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Let f(x) be a pdf of exponential form with respect to the measure p.
Suppose a prior pdf = has been placed on the natural parameter space Q,
where = is a density (with respect to m-dimensional Lebesgue measure)
which is both positive and continuous at ¢*, the true but unknown pa-
rameter value. Using basic properties of exponential families and certain
associated convex functions, it is shown that the postefior pdf tends to the
multivariate normal.

1. Introduction. The asymptotic normality of the posterior distribution has
been discussed widely in the literature. Lindley [9] addresses the problem intui-
tively with a heuristic approach. Le Cam [8] shows that under very general
conditions, the scaled posterior distribution converges to the normal distribution
for almost all sample sequences. Walker [10] and Dawid [5] establish the limit-
ing normality of posterior distributions in the presence of a fair list of regularity
conditions on the density and parameter space. Johnson [6] does likewise but
derives an asymptotic expansion for the posterior distribution involving the
standard normal cdf as leading term. Johnson [7] treats the special case of the
one-parameter exponential family in a later edition.

In this paper we use a technique suggested by Buehler [4], plus some well-
known properties of exponential families and convex sets and functions, but no
special regularity conditions, to show that the density of the scaled posterior
distribution tends with increasing sample size to the multivariate normal density,
and hence convergence in distribution will follow via Scheffé’s theorem.

2. Assumptions and notation. Let f(x|7) be a pdf over the measurable space
£ with respect to the measure . Assume an exponential model with natural
parametrization so that the pdf f(x| ) is given by

(2.1) flx]z) = exp[z'd(x) — ¢()] -

Here ¢(x) = (¢:(x), ¢s(X), - 5 n(X))s x € 2 and the parameter ¢ = (7, 74 - - -,
)’ varies in the natural parameter space Q  R™, where

Q = {z: § exp[r'¢(x)] du(x) < oo} .
The normalizing function ¢(z) equals log § exp[z’¢(x)] du(x), with the integration

Received March 1973; revised January 1974.

AMS 1970 subject classifications. Primary 62E20; Secondary 41A60, 60F05.

Key words and phrases. Posterior distribution, asymptotic normality, exponential models,
Bayesian methods.

223

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. MIKOJIS

e
v §)

®

WWww.jstor.org



224 BRADFORD R. CRAIN AND RONNIE L. MORGAN

over .2°. We assume without loss of generality that Q has nonempty interior,
and that the components of ¢(+) do not lie on a flat [¢]. This latter condition
means if for some ¢ € R™ and ¢, € R, ¢'¢(x) = ¢,[¢], then both ¢ and ¢, vanish.
Finally, assume that ¢* = (7%, 7%, « -+, T,*), the true but unknown value of 7,
lies in the interior Q° of Q.

3. Properties of exponential families. We list here for the convenience of
the reader some basic properties of exponential families, a recent exposition of
which is to be found in Berk [3].

P.1. The function ¢(z) is convex over the convex set L.
P.2. ¢(z) is lower semi-continuous.

Let X be a random variable with pdf f(x|z). Since the functions 1, é1(x),
$5(X)s - - +» n(x) are assumed linearly independent [¢], the random variable ¢(X)
will not be distributed over any flat F in R™, which means for any flat F £ R™,
Pr (¢(X) ¢ F) > 0.

P.3. The following statements are equivalent.

(i) #(X) is not distributed on a flat.
(ii) ¢(z) is strictly convex on Q.

(iii) ¢ — f(+|7)is 1-1 on Q.

P.4. ¢(z) is differentiable, even analytic, on Qo,

P.5. E.($(X)) = ¢(z), v € Q, where () = (3¢4(r)/07y, - - -, 0f(7)[07,,) .

P.6. ¢(r) = (9%(r)/dr, dc;) is the variance-covariance matrix (m X m) of ¢(X).

P.7. The mapping ¢(-) is 1-1.

P.8. The set ¢(Q°) is open.

4. Asymptotic normality of the posterior distribution z. Let X, X,, ---, X,
be a random sample from f(x | ), where r = t* is the actual but unknown value
of z. The likelihood function is

(4.1) L(z| X, - -+ X)) = T3 exp{r’$(X;) — $(7)}
= exp{n[c'¢, — ¢(D]} >
where ¢, = n! 3,7, ¢(X;). Define z,* = (v, 70 -+ > t¥,) to be the (unique)

maximum likelihood estimator of *. 7,* will exist and be in Q° for n sufficiently
large. Let 6 = (6,, 0,, - - -, 6,,)’ be defined by 6 = ¢(z*). Then 0 = E.¢(X).
By the likelihood equation (4.1), 7,* satisfies ¢(z,*) = ¢,. Using the inverse
function theorem (see Apostle [1]), ¢(+) will have a local inverse which is con-
tinuous. Since ¢, — 0 a.s. as n — oo, T,* — t* with probability one.

