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THE LOG LIKELIHOOD RATIO IN SEGMENTED REGRESSION!

By PauL I. FEDER

General Electric Company

This paper deals with the asymptotic distribution of the log likelihood
ratio statistic in regression models which have different analytical forms
in different regions of the domain of the independent variable.

It is shown that under suitable identifiability conditions, the asymptotic
chi square results of Wilks and Chernoff are applicable. It is shown by
example that if there are actually fewer segments than the number assumed
in the model, then the least squares estimates are not asymptotically normal
and the log likelihood ratio statistic is not asymptotically x*. The asymptotic
behavior is then more complicated, and depends on the configuration of
the observation points of the independent variable.

1. Introduction. In many regression situations it is necessary to consider
models which are composed of several segments. The segments form a con-
tinuous function but may give rise to discontinuities in slope at the transition
points between segments. An important special case of these model is that of
broken line regression. The least squares fitting of such models is complicated by
the fact that the transition points are unknown and must be estimated from the
data. Hudson [11] has developed an algorithm to obtain the fit iteratively.

The analytical properties of segmented polynomial functions have been studied
extensively by mathematicians working in the theory of approximation. They
call these segmented polynomial functions spline functions. The transition points
between the segments are called knots. If the locations of the knots are estimated
from the data, the splines are said to have free knots. An introduction to the
literature on spline functions can be had by consulting Greville [8]and Schoenberg
[14]. A number of papers on statistical aspects of fitting spline functions to data
have appeared recently. See for example Kimeldorfand Wahba [12] and Studden
[16].

The main difference in emphasis between spline approximation theory and
segmented regression theory is that the segments are considered in spline theory
solely for mathematical convenience whereas the motivation for segmented re-
gression models is typically a change in the underlying physical mechanism.
However, this difference does not affect the analytical considerations.

A number of papers have studied the asymptotic distribution theory of the
least squares estimators in segmented models. Feder [7] considered the relatively

Received April 1971; revised February 1974.

1 This research was supported at Princeton University by Contract DA-31-124-ARO-(D)-215
and at General Electric Corporate Research and Development. This is a generalization of a part
of the author’s doctoral dissertation written at Stanford University under the support of National
Science Foundation Grant GP-5705.

AMS 1970 subject classifications. 62E20, 62J05.

Key words and phrases. Regression, segmented, likelihood ratio testing, asymptotic theory.

84

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RIKGLY

®
www.jstor.org



LOG LIKELIHOOD RATIO 85

general situation where the model consists of r segments, each of which is rea-
sonably arbitrary. See Sections 1 and 2 of [7] for a discussion of the literature
relating to segmented regression and for an illustration of some of the technical
difficulties that preclude the use of “standard” asymptotic maximum likelihood
and regression arguments to study the asymptotic theory. None of the papers
in the literature discuss the case in which there are really fewer segments than
the number assumed. An important special case is the behavior of the parameter
estimates from a two-segment model when there is really just one segment.

A related problem is the determination of the asymptotic distributions of sta-

- tistics suitable for testing various hypotheses about the parameters. In particular
itis of interest to examine the test of the hypothesis that there are fewer segments
than appear in the model. The regression parameters then are not all well defined,
since spurious parameters are estimated. In particular the estimates of the ficti-
tious changeover points are poorly behaved. Farley and Hinich [4], Brown and
Durbin [2], Bacon and Watts [1], and Hinkley [10] discuss procedures for testing
the hypothesis that a two-phase regression function in fact consists of just one
phase. Hinkley [10] reports on empirical grounds that with a two-phase broken
line regression model and with normal observation errors, the null distribution
of the likelihood ratio statistic for testing the hypothesis of a one-segment re-
gression is “very close to the y* distribution with 3 degrees of freedom.” Quandt
[13] reports for the same problem “The distribution of the relevant likelihood
ratio 4 is analyzed on the basis of the empirical distribution resulting from some
sampling experiments. The hypothesis that —2 log 2 has the y? distribution with
the appropriate degrees of freedom is rejected and an empirical table of percentage
points is obtained.”

