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NECESSARY AND SUFFICIENT CONDITIONS FOR ASYMPTOTIC
JOINT NORMALITY OF A STATISTIC AND ITS
SUBSAMPLE VALUES

By J. A. HARTIGAN
Yale University

1. Introduction. If X, X,, ---, X, are independent identically distributed
random variables with mean p and variance ¢% then the mean X = 3}7_, X,/n is
asymptotically normal with mean p and variance ¢%/n. Surprisingly, asymptotic
normality also holds for such diverse statistics as order statistics, correlations,
maximum likelihood estimates and Bayes estimates, and eigenvalues. This paper
gives necessary and sufficient conditions that sequences of subsample values of
a statistic be asymptotically joint normal. Also, the following generalization of
the central limit theorem is proved:

Let ¢,(X;,- - -, X,) be a sequence of symmetric measurable functions in X, - - -,
X,, and suppose n Cov (,, t,) — o® whenever n = m — co. Then n¥(¢, — Et,),
m¥(t,, — Et,) are asymptotically joint normal with variances ¢* and correlation
o whenever m, n — oo, m/n — p? 0 < p* < 1. The mean satisfies the conditions
of the theorem since n Cov (X, X,) = o* exactly.

The property of the mean which compels the normal limit is

ntX, , = (m/n)tmiX, ,, 4+ [(n — m)[nl}(n — m)tX,,, .,

where X, , denotes the mean of X,, X,,,, - -+, X,. Thus if the mean is to have a
limiting distribution G after standardization, and if Y; and Y, are independently
distributed as G, then «,Y; + a,Y, must have the distribution G after standardi-
zation. Of course this property defines the stable laws, of which only the normal
has finite variance.

Generalizing this, a “mean-like” sequence of statistics ¢, satisfies ni[t, , —
(m/m)t,,, — (n — m)/nt,, ., ,]—0 as m, n —m, n— co. This condition will
ensure that ¢, is asymptotically normal if n¥(z, — a,) converges to a distribution
with finite variance. The mean-like property is implied for ¢, — Et, by the above
condition n Cov (¢,, t,,) — ¢* as n = m — oo, provided that 7, is a symmetric
function of the observations. To handle asymmetric functions, it is necessary
to consider behavior of the statistic as a function of subsets X;, X, , ---, X, .
These subsets appear in the three conditions for centrality of a statistic, which
are necessary and sufficient for joint asymptotic normality of sequences of sta-
tistics defined on the subsets, proved in Theorem 1, Section 2.

Theorem 3 presents a simpler set of sufficient conditions when nt,? is uniformly
integrable, and Theorem 4 is the generalization of the central limit theorem
mentioned above.
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In Section 3, the jackknife and subsample techniques for setting confidence
intervals are shown to be asymptotically valid for central statistics.

2. Central statistics. Assume a sequence of independent and identically dis-
tributed random variables X;, X,, - - -, X,. The distribution of X; will be denoted
by F, and the joint distribution of X;, X, - - -, X,, - - - will be denoted by P. Let
o denote a realization of X, X,, - - ., X, ---. A statistic t takes the value t(n, )
for each w, and each n > 1, and for each n, #(n, +) is a measurable function f,
of X, Xp, -+, X,

1(n, ) = f[Xy(0), Xy(@), -+, X (@)] .

If S is the subset of integers {i}, i,, - - -, i,}, define

1S, o) = fulX; (@), - -5 Xy (@)] -
The random variable taking the value #(S, w) at w will be denoted by #(S). The
random variable #(S) for § = {1, 2, .-, n} is denoted by #,. The number of
integers in S is denoted by |S|. The notation |S,|/n — p* will denote a sequence
of subsets S, of {1, 2, - .., n} with |§,| — o0, |S,|/n — p*
A statistic ¢ is central for F with variance ¢*, if

I. lim,_, limsup,_., 4A*P(|t,| = 4) =0
1I. lim,_, limsup,_ . |4 §, <4t dP| =0
I11. lim,_., im supys yne [$12,1<a,ie,1<4 2 1(S,) AP — po’| = 0.

There is a straightforward extension of this definition to vector-valued statistics
with |¢] equal to the sup of the components of ¢, and the product 7,#(S,) replaced
by ¢,¢(S,)’. The following theorems extend similarly.

THEOREM 1. The sequencest, and t(S,) are asymptotically joint normal with means
(0, 0) and variances (o*, 0*) and covariance ps® whenever |S,|[n — p?, if and only if t
is central for F with variance o*.

