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PARAMETER FACTORIZATION AND INFERENCE BASED
ON SIGNIFICANCE, LIKELIHOOD, AND
OBJECTIVE POSTERIOR

By D. A. S. FRASER AND Jock MAcCKAY
University of Toronto and University of Manitoba

The concepts of significance, likelihood, and objective posterior have
wide ranges of application in statistics. For certain very simple applica-
tions—single location variable—there has been recognition that the three
concepts produce equivalent numerical results, specifically the equality of
observed level of significance, integrated likelihood extreme values, and
integrated objective posterior extreme values. The most general model
permitting the use of the three concepts for the full parameter, and indeed
for component parameters, is a structural model (or probability-space model).
This paper examines the three concepts for a structural model and shows
for both the full parameter and for component parameters the essential
equivalence of observed level of significance, integrated likelihood extreme
values, and integrated objective posterior extreme values.

1. Introduction and summary. There has been some awareness in the statis-
tical profession that for very simple models a numerical equivalence can be
found among significance, likelihood, and objective posterior. For this let y be
a real variable with model f(y — 6) having a real location parameter §; the
variable y can be the resultant of a sufficiency reduction. The significance test
of a value 6, is based on the observed value y, — 6, in relation to the distribu-
tion f(z) dz for the departure z = y — 6, from hypothesis; the observed level of
significance for a departure y, — 6, or larger is usually the tail area probability
a(0,) = §5 s, f(z) dz. The likelihood function from the observed y, is given
essentially by f(y, — 6); the normed tail area likelihood for # as small as or
smaller than 6, is given by a(6,) = {’%., f(y, — 0) df. The objective posterior
for 6 from the observed y, has density f(y, — 6) as obtained from the appropriate
structural model; the tail area probability for ¢ as small as or smaller than 6, is
a(by) = %, f(y, — 0) d6. These evaluations are numerically equal and in fact
they correspond by rather obvious 1-1-1 transformations. A similar equiv-
alence is obtained for the two-sided situation or for any other choice of discrep-
ancy measure on the “usual” values of z.

The first of the concepts, the test of significance, has the widest range of
applications. The test of significance requires a model but only under the hy-
pothesis; the model may describe the whole response or merely some reduction
of the response. For a test of significance the test statistic is chosen pragmatically
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to be sensitive to departures from what is expected under the hypothesis. If a
full model is available covering the hypotheses and alternatives then the measure
of departure is sometimes obtained from power considerations. If a structural
model is available, then for certain hypotheses the measure of departure is a
necessary consequence of direct probability analysis.

The likelihood function has the next widest range of applications. The likeli-
hood function requires a full model under the various possible hypotheses; the
model may describe the whole response or merely some reduction of the response.
The likelihood function can be examined in a variety of ways including inte-
grating, profiling, and sectioning; belief in the Bayesian approach sanctifies the
first of these ways.

The objective posterior has the most limited range of dpplications. The objec-
tive posterior needs a structural model which has a probability space to describe
the underlying variation affecting the system under investigation. The structural
model and necessary analysis are summarized in Sections 2 and 3.

The common range of applications for the three concepts is that covered by
the structural models. In the context of this common range of applications
Section 6 presents the essential equivalence of the three concepts, equivalence
as discussed for the simple example.

The equivalence of the three concepts also occurs for component parameters.
The factorization of the parameter in a way that permits the use of the various
concepts is examined in Sections 4 and 5; the equivalence of the three concepts
as presented in Section 6 includes this additional generality of component
parameters.

Then in Sections 7 and 8 we have an example that illustrates inference for
component prarameters in a familiar context and an addendum that presents
the factorization of Haar measure as needed for the analysis.