In this paper we show that if the true regression is identified (Definition 2.1)
under the null hypothesis, then the asymptotic theory of Wilks [19] and Chernoff
[3] is applicable (Section 3, especially Theorem 3.2).

In order to get a feeling for what happens in the unidentified case, a simple
yet instructive example is considered (Section 4) in which the model specifies a
two-segment regression but the true regression consists of just one segment. It
is shown (for the example) that the parameter estimates are not asymptotically
normal. The null distribution of —2log 4 is shown to be that of the maximum
of a number of correlated y,’ and y,’ random variables and to vary with the con-
figuration of the observation points of the independent variable. It is then shown
that this behavior is typical of that in the general two-phase broken line fit.

Insight into the null distribution theory of the likelihood ratio statistic is
obtained by looking at the problem geometrically. This approach is also un-
doubtedly applicable to the study of regression models other than those discussed
in this paper.

2. Definition of the model and background discussion. The material in this
section is taken from Feder [7]. The notation used is the same as there.
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Consider an r phase, segmented regression function of the form
u(E; 1) = fi0; 1) for te[z; 4 7] (f=1--,1),
where 4 =7, < ... < r, = B. The model’s assumptions and restraints are

discussed in Section 2 of [7].
For given n, assume that n observations, X,,, -- -, X,, are taken where

Xoo = (& 1) + €ni -
Let 5(§) denote }; (X,, — #(§; t,.))%

Let@ = (0,,---,0,), 7 = (ty,--+,7,,),and § = (0, 7). Let§, = (6, 7)
denote the true state of nature. The segments f,(8,®; r) are abbreviated in the
sequal as f;”(¢) or simply f,*, for notational convenience. Let © denote the
set of @’s which lead to functions p(§; ¢) satisfying the model’s continuity re-
straints for at least one vector, =, of transition points. The vector = may or
may not be uniquely determined. Examples of cases in which = is and is not
uniquely determined are discussed in Section 3 of [7]. Let E denote the set of
corresponding §’s and let U = {u(§; t); § € E}.

It isshown in [7] (Section 3) that under suitable identifiabilityconditions (which
imply that no two adjacent f;’s are identical), 6 -69=0 »(n~¥(log log n)*) and
(%; — ;0™ = O, (n"¥(loglog n)}), where fand ¢ t;are the least squares estimators
(Lis.e.’s) of @ and 7, and m; is the lowest order -derivative in which £, and

0, differ at ¢+ = ;. Furthermore, if  is a subset ofﬂE, @ is its closure and
§© e @, then the above assertion applies equally well to §,, the l.s.e. among all
§ca.

A pseudo problem is formed by deleting all of the observations in intervals
L,.(n), Jj=1,.--,r—1 of length d;(n) about each of the r;*. The intervals
Lj(n) are chosen so that di(n) — 0 but (n/log log n)**™d(n) — co. See [7],
Section 4, for a detailed definition and description of the pseudo problem. Let
é* = (0* £*) denote the l.s.e. in the pseudo problem (abbreviated p.l.s.e.). It
is shown in Section 4 of [7] that under suitable identifiability assumptions,
6% —8v =0 H(n), 0 —6=o0 L0, (£,5 — 7,0 = O (n7Y), (8% — ;)™ —
(8, — 7)™ = o,(n~*). This implies that 0 — 69 = 0,(n), (£; — t;O)" =
0,(n™%), and that 8, 6* have the same asymptotic distribution. If 8 is an in-
terior point of © then the asymptotic distribution is normal. In particular, this

isthecaseif my = ... =m,_, = 1.
We now present several definitions that will be used in the next section.

DEerinITION 2.1. (Definition 3.1 of [7]). The parameter @ is identified at '
by the vector t = (¢, 1, ---, t,) if the system of k simultaneous equations
#(§; t) = p uniquely determines 6.