The statistic ¢ in the theorem has been already standardized, like n¥(X — p)
for the mean of n observations. The complication of defining ¢ on all subsets
of observations is necessary to cope with statistics # which are not symmetrical
functions of the observations. If ¢ is known to be symmetrical, it is necessary
to consider only subsets {1,2, ---, N}, 1 < N < oo, in stating the conditions
and the theorem.

The three centrality conditions are closely related to the following three con-
ditions for asymptotic normality of sums (see Loéve (1963), page 316, for method
of proof) which will be used in proving the theorem.

LeEMMA. Let {X,;,j =1, .-, n} be independent and identically distributed. Then
Ny X,; is asymptotically unit normal (AUN) if and only if for each ¢ > 0 small
enough

(1) nP(X, > &) >0,

(2) n§ix, 1< Xa5dP — 0,

(3) 7 8ix, ;< X2;dP — 1, as n — co.
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Proor oF THEOREM 1. If e = 0, conditions I, II, III are equivalent to ¢, — 0
in probability as n — co. Also asymptotic joint normality of ¢, and #(S,) with
variances (0, 0) is equivalent to ¢, — 0 in probability as n — co, so the theorem
is proved in this trivial case. If ¢ = 0, let ¢ = 1 without loss of generality.

It will first be shown that asymptotic normality implies centrality.

For I, lim, ., A’P[|t,| = A] = A* {124 €Xp(—3X)/(27)t dx — 0
as A—oo.
For II, lim, ., 4§}, <4 ta dP| = A §; <4 x eXp(—3x7)/(2m)tdx = 0
forall 4.

For IIL,  limyg npa §1s1< 20 2(Sn) @P = §aca micq X0 (%5 ys p) dx dy ,
where f(x, y, p) is the bivariate normal density with correlation p. Thus
limy o, §s<a,iy1<a XPf(%s y5 p) dx dy = p, and condition III is proved.

To show that centrality implies normality, the statistic computed on N obser-
vations is approximated by a sum of statistics computed on subsets each con-
taining k observations. Using the lemma, and manipulating simultaneously N,
k, and a truncation point 4, it is shown that this sum is asymptotically normal.

Define tA(S) = ¢(8) if |t(S)| < A, t4(S) = 0if |#(S)| = 4. Define U, = {(j —
Dk + 1, .-, jk}, Y, = N5, t(Uy)/nt, Y& = 32 t4U,)/nt.  Define ti,=
t4(1,2, -- -, nk). Then Var (¢, — Y#4) = Var[t4] — 2 237, Cov (¢4(Uy), ta)/
nt 4 Var [t4(Uy)]- As k — oo, for each finite n, |U;|/nk — 1/n. From II, III,
lim,_,, limsup,_, Var (¢4, — Y&4)=1—241=0, each fixed n. Thus as
n — oo, there exists 4, 1 oo, With 4, > ni, and k,° 1 oo, such that Var (1,7 —
Y,z ) — 0 whenever k, = k,’. Also from conditionT, P(|t,, | = 4,) — 0 if k, >
k,' 1 oo, and

P(t(Ug,)| 2 4, any J, 1 <] = n) < nP(j(Uy,)| = 4.)
< AP(H(Uy,)| = 4,) 0

if k, > k,*1 oo. From condition II, E[#,? ] — 0 and E(Y,z ) — 0 provided &, >
k} 1 oco. Thust, — Y, —O0in probablllty if k, > k% k% k.2 k2.
It will next be shown that the summands in Y,, satisfy the conditions of the
lemma, if k, — co fast enough.
Define X,,; = #(Uy, )/nt. Then
nP(|X,; = ¢) — 0 from condition I, if k,>k*lo0,
1 §ix, 1< Xay 4P — 0 from condition II, if k,>k}l oo,
n§x, 1<e X dP — 1 from condition III, if k,>kp7o0.

Thus ¢,, is AUN whenever k, > K, = max,; k,’.

Now consider an arbitrary subsequence {m;,j =1, --., o}. Define j, =
min {j|m; = nK,}, k, = [m; [n]. Asn— oo, nk,[m; — 1, and by condition III,
Yuk, — tm;, — O Thus the sequence ¢, is AUN. Every subsequence of ¢, has
a subsequence which is AUN, so ¢, is AUN Consequently #(S,) is AUN for
arbitrary sequences of sets S, with |S,| — oo.
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To prove joint asymptotic normality of ¢, and #(S,) as |S,|/n — p? define
S,* ={i|i < n,i¢s8,}, and note that |S,*|/n — 1 — p?. Centrality then implies
t, — pt(S,) — (1 — p?)t(S,*) — 0 as n — co. Thus ¢, is asymptotically distributed
as the sum of two independent normal variables one of which is p#(S,). Thus¢,
and #(S,) are asymptotically joint normal with means (0, 0), variances (1, 1) and
correlation p. [T