2. The model. Consider a model for some physical or social system. Let Z
be a variable that describes the variation affecting the response of the system;
and suppose that Z takes values in a connected open set & C R” and has a
probability measure P with density f with respect to Lebesgue measure on
(& 7). And let Y = 6Z be a variable that describes the response of the
system where 6 is the transformation that presents the response Y from the
variation Z; and suppose that ¢ is an element of a connected open set G C R*
and that G is an exact Lie group on &7 (G is exact on & if gZ = hZ implies
g = k). The variation in the system is described by the probability space (&
ZB", P); and the possible presentations for the response are described by G.
The combination (&7, <87, P; G) is a structural model or a probability space model
(Fraser (1968)).

The model can be extended to cover the case where the distribution for the
variation is known only up to a parameter 2 with values in a parameter space
A. The extended model is then given by (& &V, {P;: 2e A}; G); for any
specified 4, this is a probability space model.



INFERENCE BASED ON SIGNIFICANCE, LIKELIHOOD, OBJECTIVE POSTERIOR 561

As an illustration consider the linear model y = X8 4 ¢z where z is a random
sample of n from a distribution P with density f and X is a full rank n x r design
matrix. The group multiplication can be expressed by matrix multiplication

en =[] e[ o) =[]

the design matrix is placed as a fixed print in the representations Y for y and Z
for z. The probability space is {RY — £7(X), <&, P'} where £°(X), the linear
space generated by the columns of X, is deleted to satisfy the exactness con-
dition, and the group is G = {§: Be R", o € R*} using matrix multiplication.
The density can be indexed by a parameter 1 to cover applications where there
is a range of possibilities for the distribution describing the variation; for exam-
ple 4 could be the degrees-of-freedom of a Student distribution thus allowing
more probability in the tails of the distribution than with the usual normal dis-
tribution (1 = o).

3. The analysis of the model. In this section we analyze an observed response
Y, in relation to the extended model (&, &%, {P,: 2¢ A}; G).

First we introduce some notation for some mathematical objects that arise
naturally in the course of the analysis. The group G applied to a point Z gener-
ates the set GZ = {gZ: g € G} of image points under the action of the group. The
various sets GZ with Z in .5 are either identical or disjoint. It follows that the
class {GZ: Z ¢ &} of distinct sets is a partition of .>” and the mapping Z +— GZ
carries Z into the set that contains Z.

The assumptions in Section 2 provide for the following definitions needed in
the analysis. Let [.] be a continuously differentiable function from & into G
such that [AZ] = #[Z] for all 2 in G and Z in &*. And thenlet D(Z) = [Z]7Z
and Q = {D(Z): Ze &} = {Z: [Z] = e} where e is the identity element of the
group. It follows then that Z = [Z]D(Z) = gD with ¢ = [Z] unique in G and
D = D(Z) unique in Q. Thus Z — (g, D) gives a continuous 1-1 correspond-
ence between & and G x Q. Note that the points in Q are in 1-1 correspond-
ence with the elements of the partition {GZ: Z e &7} of the space .&.

Now consider the observed repsonse Y, in relation to the extended model (&
Y, {P;: 2e A}; G). According to the model the observed Y, is some trans-
formation 6§ of a realized value Z from the statistical space (&, 'V, {P,: 2¢ A})).
The information concerning Z can be separated into two parts:

(i) the value Z is a realization from one of the distributions in {P;: 1€ A};
(ii) the value Z must satisfy Y, = 0Z for some 0 in G.

The information (ii) concerning the value Z can be expressed alternatively as:
(i)’ the value Z is some point in the set {h='Y,: he G} = GY,;

note that this is a set in the partition described in the preceding paragraph. The
information can then be expressed as
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(ii)”" the function D(Z) has the observed value D(Y,) = D, say.

We thus have the information: there is a realization Z from the statistical
space (&, 7, {P,: 2e A}) and the only observational information is that the
function D = D(Z) has the value D,. Classical probability theory describes this
in terms of:

(iii) the probability for what has been observed, D(Z) = D,; and
(iv) the conditional distribution of the unobserved g given the observed D(Z) = D,.