Let F,(s;) — F,(s,) = n~}{number of observations in (s, 5,]}. Assume that the
t,; are selected to satisfy the

Hypothesis. F,(s) — F(s) in distribution, where F(s) is a distribution function
with F(0) = 0, F(1) = 1.
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DErFINITION 2.2. (Definition 3.3 of [7]). A center of observations is a point of
increase of F.

Let A;® denote the set of z’s such that f,(8,; t) = f;,,(0%,; ) and which
lie to the right of those centers of observation that uniquely determine ; and
to the left of those centers of observation that uniquely determine &,,,. (For
brevity, one can describe A, as the set of z’s which are compatible with the
centers of observation.)

DEFINITION 2.3. (Definition 3.9 of [7]). The parameter @ is well identified at
£ by tif (i) @ is identified at ¢ by t, (ii) for each j, 1 <j<r— 1, A, is
the one point set, {r;"}.

3. Asymptotic distribution of —2log 1. We consider the problem of deter-
mining the asymptotic distribution of statistics suitable for testing hypotheses
about §. More precisely, suppose it is desired to test H,: § € w, vs. H,: £ € w,,
where w, and w, are d1s]omt subsets of E. In analogy w1th normal theory likeli-
hood ratio testing, define €, = 60, Jé = 50,2 2 = [s(&)/s(é)]™>. Similarly, define
61 s 62*, 2* for the pseudo problem Let n, n* be the sample sizes in the original
and pseudo problems respectively and let n** = n — n*. Let 3, > * represent
summation in the original and pseudo problems respectively and let } ** =
21 — > *. Suppose §¥ e d, N @,.

It is shown in Theorem 3.1 below that —21log 2 and —2 log 2* have the same
asymptotic distribution. For ease of notation in the discussion below, define

i — /’l(s tni) - /’t(e(m’ nz)

THEOREM 3.1. If § is well identified at p,\” by t and the components of t are
centers of observations then log 2 = log 2* + o0,(1).

Proor. The hypotheses of the theorem imply that the conditions for Corol-
laries 3.17 and 3.20 of [7] are satisfied. Corollaries 3.17 and 3.20 of [7] imply
that for i = 1,2 5% — 69, 5;,“i — 09, (%,,; — 7,9, and (£ ; — ©;O)" are
all O, (n*(loglog n)}). Select a sequence a, such that q,(log log n)~t — oo and
a, = o((n/n**)}). This is possible since n** = o(n/loglog n) ([7], Section 4).
LetV, = {§cE: |0 — 0% < a,nt,t;eLn),j=1,---,r—1}. Then§, &*
for i = 1, 2 lie in ¥, with large probability as n — co. From the definitions of
5(§), X,;, and v, it follows that s(§) = 3 (€,; — vai)® 5¥(E) = D * (€ — Vi)™
Thus

3.1 5(§) = s*(§) + 2 ** (ens — Vi)’
=S*($) + Z**e 22** enz ni Z** ”ii-
It follows from the definition of ¥, and the continuity of the functions f;,(¢)
that
Supeevn max, [v(§; t)| = O(a,n™?).
Therefore sup,., 3 **v;; = O(n**a,’n") = o(1). Lemma 4.11 of [7] implies
SUPrer, |5 €yl < SuPeeV {max, |v,,[}O,(n**t) = O(a,n~)0,(n**}) = 0,(1).
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We thus have, for §e V,
(3-2) s(§) = s*(§) + X** €l + 0,(1)

where 0,(1) is uniformly small for §e V.
By definition of 2

log A = log s(63) =" Jjog s,
(el) 2 g sl
and similarly for 2*, so that
* * k%
3.3 log 2 — lo z*=”_[1 S _sz_] " log 5
(3-3) og g 2 |98 s, og 5 + 5 %8 5,