THEOREM 2. For n fixed and every N, let {Sy,,- - -, Sy,} be subsets of {1, 2,- - -,
N}. LetSy* ={i|i < N, i¢Sy}. Suppose that for any partition of {1, - - -, n} into
two subsets (i, - - -, i} and {jy, Jor + - 5 Jo}s [Sg, N o+ 0 N Sy N SF; N -ee 0N SF/
N = 08 igeesipeigigrnriy @ N —> 00, Assume |Sy,|/[N — p? >0, 1 <i < n.

If t is central for F with variance d*, then t(Sy,), - - -, t(Sy,) are jointly asymptotic
normal with means (0, - - -, 0) and covariance between 1(Sy;) and (Sy;) equal to
limy ., [Sy; N Sy;l6*/0;0;N.

Proor. The case n = 2 will be proved, and the case for general n is proved
analogously. The conditions of the theorem require that |Sy, N S%,|/N — pi,,,
[Sy1 N Syal/N — 0l [SF1 N Syal/N — 0315 |Sk1 N Ska|/N — p%,. The four subsets
are disjoint, so that #(Sy, N Sy,), #(Sy; N Sk.), t(S¥, N Sy,) and #(SE, N Sk,) are
independent. Also #(Sy;) — 1 #(Sy; N Sys) — ryt(Sy, N S¥s) — 0as N — oo where
Fy = P12./P1> T3 = P1./py Using the mean-like property for central statistics, and
similarly #(Sy,) — $:8(Sy1 N Syy) — $,8(Sk N Syy) — 0 where s, = p,,,/0,, 5, =
04.1/0.- The random variables r#(Sy; N Sy,), $:2(SE; N Sya)s Fat(Sy: N Sk,
5,1(S¥; N S},) are joint asymptotic normal. (The case where |Sy;, N S%,| - oo is
handled by noting that r, = 0, so that r,#(Sy, N S%,) is degenerate.) Thus #(Sy,)
and #(S,,) are joint asymptotic normal with correlation r,s, = p},,/0,0,. [

THEOREM 3. Let z be a statistic defined as in Section 2. Suppose for any sequence
of subsets S, with |S,| — oo, nCov [z, z(S,)] — 6* as n — co. Then n¥(z, — Ez,)
is central with variance g*.

Proor. For n > some n,, z, has finite variance by the condition of the
theorem. Define ¢, = n¥(z, — Ez,) for n = n,, t, =0 for n < n,. The main
difficulty in proving the theorem is showing that ¢,* is uniformly integrable,
which means that lim,_,, limsup,_,,, §;; >, 7.’ dP = 0.

Define Y,,, = X%, t(Uj,)/nt where Uy, = {(j — 1)k + 1,-..,jk}. Letnk = N.
Then Var (¢, — Y,,) = Vart, 4 Var¢, — 2 31n_, Cov [¢(Uy), ty]/nt — ¢* + o* —
2¢* = 0 as n, k — oo. It will first be shown that

Siv,pza Yo dP < Siepizpant t,2dP + 47 A® 4 87%)A where 7 = {1,2dP.

Define V, , =tUy) + -+ +t(Un)s Vie=10Uy) 4+ -+ + t(Uan)’ Vin =
HUgmsne + -+ + 8(U,y), assuming n even.
Sivpiza Y5 dP = Siegtv,_gizant 1, dP + S[VM+V2,,|gAM ViaVin dP(n — 1)/4n*,
Sitpav_yizant 52 AP = $ioizpant 24P + §pp ioyant 0 AP
= (ipizgant 47 dP + 7(n — 1)7/(3A™) ,
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SIV1n+V2,,,|2An5 VanZn dP é 2 SIVI,,IEQA”* IVI'IL“VMI dP
< 2(3neAnt)(3nr)?
< 2n7%A.
It is now established that
SlY,,,,le Y5 dP < Slt,,lzun!f 4, dP + 444" 4- 8784 .