The change of variable Z « ([Z], D(Z)) = (g9, D) provides a coordinate D
appropriate to the observational condition and a complementing coordinate g
which indexes points given the condition. The Jacobian modulus for the trans-
formation is :

5z) = I aZD

99,
which involves. Euclidean volume for Z in R¥ as compared with Euclidean
volume for g in R* and for D tangent to Q; typically this is difficult to calcu-
late. The transformation can be reexpressed with two additional steps using a
transformation % on G and the inverse transformation 2= on &: Z — h'Z
(h~'g, D) « (g, D). For this let

ok

(3.1) Jy(h: D) = 'aah—zz’ It 0) =| 5

be the easily calculated Jacobian moduli for the transformation 4 applied on &
and on G. The reexpressed transformation holds for arbitrary # and hence in
particular for # = g; thus

3.2) dZ = J(9: D)J(D)J, Y g: e)dg dD .

The adjusted differential J,~%(g: €) dg = dp(g) is the left Haar measure on G
standardized to Euclidean volume at the identity.

The probability differential on the space (&, ", {P;: A€ A}) can now be
expressed in terms of the new variables

(3.3) fi(Z) dZ = f(g: D) du(g) - ky(D)I(D) dD
where

(3.4) k(D) = (¢ f2(9D)Iy(9: D) dp(9)

is the marginal density for D relative J(D)dD on Q and
(3.5) fi(9: D) = k;7(D)f«(gD)Jy(9: D)

is the conditional density for g relative to the standardized left Haar dp(g) on G.

Now consider further the observed response Y, and the information concerning
the realization Z on the space (&, &7, {P,: A€ A}). The classical probability
description of Z is in terms of:
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(iii) the probability for what has been observed, D(Z) = D,; and
(iv) the conditional distribution of the unobserved g given the observed D(Z) = D,.

The probability differential f;(Z) dZ can be factored accordingly as in (3.3) and
we obtain

(iii) the likelihood k,(D,)J(D,) dD for the observed D = D,.
(iv) the conditional distribution f,(g : D) du(g) describing the unobserved g = [Z]
given the observed D(Z) = D,.

This provides at least the likelihood function for the parameter 2; and for given
2 it provides probability analysis for the unknown g = [Z] and thus for the un-
known 6. .

The analysis of the unknown @ is based on the distribution describing g. We
have Y, = 69D, with a one-one correspondence between possible values for g and
possible values for 6; and thus tests, confidence intervals, or probability intervals
for 6 are obtained directly from the distribution describing g. The conditional
distribution given the set GY, is perhaps most conveniently described by having
the coordinates g = [Z] chosen relative to a surface Q passing through the ob-
served response. If this notational accommodation is made then the preceding
equation becomes Y, = #gY, and the one-one correspondence is given simply
by the equation § = g=* or g = ¢~*. The distribution for g then provides in a
very simple way, tests, confidence intervals, and probability intervals for 6.
The details of this are examined in Section 6 as a special case of inference for
parameter components.

4. Parameter factorization. The analysis of a real parameter is a relatively
straightforward and accessible part of statistical inference. With a multidimen-
sional parameter however a whole range of complexities and ambiguities arises.
In classical statistics there are difficulties connected with for example nuisance
parameters, lack of completeness for minimal sufficient statistics, nonexistence
of uniformly most powerful tests, nonexistence of uniformly minimum variance
unbiased estimates, and others. And in likelihood analysis there are ambiguities
and uncertainties connected with integrating or profiling or sectioning the likeli-
hood function. And in Bayesian analysis the meaning for a prior becomes even
more questionable and ambiguous.

The common approach to a multidimensional parameter is to separate it into
a sequence of real parameters and to analyze the components separately and
usually sequentially. The analysis of variance for linear models provides a
familiar example; the regression parameters are analyzed in sequence from the
bottom towards the top of the analysis-of-variance table.

With the model examined in this paper a multidimensional parameter means
a multidimensional group G. And a separation of the parameter into compo-
nents means a set of new coordinates for an element of the group. If we are
then to be concerned with the three basic inference concepts we must restrict
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our attention to parameter separations that produce components each with the
structure that allows the three inference concepts.