Since ék, é,,* for k = 1, 2 lie in ¥, with large probability as n — oo, it follows
that for k = 1,2
(3.4a) 5= 2 (€n — (815 1,0)) = L €h — 2 2 €4iPins + 20 Vs
= X e+ 0,a,) + 0,(a,7) = e + 0,(a,?) -
This implies
n**log s,/s; = n** log [( X €;: + 0,(a,")/(X €n + 0,(a.%))]
= n**log[1 + O,(n7%a,?)] = 0,(1) .
Since €, and €, i = 1, 2 are restricted L.s.e.’s (and p.l.s.e.’s), s(€)) < s(é*) and
s*(§.*) < s*(§,)- Thus, from (3.2)
0 < s(é*) — s(§)
= s5(E%) + Trr b, + 0,(1) — s5(€) — L** el + 0,(1) < 0,(1).

Therefore
(3.4b) s€*) = s(§) + o,(1)
(3.4¢) s*(§) = s*(€) + 0,(1) -

Equations (3.2), (3.3), and (3.4¢) imply that

_ « " loe 52 _ 1o Z**ei+oﬂ(l) 1
log 2 — log 2 2{ogs1 g — e +op(l)}+o”()

n* 1—s"Z**em+o(n )
21 » 1).
2 og[l——s“z** z—{—o,,(n“):l—i_o"()

This, with equation (3.4a) implies that

‘. (1 = B &% ¢8) + O (n**n%,) + 0,(n7)
g — log 2 = = o8 1 = G e £ oo

+ 0,(1)
= _1’; log [1 4+ O,(n**na,%) + o0,(n)] + 0,(1)

= 0, (n**n7'a,’) 4 o0,(1) = 0,(1) . 0
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Since —2 log 4 has the same asymptotic distribution as —2 log 2*, it suffices
to consider the latter. From now on the asterisks will be dropped for notational
convenience, keeping in mind that the discussion refers to the pseudo problem.

For the sake of simplicity we restrict attention here to the case when the as-
sumptions of Theorem 3.1 are satisfied, 8 is interior to ©, o, is locally a hy-
perplane, and o, is its complement. The generalizations to ,, w, being cones,
as in Chernoff [3], or to #® a boundary point of ©, are reasonably stralghtforward
and lead to similar and related results. From Theorem 4.13 of [7], ni(f — )
is.asymptotically normal with mean 0 and covariance matrix ¢°G™*, where G is
the positive definite information matrix with

G = 3 2HE5 0 0pC D) ypg)
00 ; 20,
Note that if m, = ... = m,_, = 1, as is the case in broken line regression, then
6 is interior to ©.

Since the changeover points z,, - -, 7,_, are functions of 8, the hypothesis
spaces can be equivalently expressed as H,: @ € p, vs. H,: 0 € p,, where p,, p,
are the projections of w,, w, onto the #-space.

THEOREM 3.2. Suppose (i) § is well identified at p'” by t and the components of
t are centers of observation.

(i) @ is interior to ® which is locally a q-dimensional Euclidean space.

(ili) p, is locally an m-dimensional linear subspace of © and p, its complement.
Then —2 log 2 converges in distribution to x;_,, as n — oco.

Proor. Since 50,1 — 6© and 50,2 — 6 are O,(n"}(log log n)}), the restricted
p.ls.e’s?;,, ¢;, fall within L;(n) with large probability for n large, j = 1, - - -,
r — 1. In this region s(§) is a quadratic function of & and does not depend on
. For the remainder of the proof denote s(§) by s(6). Assumption (iii) implies
that under the null hypothesis 8 € g, n 5,. Thus s, ) = s(60),i=1,2 and
so we obtain for i =1, 2
(3.5 0=s(,) — s(0°)

— oy as(o 95(0”) | 14 wyr 950" ))
=@,, — o) + 30, — 0°) 575"

The matrix (2n)—‘32s(0‘°’)/30 00 converges to the ¢ X g information matrix G
where G, = {5 [0p(§®; 1)]/30; - [0p(§; 1)]/36, dF(t). The proof of Lemma 3.15
of [7] and continuity imply that G is positive definite. The vector n~%9s(6*)/36
has mean 0 and uniformly bounded covariance matrix as n — co. Thus
0%s(60")/060 960 ~ 2nG and 0s(6®)/00 = O,(nt) as n — co.