Now let N, be such that §, ...y 1%°dP—0. It will follow that
lim, , lim,_ S,Ynkk,; 4 YidP =0 whenever n, > N,. Since lim ., § (f,, —
Y,.)}dP =0, lim,_ lim,_, Sltnkkla 4t dP =0. For any subsequence {m,},
there is a further subsequence m;, such that m; /n,k — 1 for some n, > N,.
Therefore § (*tw;, — tap)*dP — 0, and Tai is uniformly integrable. Since every
subsequence has a uniformly integrable subsequence, the sequence ¢, is uni-
formly integrable. Conditions I, II, III now follow immediately from § ¢, dP = 0,

§ 2,1(S,) dP — pad* as |S,|/n — p?, proving the theorem. [T

THEOREM 4.. For each n, z, is a measurable symmetric function of X, ---, X,,
where X,, - - -, X, is a random sample from F. If nCov (z,, z,) —>c*asn = m — oo,
then n¥(z, — Ez,) and m¥(z,, — Ez,) are asymptotically normal with means 0, 0),
variances (d°, 6*), and correlation p as m|n — p*.

Proor. This is an immediate consequence of Theorem 3. []

Theorem 4 is a generalization of the central limit theorem since n Cov (z,,,
z,) = ¢* holds exactly when z, is the mean.

3. Jackknifing and subsampling. Let Cy, = {Sy;, Sy - - -5 Sy,} denote a family
of subsets which partitions the set 7,, = {1, 2, - - -, N} for each N. Define pseudo-
values ty; = (NJ|Sy,)t(Iy) — (N/|Sysl — Di(Iy — Sy;), 1 <j < n.

The jackknifed statistic t* is defined for each ¢, {Cy} by

ty* = t*(ly) = Lo twilSwil N -

The jackknife operation was first advocated by Quenouille (1956) as a means of
reducing bias. For each fixed n, if |Sy,;|/N — p,%, 1 < j < n, it is easily shown
that if E[t(Iy)] = ¢ + b/N 4+ O(N-?), then E[r(I,)] = p + O(N-?). Tukey
(1958) suggested that the pseudovalues are approximately distributed as a sample
from a normal distribution with mean x and some variance ¢?, provided p, =
py = -++ = p,. The pseudovalues may thus be used to construct an approximate
confidence interval for 4 based on Student’s distribution. Tukey’s suggestion
has been examined, and on the whole justified, by Miller (1964), (1968) for
variances and other statistics, and by Brillinger (1964) for maximum likelihood
estimates. See also Gray, Watkins and Adams (1972).

THEOREM 5. For each fixed n, and for each sequence of partitions C, =
{Sx1s + s Sya}s With |Sy;|/[N—pfe(0,1), 1 <j < n, the standardized pseudo-
values {(|Sy;|)(ty; — 1), 1 < j < n} are asymptotically independent normals with
means 0 and variances ¢*, and N¥(ty — ty*) — 0 if and only if N¥(t, — p) is central
with variance o*.



578 J. A. HARTIGAN

Proor. First assume that N¥(t, — p) is central with variance ¢%. Let Sk, =
Iy — Sy;. From Theorem 2, |S},[}[#(S%;) — p], 1 <j < nand N¥(«(I,) — p) are
asymptotically joint normal with means 0, variances ¢* and correlations

corr [#(SFy), (SxI] = [1 — o' — p"VI(1 — p)(1 — o))
corr [#(S3,), t(Iy)] = [1 — 0.
From this it follows that the pseudovalues, which are linear functions of #(S%,)
and #(Iy), have the stated asymptotic behavior. For example, the limiting vari-
ance of (|Sy,)#y; is Npjo"[1/Nps* — 2(1 — p*)/Nop* + [1 — p*]/Np;*)] which
reduces to ¢°.

Also t,* is an average of t,;, and so is joint normal asymptotically with ¢,.
The sequence N%(r, — t,*) has asymptotic variance 0, since 7, and t,; have
asymptotic covariance ¢*/N.

Conversely, if the standardized pseudovalues are asymptotically joint normal
and N¥(ty — ty*) — O for each sequence Cy, N¥(t, — p)and (1/p,)N¥(t, — p) —
(1/p* — D¥(S%,)¥(#(S%;) — p) are joint normal, and therefore N¥(t, — p) and
(ISx;1)¥(#(Sy;) — p) are joint normal as [Sy,;[}/N — p2, 0 < p; < 1, with means
(0, 0), variances (¢’, ¢”) and covariance p;d* asymptotically. Centrality requires
joint normality also if [Sy,;| — oo, |Sy,|/N— 0 or 1; only the case |S,,;|/N — 0
will be proved. For each p > 0, find U, such that U, > S,,;, |Uy|/N — p*. Since