As a simple first case suppose that § can be represented uniquely as § = 6,0,
where 6, is an element of a subgroup H, of G, is and 6, an element of another
subgroup H, of G; then G = H, H, is called a semidirect product of the component
groups H, and H,. For the analysis connected with such component parameters
we will need a factorization of g = [Z] in the reverse order: g = &, h, where A,
is in H, and A, is in H,. The existence and uniqueness of the reverse factorization
G = H, H, follows from the 1-1 mapping g < g~*.

Now consider the analysis of the model (&, Z7, {P,: 2¢ A}; G) in relation
to the observed response Y,. The conditional distribution given the observed
set GY, is perhaps most conveniently described in terms of component parame-
ters by having the coordinates g = [Z] chosen relative to a surface Q passing
through the observed response. With this choice of notation we obtain

Y, = 6gY, = 0,0,h, 1, Y,

and hence 6,0, = (h k)~ = h,"'h,~* or equivalently 6, = h,™*, 6, = h,~*. Thus
the possible values for 6, are in one-one correspondence with possible values
for A, by the equation 6, = A,~* and possible values for 6, are in one-one cor-
respondence with possible values for %, by the equation 6, = #,~'. For any
specified 2, the order of the inference procedure is first the analysis of 6, based
on the distribution of 4, given the observed set GY,, and then the analysis of 6,
based on the distribution of 4, given /4, and the set GY,. In the second stage the
component 4, or correspondingly 6,7* is given assumed values based in whole or
part on inferences from the first stage of the analysis.

Some justification for this order for the inference procedure may be found in
[2]; further discussion will be found in a paper now in preparation. In an ap-
plication there is often a natural order for examining parameter components.
With a structural model this may agree with that just described; the three infer-
ence concepts can then be compared. In other cases the three methods are not
available for component parameters. Thus for our discussion of the three con-
cepts as applied to component parameters we will assume the factorization form
just described.

The generalization covering factorization into more than two components is
straightforward: a component on the left is assessed first, the remainder is then
examined in the way the original parameter is examined—by assessing a com-
ponent on the left.

For this generalization we assume a sequence of subgroups of G:

G=G, >G> - >G={e.

And we suppose that H,, ..., H, is a generating set of subgroups such that
G, = H,G,_, is a semidirect product. We then have G = H, H,_, - .. H, and ¢
can be factored as 6 = 6, 6,_, - - - 6, with 6, unique in H,.
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For an illustration consider the linear model as described in Section 2. The
usual analysis of variance procedure suggests the factorization

N A R S PO

=0, 0,0,
where the component group for each of 4, - .-, 0, is the additive group on the
reals and for 6, is the multiplicative group on the positive reals. In the usual
context the parameter 8, would give location relative to the one-vector, - - -, up
to B, relative to a vector representing a high power of an input variable, or a
high-order interaction, or a covariance difference.

Now in general consider the analysis of the model (S PV, {P;: 2e A}; G) in
relation to the observed response Y,. Again it is convenient to use coordinates
relative to a surface Q passing through the observed response. This leads to a
factorization of g = [Z] in the reverse order: g = k, k, - - - h, where A, is unique
in H,. With this choice of notation we obtain

Y,=09Y,=0,--- 0,k --- 1Y,

and hence 6, --- 6, = (b -+ h,)* = h,~* ... i,~! or equivalently 6, = h,~* for
s=1, ..., r. Thus the possible values for 6, are in one-one correspondence
with possible values for %, by the equation 6, = &,

The inference procedure would first involve the assessment of 2 on the basis
of what has been observed, the set GY,. Usually this would involve at least a
likelihood analysis on the basis of (iii) in Section 3. :

For any specified 1, the inference procedure would then involve the analysis
of 4, based on the conditional distribution of %, given the observed set GY,.
The inference procedure would then involve the analysis of ¢,_, based on the
conditional distribution of #,_, given /4, and the set GY,; in this stage the com-
ponent 4, or correspondingly 6, would be given assumed values based in whole
or part on inferences from the preceding stage. The inference procedure would
then examine sequentially in the same manner the parameters 6,_,, - - -, 0, 0,.