Since the right-hand part of equation (3.5) is non-positive it necessarily follows
from the above order calculations that 8, — @® = O,(n"%), i =1, 2.

For all 6 with 8 — 6 suﬂicxently close t0 0

(3.6) 50) = ) + 2 (8 — by {,,_lTs;(%;_’)} © — ).

( . — 0©) .
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The second derivative matrix n=9%s(6®)/66 00 is 2G + o(1) and is thus positive
definite for n sufficiently large.

Equation (3.6) implies that
(3.7) s@,,) = s(6) + ninf,., (8 — 6)YG(@ — ) + o,(1) i=1,2.
Define R, = ninf,, (6 — 6)G(@ — ), i = 1,2. Since p,is dense in ©, R, = 0.
Since n#(@ — 6©) converges in distribution to N(0, ¢°G~") and p, is locally an
m-dimensional hyperplane, it follows that R, converges in distribution to ¢’} _,.
Furthermore, n~'s(@) = n=* 3] e, + O, (n™") = o* + o,(1).

Equation (3.7) implies

A

. _210g2 = nlog *Ou) _ y1og[ Lt Ri/s(O) + 0)(n)
(3.8) 2log 2 =nlog 0. Og[l + R,/s(6) + "p(”_l)]

= n{(R,/s(6) + o,(n)]
since R, = 0. Equation (3.8) and the paragraph immediately above it imply the
statement of the theorem.

ReMARK 1. Equation (3.8) suggests that —21log A may be better approxi-
mated by an F| distribution.

—mm—q

REMARK 2. The local power of the likelihood ratio test is obtained from the
noncentral y? distribution as discussed in Wald [18] or Feder [6].

We illustrate Theorem 3.2 with a simple application to broken line regression.

Suppose that ¢(0; t) = 6,, 4 0,,¢ for 0 < ¢t < v and 0, + 0,¢t for <t < 1.
Here ¢ = 4. The continuity restraint is 6, 4 6,7 = 6, + 0,,7. Obviously
op@©; 1)ad, =1.(0=t < 70), 0005 1)[00,, =t - (0 <t < @), 0p(0; 1)/
00, =1. (@ £t < 1),0u(0;1)/00,, = t- (¢ < t < 1), where (- . - ) represents
indicator function notation. This implies that G is the 4 X 4 matrix whose (i, j)th
element is {; 1+ dF(r) if i < 2 and j < 2, §Lo 1H9°dF(f)ifi = 3andj = 3,
and O otherwise.

Suppose that it is desired to test the hypothesis H: § = §®. Then p, = {67},
0, =0 — {0} and F{—2logi} — X If it is desired to test the hypothesis
H:7 =179, then p, = {0: 0, + 0,7 = 0,, + 6,,7“}. This is locally a three-
dimensional hyperplane passing through 8. Thus L{—2 log 1} — x,*

4. The null case. We first discuss an example of a two-segment model where
the underlying regression consists of but one segment. The example is simple
but instructive. It turns out that the parameter estimates are not asymptotically
normal and —2 log 2 is nor asymptotically y* with the “appropriate” number of
degrees of freedom. Instead, the distribution of —2log 4 is that of the maximum
of a number of correlated chi square variates. It is then shown that this type
of behavior applies in general when there is really just one segment in a two-
segment model.

