) = 20 Dili=190): 5
MH,y) = X 2i=19):); -
Using the first order inclusion probabilities one can easily show that

(34) (@ —ay)=0. .
From (18) and (34) it follows that a; = a,; for all i and j. Hence M(H',y) =

M(H, y) for all y € Ry, and thus the strict inequality in (18) cannot hold. The
proof of the theorem is complete.

REMARK 4.4. We get Joshi’s Theorem 4.4 by putting f = 0 in Theorem 4.5.

REMARK 4.5. Given a strategy H with p(H) < p, one can easily construct
another strategy H' with y(H') = p such that M(H’, y) < M(H, y) for all y € R,,.
Hence it follows that Theorem 4.5 remains valid with AH(y) replaced by
AH (< p) where AH (< p) denotes the class of all strategies with expected sample
size less than or equal to .

REMARK 4.6. If the strategy H = (p, e*) of Theorem 4.5 is such that
V,(n(s)) > f(1 — f), then it may become inadmissible. We illustrate this with
an example: Let p be the design obtained by simple random sampling with
replacement with size n > 3. Clearly 7,(p) = 1 — (N — 1)/N)*fori = 1,2, ...,
N; hence
N—1

ﬂ(P)=N[1—< )n]=m+f, say

and
Va(n(s)) > f(1 = f) -
Now we show that the strategy (p, e*) where p is as defined above and e* is given

by (16) is inadmissible in AH(x). Consider the strategy (p,, e*) where p, is the
design obtained by simple random sampling without replacement with size m or
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m + 1 with probabilities 1 — fand f respectively. From Ramakrishnan (1969)
it follows that (p,, e*) is uniformly more efficient than (p, e*). The author feels
that the condition ¥,(n(s)) = f(1 — f) is also necessary for the validity of the
theorem. For the sake of future use we denote the strategy (p,, e*), above, by

(35) Hy = H(p,, Ny, p, N)

where ¢ denotes the expected sample size and N, the size of the population.
We are now in a position to prove Theorem 4.2.

ProoF oF THEOREM 4.2. If 1 = 1 or N, for any strategy (p, €) € LH*(y), the
design p will be unicluster and hence the HT-estimator &(s, y) is the umv esti-
mator in L*(p). In either case it is seen that HT(x) is complete in LH*(y).
This proves the “if” part of the theorem.

In case 1 < # < N and g is not an integer it follows as a consequence of
Theorem 4.5 that the strategy H(p,, Ny, ¢, N) in (35) is admissible in LH*(y).
Since the above strategy does not belong to HT(y), it follows that HT(x) is not
complete in LH*(y).

The only case left out is: 4 an integer, 2 < ¢ < N — 1 and N > 3. Choose
a number 6 such that 0 < § < 1 and

From the strategy H,_, = H(p,, (N — 1)p, p, N — 1) corresponding to the popu-
lation consisting of the first (N — 1) units, we construct a strategy H' = (p’, ')
corresponding to the population of N units as follows: Any sample s for p, goes
into two samples (s, N) and s for p’ with probabilities dp,(s) and (1 — 6)p,(s)
respectively. The estimator e’ is defined by

e((s, N),y) = (N — 1)j, + Xaf_v
and
e(s,y) =N —1)p,.

Since 7y(p') = 6 and (N — 1)p, is unbiased for ;¥ y, in the design p,, it is clear
that ¢’ is unbiased for Y (= Y ¥ y,) in p’. Also since ¢’ # &

H' = (p/, ¢') € LH*(z) — HT(z) .

Next we show that given any strategy H = (p, €) € HT(¢), there exists a point
¥o (Which may depend on H and H’) such that

V(H', y,) < V(H,Y,)

which will show that HT(x) is not complete in LH*(p). If zy(p) < d, one can

easily check that
V(H', y(N)) < V(H, y(N))

where y¥ = (0, 0, - - -, 0, y,) and y, is any nonzero real number. If z,(p) = 0,
and p gives positive probability to the sample consisting of unit N alone, then
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also it is easy to check that
0=V(H,y,) < V(H, Y,

wherey, = (k, k, ---, k, 0) and k is any nonzero real number. If 7, > ¢ and p
gives zero probablhty to the sample consisting of unit N alone, then construct
the strategy H, = (p,, €) corresponding to the population of the first (N — 1)
units where p, is obtained from p by removing unit N from all those samples for
p containing it, the probability structure remaining unchanged. Since 7 (p) = 0
and 3} m(p) = p,
ZiTtmp) = LT mp s — 0=

Hence from Remark 4.5, there exists a point y,’ = (¥4 - - *» Yow-1) € Ry, such
that

(36) V(Hy_ 1 ¥o) < V(H,, ¥y) -
Since

(37) V(Hy-1s ¥0) = V(H', ¥,)
and

(38) V(Hy, yy) = V(H, o)

where y, = (Y1, Voo - - *» Yoy—1» 0), we have, on comparing (36), (37) and (38)

V(H',y,) < V(H,Y,) .
The proof of the theorem is complete.

5. Strong admissibility. After having proved the nonexistence of a best
strategy (in the sense of uniformly minimum variance) in LH*(z) and that the
complete class of admissible strategies is wider than HT(x) in most of the situ-
ations, our next step is to impose further criteria which will give a narrow
enough class of strategies. One can easily check that there does not exist a hy-
peradmissible strategy in LH*(z). In the following we weaken this criterion and
characterize the class of all strategies in LH*(y) that satisfy the new criterion.

DEFINITION 5.1. In a class 52 of unbiased strategies for Y, a strategy H, € 52~
is said to be “strongly admissible” in &# if it is admissible in E,, E,, - - -, Ey
separately, where E, = U( ) R;” and R, is the ith phs of dimension r.

The definition of a strongly admissible estimator is straightforward. For the
case of a single design, it can be noted that the criteria of strong admissibility
and hyperadmissibility are effectively equivalent in arriving at an optimum
estimator. While there exists no hyperadmissible strategy, there exist strongly
admissible strategies in LH*(y) and we characterize the set of all strongly admis-
sible strategies in LH*(y) in the following

THEOREM 5.1. HT(y) is precisely the set of all strongly admissible strategies in
LH*(p). In other words HT(y) is complete in LH*(pz) with respect to strong admis-
sibility.
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Proor. For any design d, the unique strongly admissible estimator in L*(p)
is given by &(s, y), which shows that the set of all strongly admissible strategies
in LH*(y) is contained in HT(x). Further, it can be easily noted that, from the
proof of Theorem 4.1, in fact follows the strong admissibility of any strategy
H ¢ HT(¢) in LH*() which proves the theorem.

REMARK 5.1. Let M* (< p) be the class of all unbiased strategies with ex-
pected sample size < p, in which the estimator e(s, y) is subject only to the
restriction that for every s with p(s) > 0, e(s, y) is continuous in the variates y,
at the origin. By the result of Joshi (1971), ¢ is the unique strongly admissible
estimator in the class of estimators continuous at the origin, from which it fol-
lows that Theorem 5.1 holds for M* (< p).

The criterion of strong admissibility has some practical implications. For
example, in case of estimation of a domain of total (or mean) where the domain
size is known (say r) but the domain frame is not available (a unit can be classi-
fied into that domain only after surveying it) it is easily seen that the parameter
(Y = (s -+ +»yy) Where exactly N — r co-ordinates have fixed zero values)
space is given by E,. So if we start with a strongly admissible estimator, such
domain totals (or means) can be admissibly estimated with the same estimator.
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