Now let z(z) be a prior pdf over Q with respect to m-dimensional Lebesgue
measure which is continuous and positive at ¢ = ¢*. The posterior density of
¢, given the observations X, X,, ---, X,, is  p,(r) = n(z) exp{n[c'd, —
()]} S 7(z) exp{n[c'$, — ¢(c)] dr. The centered and scaled variate Z =
n¥(c — ¢,*) will have a density which tends pointwise in the limit to the multi-
variate normal with mean zero and covariance matrix [¢(z*)]~* (note that &(z)



POSTERIOR DISTRIBUTION FOR EXPONENTIAL MODELS 225

and [¢(r)]™* are positive definite for every 7 e Q%). The density for Z, g,(z),
is then

(4.2) gn(z) — 71'(2,” + T’n*) exp{n[(zn + Tn*),¢n - ¢(zn + Tn*)]} R
n"? §o n(z) exp{n[z', — ¢(r)]} de

where z, = zn~t. Let k,(z) be defined by
(4.3) ku(2) = (2 + 7 )by — Pz + 7,7) -

Then g,(z) can be written

ﬂ(z«n + Tn*) exp {n[kn(zn) - kn(o)]} .
n™* g a(7) exp{n[’'d, — ¢(z) — k,(0)]} dr

By the Taylor series expansion of k,(z) about z = 0,

(4.5) ko(z,) — Kk, (0) = 2,/[$, — d(z,*)] — 2,/P(E, + T,%)24/2
= —@2n) P&, + 1,9z,

where &, lies on the line segment between z, = zn~t and the origin. Since 7,* —
o* with probability one, it follows that P[V z, ¢(€, + 7,*) — ¢(z*)] = 1. Thus
with probability one, the numerator of (4.4) tends pointwise to =m(r*) X
exp{—2'¢(c*)z/2}.

Turning to the denominator of g,(z) in (4.4), we note that Berk [2] has shown
that the posterior probability of any neighborhood, say U, of t* goes to one, with
probability one, as n — co. Then for almost all sample sequences,

(4.6)  lim,_, §, 7(r) exp{n[z'¢, — §(r)]} dr/§q n(z) exp {n[z'$, — P(7)]} dr =1 .

Since 7,,* — * almost surely, it follows that for any ¢ > 0, there exists a neigh-

borhood U of z* such that eventually U < {r: |t — 7,*| < d}. Thusin the denomi-

nator of g,(z), we may replace the region of integration Q by {r: |t — 7,*| < d}.

Noting that |z = 7,*| < ¢ corresponds to |z,| < J, we have that in ratio, the
denominator of g,(z) in (4.4) is asymptotically,

(47) S?L,,KJ 71‘(2,” + Tn*) exp{n[kn(zn) - kn(o)]} dz
= S|z|<an* ”(zn + Tn*) exp{—z'g‘b'(S,, + Tn*)z/z} dz,

where in the last integrand (4.5) was incorporated.
We define the following modulus. Let

(4.8) p(z) = inf,,_, 2'¢(z)z .

Clearly z'¢)(t)z = p(c)z’z. The compactness of the unit shell {z: |z| = 1} implies
that p(+) is continuous. In particular, since ¢(z*) is positive definite, p(c*) > 0
and therefore p(.) > 0 on a neighborhood of r*. By choosing ¢ sufficiently

small, we then have r = inf {p(7): | — 7*| < 26} > 0. It follows that the inte-
grand in (4.7) is with probability one, eventually bounded above by A(z), where

(4.9) h(2) = [SUP|._ 4«35 T(7)] eXp{—rZ'z[2}

(4°4) gn(z) =
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is an integrable function. Since pointwise, the integrand in (4.7) approaches
n(t*) exp{—2z'¢(c*)z/2}, it follows from the Lebesgue dominated convergence
theorem that with probability one, (4.7) and hence the denominator of g,(z)
approaches r(z*) § exp{—z'¢(t*)z/2} dz. Thus we have proven the following.

THEOREM 1. With probability one, g,(z) — N(z|O0, [d(c*)]7Y), the multivariate
normal pdf with zero mean and covariance matrix [J(*)]™.

Convergence in distribution of Z = n¥(z — 7,*) to the N(O, [¢(c*)]™") distri-
bution follows immediately from Scheffé’s theorem. It also follows that g,(z)
tends to the N(O, [¢(z*)]"%) pdf in L-norm.

5. Extensions. A similar result holds for the more general exponential model
f(x]0) = exp{a(0)' $(x) — ¢(a(f))} where 6 ranges in a parameter set ©. Assum-
ing that ©° is not empty, that the true parameter value ¢* € ©°, and that a(.) is
a diffeomorphism betwen © and a(0) = Q, the preceding discussion can be modi-
fied to prove the following result:

THEOREM 2. Let n(0) be a prior pdf (wrt Lebesgue measure) over the set © which
is positive and continuous at 0%, let 6,* be the maximum likelihood estimate of 6.
Then g,(z), the pdf of Z = n¥(0 — 0,%), tends pointwise with increasing sample size
to the multivariate normal density

R(0%) exp{— 2 A'(0)Ha(0*)AO)z[2)
§ 7(6%) exp{—2"A'(6*)(a(0%))A(0*)z/2} dz
where A(0) = (0a,(0)/00;).
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