Hartigan [9] and Shorack [15] discuss other situations where the distribution
of —2log 2 is not asymptotically y* with the “appropriate” number of degrees
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0102t —
(;) T=-61/02 i !
FiG. 4.1.
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7
t=t; ///% // T=Y

Y,

¢

0)
6,

7 |

5

F1G. 4.2
of freedom. They are concerned with models in which the parameters are
constrained by inequality relationships. The principal difference between their
models and the one discussed here is that their regression spaces are convex sets
whereas those that arise in this section are not. This lack of convexity com-
plicates the distribution theory somewhat, as will be seen in the example below.
Let @ = (6,,6,) and u(0; 1) = 0if0 <t < 7, (0, 1) = 0, + 0,tif c <t < 1.
O consists of the subset of Euclidean 2-space contained between the lines

NN

6, = 0and 6, = —6,. The parameter values on the two-sided ray 6,/6, = —<
correspond to those regression functions with given . Note that all points along
the line 6,/6, = —1 correspond to the regression fnnction x(@; r) = 0. Suppose

6, = 6, = 0 and it is desired to test the hypothesis H,: 6, = 6, = 0.
Suppose Y;; = pu(6®; t,) + e,; where e;; ~ .#7(0, 1) and suppose that yn, 7n
independent observations are taken at t,, t, respectively where 0 < y < 1 and
7=1—7. Let X, =(n)" XYY,y X,=(fn)" 3 Y,;. Then the residual sum

of squares is

5(0;5 05) = S + rn(X, — 0, — 0,1,)* + 7n(X, — 6, — 0,1,) 0t
=84 rnX? + 7n(X, — 6, — 0,1,)° Lt <t
= S + rnX;® 4+ 7nX;? T=1t,
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where S = 31 (Yy; — X + 5 (Ya; — X,)? = n[1 + O,(n"})]. We can eliminate
the third case from consideration, since if , 4 6,7, = X, then s(6,, 6,) = S + ynX;’.
Thus ¢ < ¢, always.

Three types of fits to the data can occur, corresponding to (1) 0 < ¢ <1,
(2) 2 =0, 0or 3) 1, < # < t,. These three cases occur if

(1) X/X, > 6]t

(2) — @/ + /P)n/L)) — 1] < X/X < 6/t
(3) X/X, = —(n/0)[( + (/7)@/t)H — 1]

TABLE 4.1
Case 1 Case 2 Case 3
R ts — Xat R A 2
01:X12 Xet 6=0 01=-X27,.
te— 4h to— 7T
= e X1 X; — Xy r hrX X 6o = X,
tr— 1t 2T T hr 4% 2Tt
. Xehh — Xite A A
= —— = =
7 X X =0 Hhst<t
. s oA nyr(te Xy — 1 Xa)? A oal \
5(01,02) = S 5(01, 02) = S + T NS O 5(61, 62) = S + nrXa

In Case 3 we might put # = ¢#,, for definiteness.
Let Z, = X,(yn)}, Z, = Xy(7n)*. Then(Z,, Z;) ~ N(0,I). By direct calculation,

(m) S+ (Z2 + ZY)
—2logd =nlog 2% =nlo T T 7
& £ 56.) g[S+<s<0p0z>—S>]

Z2 4+ Z2 6.,6)—S _
=n|:l-|5-' ) _ (0, ;) +op(n1):|

= Z2 4+ Z2 — [s(0,, 0,) — S] + 0,(1).

Thus from Table 4.1

—2loga = Z? + Z} + o,(1) Zy s BT Lt
A tlT"’
(tl Zrt + 4,Z,7t) 1) — Li* [(1 t_lzl i— I:l _Z.. < _L-
o+ oD nrt T SZ=up
= Z? + 0,(1) Lo b7 [(1+—t‘—21>*—1].
2 P Z = t ri tzzf

We see from Table 4.1 and the above expressions that 0 = 0,(n™?), £ behaves
wildly in the sense that in Case 1 it is the ratio of two random variables w1tll
mean O and in Case 3 it is not even uniquely determined, —2log 2 = O,(1), &
is not normally distributed, and the distribution of —21log 2 isa mixture of a y,?
random variable and the maximum of two correlated y,? random variables. This
is somewhat smaller than the y,? distribution that might be naively expected on
the basis of the “standard” theory of likelihood ratio testing. This means that
a test of H, based on the y,? distribution would be overly conservative.
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It is useful to consider the same example from a slightly different viewpoint.
This will allow more ready generalization. We again summarize the observations
by (Z,, Z,) where L{(Z,, Z,)} = N(0, I). The problem can be regarded as a least
squares regression problem where the regression space is a two-dimensional
subset of two-dimensional Euclidean space. Let (7, 7,) denote the mean of
(Z,, Z,), to be estimated by least squares.