The conditional distribution can be factored in accord with the preceding
inference procedure. This is examined in the next section.

5. Density factorization. The analysis of an observed response Y, in Section
3 leads to the factorization Z = gD. The corresponding factorization of the
probability differential is given by (3.3).

The analysis in Section 4 relative to component parameters leads to the fac-
torization Z = h h, - - - h, D where G = H, - .. H, is a semidirect product based
on subgroups G, = H,, G, = H, H,, G, = H, H, H,, - - -. The factorization is used
with D = Y, in accord with the special notation. We now consider the corre-
sponding factorization of the probability differential.

In Section 3 we discussed the change of variable Z = gD. We now examine
the change of variable g = &, &, - - - k,. The Haar measure dp(g) can be factored
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as described in the addendum Section 8:
A (k) Ay(h,)
d =du,(h) - =\ dy(h) . ... . =\ ) d, (h
.u(g) ‘ul( 1) Aa(hz) .uz( 2) Ar(hr) ﬂr( r)

where p,, A, are the left Haar measure and modular function for H, and A,, is
the modular function for H, ... H,. This factorization can be collected into
two parts corresponding to (s) =1 ... sand[s + 1] =s 4 1...r. Let b, =
hy---h,and b,y =h,,, -+ h,. Then

dp(9) = dpy(he) - deresn(Prn)
where

A,k Ak
() = dpth) - 8 diah) - - 2 duh
2\""2 3\""s

is the left Haar measure on G, = H, ... H, and where

A h A, (k
ditaflins) = G Ay - - Gl d )
8+1\""s+1, r\"*r

is the quotient of left Haar on G = H, - .- H, by left Haar on the subgroup
G, = H, --- H,. Note that the quotient of adjacent support measures gives the
appropriate component in the full factorization, that is,

dalg) . Bwlt) g, 1y .

dpesnn(Prosn) A(h,)

The marginal probability differential for 4,,, ... 4, D = h;,,;; D can be ob-
tained by integrating the left or right side of (3.3):

kB (R0 D) dptggny(Presnn)/(D) dD
= fil' N (pgyayt D) dpggsny(Proiny) - ko(D)J(D) dD

where
k(01 D) = g, iy DY y(hpy D) dpyy (o))

8 A 8 h8
= $u ki D) ) ()
is the marginal density for &,.,; D with respect to dpy,,1(%,.1)/(DP) dD and can
be calculated iteratively (s = 1, 2, - - -, r) and where

S Ayt D) = Sg, fa(lp: D) dpgy(hey)
J— S f [sl(h . D) A(s)(hs) d (h )
— JH J2 [s1° A (h ) AU

is the marginal density for 4,,,; given D with respect to dp, ,;1(/,417) and can be
calculated iteratively (s = 1,2, .-, r).

Conditional densities can be obtained by taking the ratio of adjacent marginal
densities in the iterations just mentioned. Thus the conditional density of A,
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given A, .,; D with respect to the quotient measure

dp[s](h[s]) — A(s)(hs) dﬂs(hs)
Aty in(Prosn) Ay(h,)

is

k(o D) _  fifNha: D)
kb gy D) i Byt D)

The probability differential for Z can now be factored in accord with the
representation Z = h, . .- h,D = h, h;,,,,D:

fAZ)dZ = f}(hy: by D)dpy(hy) - - -
fi(,: D) %L(hh’)) dp,(h,) - ky(D)J(D) dD

r T

fls(hs: h[s+l]’ D) =

(5.1) = [i%(h * Poraps D) dpri(hisy)

X k2[8+1](h[s+1]: D) dﬂ[s+1](h[s+1])‘l(D) dD

= [i * Posny D) dpro(Biyy)

X [ eyt Dy dpesn(Bpesn) - k(D)D) dD
Note that the middle factorization is in terms of the marginal for &, ,; D preceded
by the conditional of %, and that the last factorization is in terms of the mar-
ginal for D preceded by the conditional for #,,,, preceded by the conditional
for h,,. Also note that the conditional density

kD) _ iy D)

[ W gy D) fiF N Ayt D)

is available as a quotient of the marginal densities discussed earlier.