Ni(ty — p) — 0°(H(Uy) — 1) — (1 = o)(H(Uy*) — )] = 0
ty and #(Uy*) have asymptotic correlation (1 — p?3. Also #(Sy;) and #(U,*) have
asymptotic correlation 0. Therefore #(Sy,) and ¢, have asymptotic correlation less
than p. Since this is true for every o > 0, they have asymptotic correlation 0. []

In Hartigan (1969), it was suggested that error analysis be based on random
subsamples Sy;, Sy, - -+ Sy, Where Sy; is selected at random from the 2% — j
subsets of {1, 2, - .., N} not equal to ¢, Sy;, « -+, Sy;_s- Let #(Sy1), - -+ H(Syn)
be the subsample values of the statistic. If the statistic ¢ is the mean, and X, is
symmetrically distributed about , then y is less than exactly k of #(Sy;), - - -,
(Sy,) with probability 1/(n + 1). This exact result motivates the following
asymptotic one.

THEOREM 6. If N¥(ty — p) is central with variance o*, then {N}(t(Sy,) — ), + - -»
N¥(t(Sy,) — p)} are asymprotically joint normal with variances 26* and covariances
o®. In consequence p is less than exactly k of 1(Sy,), - - -, H(Sy,) with probability
approaching 1/(n + 1) as N — co.

PROOF. As N — oo, [Sy;|/N — % and |Sy, N Sy,|/N — 1. (A random selection
Sy, from the set of all 27 subsets is made by assigning each observation to S,
independently with probability 4. The omission of null and previous subsamples
has negligible asymptotic effect.) Theorem 2 now implies asymptotic normality
of {(|Sx N¥(#(Sys) — #), 1 < i < n} with variances ¢? and covariances ¢%/2. Thus
NHt(Sy,) — p] is asymptotically normal with variances 2¢* and covariances o*.
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If Y, Y, .-+, Y, are independent normal with means 0 and variances o7,
(Y, + Y, ---, Y, + Y,} is multivariate normal with means 0, variances 20, and
covariances ¢>. The probability that — Y} is less than exactly k of Y, ..., Y, is
1/(n 4+ 1) by symmetry. The probability that 0 is less than exactly k of Y, +
Yy, -+, Y, + Y,isthus 1/(n 4 1). The probability that 4 is less than exactly k
of t(Sy.), - -+, #(Sy,) is asymptotically 1/(n 4 1). [T

The jackknife and subsample techniques are similar in that both use subsets of
the observations to determine errors of estimates empirically. The subsample
technique is simpler conceptually and may be applied to statistics taking values
in arbitrary spaces, such as graphs, verbal conclusions, or ten pages of computer
output. A Bayesian interpretation is useful for such general spaces—the sub-
sample values are approximately a random sample from the posterior distribution
of the true value. Such an interpretation is valid in R? provided N(t, — p) is
central for ¢ with variance ¢%, and the prior distribution of y given ¢? is positive
and continuous at the true value; the subsample values are asymptotically a
random sample from the posterior distribution of y given ¢, and g.

The jackknife removes bias, and the subsample technique does not. But when
terms of order N- are considered in the distribution of Ni(t, — p), it is neces-
sary to examine not only bias, but skewness, and non-linearity of ¢, all of which
make contributions of this order to the error in the confidence intervals. These
terms have been examined by Norman Johnson in his Ph. D. thesis at Yale
University.

It is plausible nevertheless to jackknife the subsample values to obtain 2¢, —
t(Sy1)> 2ty — t(Sys)s -+ +» 2ty — t(Sy,) as debiased subsample values. These are
treated as normal observations with mean g, variances ¢® and covariances {o?,
from which confidence intervals for # may be obtained by a modified ¢ procedure.

4. An application to U statistics. A U-statistic defined by
L( Xy ooy Xp) = 20 f(Xp - o5 X )(n — 1)l/n!

where Y7 denotes summation over all ordered subsets of X;, ..., X, of size r,
for some fixed r. Assume f is symmetric and Ef? < oo.

Then
Cov (t,, t,.) = E[(t, — Et)t,]
= E[(t, — Et,) 55 (Ko, -+ X, )(n — m)fn!]
= E[(t, — Et,) 27 f( X -+, X; )(n — r)!/n!]
= Varz¢, .
Also

Vart, = Y., fil(n — n))’rYf[nt k! (r — k)! (n — 2r + k)!]

where f, = Cov [f(Xys «+ +» Xi» Xuyrs ==+ X,)s f(Xis =+ 05 Xi» Xypis + -+ » Xoui)]-
Thus n Var t, — rf;. The conditions of Theorem 3 are satisfied, and ni(z, — Et,)
is asymptotically normal with variance rf;, as shown by Hoeffding (1948).
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