[i® (et By D) =

6. The factored analysis. Consider an observed response Y, in relation to
the extended model (&, &7, {P,: A€ A}; G). And suppose that the parameter 6
in G is factored as 6 = 6, --- 6, where G = H, ... H, is a semidirect product
of subgroups H,, - - -, H, as described in Section 4.

For the analysis we choose the convenient coordinates with Q passing through
the observed response Y, = D, and we factor g in the reverse order g = A4, - - - k,
with A, unique in H,. The inference procedure discussed in Section 4 can be
used with the probability factorization (5.1). We obtain

(i) The likelihood k;(D,)J(D,) dD for the observed GY,. This can be examined
as a likelihood function alone or in relation to the distribution of possible likeli-
hood functions.

(ii) The conditional distribution f"(h,: D)A, (h,)A,X(h,) dp,(h,) describing the
unobserved h, given D,. For given 2 this provides the probability analysis for %,
and thus tests, confidence intervals, and probability intervals for 6,.

(iii) The conditional distribution f;"~"(h,_,: h, D)A, _, (h,_)A;2 (R, _y) dp,_y(h._y)
describing the unobserved h,_, given h_D,. For given 2and §, = &,~* this provides
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the probability analysis for #,_, and thus tests, confidence intervals, and prob-
ability intervals for ¢,_,. And so on, to

(iv) The conditional distribution f,*(h;: hyy D) du(h,) describing the unobserved h,
given hy D,. For given 2and 6, = 2,~'(s = 2, - - -, r) this provides the probability
analysis for 4, and thus tests, confidence intervals, and probability intervals
for 6,.

6.1. Observed significance level. Consider given values for 6,,,, ---, 6,, 2and
a hypothesis that specifies the value of ,. Specifying a value for ¢, determines
an observed value for z, = 6,7'. The hypothesis is tested by comparing the value
of &, observed under the hypothesis with the distribution

A, (k)
6.1 (g2 by D) =233 dy (h,) .
( ) fl( s ls+1] ) A,(hs) /Js( s)
The common comparison is by means of the observed level of significance, an
integrated tail area based on departure criteria applied to the distribution (6.1)
on the space H,.

6.2. Integrated likelihood. For given values of 4,,,, - .., 6,, 2 the model takes
the form of a structural model with group G,_, and an additional parameter 6,
with values in a group H,. The determination of likelihood in some general
contexts has been examined in [3] and the most highly structured determination
is transit likelihood.

To keep the notation relatively simple we assume that the given values of
0,.1, - -, 0, are all equal to the identity e; this can of course be accomplished
in effect by using the adjusted response 6}, ... ;Y.

Now consider the parameter 6, in relation to the structural model involving
6,---60,,in G,_,. The adjusted response ¢,7'Y has a probability space model
with group G,_, and equation

0.,_1Y0:03—1"‘01h1"'h., 1'h

- 3

Y,.
The probability for the observed set G,_,6,7'Y, is

A, (h
KX Do) ditalta) (D) AD = F(h5 vy D) G dish)

X k(b 1y Do) Aty y(Prg 1) (Do) dD

where %,.,, - - -, b, have their observed values (here equal to e) and 4,~*. The
preceding probability is expressed in terms of an invariant measure dpy,(h,) along
the H, orbit through Y,. It follows that the preceding expression gives transit
likelihood and omitting multiplicative constants we obtain

AN (A
[0, b D) S0 dph)

A hypothesized value for 6, can be assessed by calculating an appropriate tail
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area using the natural measure dp(6,7"). The resulting expression is equal to
the observed level of significance as obtained in Section 6.1.

6.3. Integrated objective posterior. With 6,,,, ---,0,, 2 given, the equation
Yo=80,--- 0,k ... hY,simplifies to

0, =h" . .,0, =h".
The analysis in Section 5 then gives the distribution

Fi(hy t Broyay Do) psy(bisy)

describing &, = k, - - - h,; and the marginal distribution

o(h. : Ay (h,
[y iy Dy) Vﬁl)) dpu(h)
describing 4, alone. The equation 6, = k,~* gives the parameter value that
corresponds to a realized value k,. The distribution describing these possible
parameter values is obtained from the correspondence A, = 6,

(f-1: Ay(8:.7) -
S (07 by Do) _A(s)((?T dpy(0,7) .
A hypothesized value for 6, can be assessed by calculating an appropriate tail
area. The resulting expression is equal to the observed level of significance in
Section 6.1 and the integrated likelihood in Section 6.2.

6.4. Summary. A value for a component parameter in a structured model
can be assessed by an observed level of significance, an integrated likelihood
tail area and an integrated objective posterior tail area. These are numerically
equal as based on departure criteria applied to the function being integrated on
the space which is a group. Thus these basic methods of inference are equiva-
lent when they are all available. Likelihood has a larger range of applications
and significance a still larger range.

7. The linear model. Consider the linear model as introduced in Sections 2
and 4. For any distribution f describing variation the various conditional dis-
tributions mentioned in Sections 5, 6 can be calculated by computer integration.
For the case of normal error the distributions are available analytically and
agree as marginal distributions with those used in the ordinary analysis of this
model. As this classical normal case is familiar and simple it is presented here
to exemplify and illustrate the logical form of the theoretical results presented
in this paper. The normal model has so many symmetries that almost all ap-
proaches are equivalent and distinctions necessary in other contexts are lost.
The examination of this familiar model thus emphasizes the inference pattern
that is needed in more general contexts.

For simplicity we assume that the design matrix is orthonormal. And for
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notation we let [Z] = e be the unit sphere Q = ~*(X). Then

‘= li/:’,il - [b’zz) s(()z):llidj\(ﬁz):l = 12122

where b(z) is the vector of regression coefficients, s(z) the residual length, and d(z)
the standardized residual. The probability differential follows immediately from
(3.3):

A st dd
——_exp{—43Xb}db . _n=r __ex {—_} m=r-ldbds -
(27)/? p{—226;} (2m)n-nr P 2 s s o,
where 4, = 2x//|['(f[2) is the area of a unit sphere in R/.

Consider the parameter factorization (4.1).

The group element g can be factored in the reverse order as discussed gener-

ally in Section 4.

g__[ 1 o]__[ I 0][ I o]“.[ 1 0]
o lbyo--b, s L0 0 siLy0...0 1 0...07, 1

r

where t = b/s. The left Haar factorization from Section 5 is simple

The probability differential can then be reexpressed in terms of the new coordi-
nates: s, #;, -, f,:

re

Fous, ¢ d) S g . 4
s A,_,
A, _ { s? } ds dd
= =7 expi—_"_(1 ZtHt st 2de .- de, .
(271')"'/2 € p 2 ( + J ) § s 1 r A,n_,

The special coordinates relative to the observed y are not needed as the trans-
formation froms, ¢, - - -, £, to g, B, - - -, B, is already a coordinate by coordinate
transformation:
s(y) = as, bi(y) = B; + s(¥)t; j=1,..,r.
The marginal differentials from Section 5 can be obtained by simple integra-
tion; note the serial numbering 0, 1, ..., r of the » 4 1 coordinates:

fwunm.f‘:%ia+zmwmm:f
dd A one dd
SB(ts 2 d) diy - I A”'T (I + X5y vidy - y
n—r n—1 n—r
dd A dd
(¢, . d)dt, - = —r=r (1 4 g 3)~moribigy
f (T ) " An—r An—r+l( + ) An—r
dd
k(d)dd =
(4)dd =

n—r
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The conditional differentials are then obtained by division. The distribution
of s given t and d is
ds A ‘
fls:td)— = ar;,ﬂexp{—%(l + X1 4+ D)) (1 4+ Xi ) s
conditionally, the variable (1 + ;7 ¢,*)ts is chi with n degrees of freedom. The
distribution of ¢, given f,; and d is
A
St by d) dty = 1:;_1 (1 +

n

tlz >—(n—1)/2 dtl )
1+ X5ef (I + D5t
conditionally, the variable #/(1 + X5 7,)* is canonical' ¢ with n — 1 degrees of
freedom. The distribution of intermediate #’s follows in the same way. Finally
the distribution of ¢, given d is

fr(t,: dydt, = a=r

(1 + tr2)—('n—1‘+l)/2 dtr ;

n—r+1
conditionally, the variable ¢, is canonical ¢ with n — r degrees of freedom.
The significance of a value for g,, the likelihood for §,, on the objective pos-
terior f, are then obtained from
f = br(y) _ IB r
s(y)
with ¢, treated as a canonical ¢ variable with n — r degrees of freedom.

Then given 8, the significance of a value for 8,_,, the likelihood for 8,_,, or
the objective posterior for $,_; are obtained from

= bra¥) = By
r—1 —
5(¥)
with ,_,/(1 + t,°)} treated as a canonical ¢-variable with n — r 4 1 degrees of
freedom; note that the scaling factor (1 + ¢,%)* involves the given value for g,
(i.e. a pooled residual).
Then given B,, - - -, B,, the assessment of 3, is obtained from
t. = bl(Y) _.‘181
At \C2 Ml e 3
5(¥)
with 7,/(1 + X1 ¢ treated as a canonical ¢-variable with n — 1 degrees of free-
dom; note that the scaling factor (1 + }; ¢} involves the given values for

181" tT 482'

Finally given B,, - - -, B, the assessment of ¢ is obtained from
S = fg)
g
with s(1 4 X7 ¢,*)* treated as a chi variable with n degrees of freedom.

! A normal variable divided by a chi-variable; this avoids the square root of the degrees of
freedom in the usual expressions.
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8. Addendum: Haar factorization. Consider a semidirect product G = H, H,
where H, and H, are continuous subgroups of G. Let p, and A, be the standard-
ized left Haar and modular functions for H;, g, and A,, be the standardized left
Haar and modular function for H, H,, and p, and A, be the standardized (re-
Euclidean volume orthogonal to H, at e in H, H,) left Haar and modular function
for H,. Then

dpti(hy hy) d dpy(hs)
Aso(y) R Y03
is the standardized left (H,) — right (H,) invariant Haar for G. Thus the left
Haar factors

dpg(hyhy) = dpn(hy) - AAI‘Z((;:_Z))‘ dps(hy)

= dpy(hy) - dppn(hy) »

where the support measure s, is the quotient of left Haar on H, H, by left Haar
on H,

du(h hy) _ A(hy)
dpg(hy) = LB ) — Zul) gy, py
() du(hy) A (k) La(hs)
Now consider the semidirect product G = H, ... H, as discussed in Section 4.
Letg =hy) =h - - h,hy=h - hy pgy, = ph.» Doy = A, Thenapplying
the preceding factorization recursively (splitting factors from the right), we have

Ay (hy) A, (h,)
d =du,(h) - =232 dy(h) . ... . 0 gy (B
,’l(g) [!1( 1) Az(hz) #2( 2) Ar(hr) ,,l,,,( 1‘)
where the cumulative products from the left are the left Haar measures for the
corresponding cumulative product groups and the component Haar measures
are standardized in terms of Euclidean volume orthogonal to preceding coordi-
nates at the identity.
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