If 07<y (7 m2) = 047, 7)) + Oy(ti7t, 1,71)
If 1<t<4 (7/1’ 7]2) = 7;%(01 + 02t2)(0’ 1)
If nse (2 7) = (0, 0) .

The regression space is pictured in Figure 4.3. If z > 1, the mean vector is
at the origin. If r;, < r < 1, the mean vector lies along the p,axis. If0 <z <1
the mean vector is contained in one of the wedge-shaped regions indicated in
Figure 4.3. The changeover point, z, is constant on two-sided rays through the
origin in the shaded area.

Since 6, = 6, = 0, the true mean is at the origin. The residual sum of
squares is :

5(0,5 0;) = S + (£, — )+ (Z; — 7))’

where S = Y (Y;; — X,)* + 3 (Y,; — X,)*. In other words, s(6,, 6,) — S is the
squared distance from the vector Z = (Z,, Z,) to the regression space.

The symbols p, ¢, and w are used below in a context unrelated to their usage
earlier in the paper. Recall that —2log i = Z 4 Z;? — (s(6,, 0;) — S) + 0,(1).

Let (p, ¢) be the representation of Z in polar coordinates. Then p, ¢ are
independent and L(p*) = y,’, L(¢) = U(0, 2x).

Let 20 = tan~!(1,7}/t,7?). It can be seen from Figure 4.3 that v — 7/4 <
¢ <20 o0r o+ 3n/4 < ¢ < 20 + = implies that —2 log 4 is asymptotically the

M2 N

(tl)"/z ] tz?”z)

-(7Y2,7172) >t,

T=0—¥

tsrst,
0<T<t,

FiG. 4.3.
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squared length of the projection of Z onto the one-dimensional hyperplane (line)
1=0,20 < ¢ <w/2 or 20 + & < ¢ < 3x/2 implies that —2log 4 is asymp-
totically the squared length of Z itself, and 7/2 < ¢ < @ + 37x/4 or 37/2 < ¢ <
o + Tx[4 implies that —2 log 2 is the squared length of the projection of Z onto
the one-dimensional hyperplane - = #,. The second case results in an asymptotic
x2* distribution for —2log 2 and the first and third cases result in asymptotic
distributions somewhere between y,2and y,2. The first and third cases are charac-
terized by # = 0 and # = ¢, respectively.

The information regarding which of the three cases occurs is itself relevant
to testing the hypothesis, since Cases 1 and 3 are more likely to occur under H,
than under the alternative hypothesis. The principle of conditionality asserts
that the marginal distribution of —21log 2 as the edge of fit varies should be
considered, rather than the conditional distribution given the edge of fit.

If ¢, is bounded away from O this marginal distribution is bounded from below
by a chi square distribution with one degree of freedom and from above by a
chi square distribution with two degrees of freedom. The lower bound is sharp
but the upper bound can be improved somewhat.

The extreme cases correspond to 7, 7#/t,7* being small or large. Consider ¢, 1,
to be fixed so that the extremes correspond to extreme values of y/7. Asy/f — 0
the statistic —2log 4 approaches Z?, which has a chi square distribution with
1 degree of freedom. This occurs when the great majority of the observations
are at #,. The fit is then quite sensitive to X,, which is very close to 0. The
residual sum of squares is then approximately nyX? = Z?. As y/f — oo the
statistic —2 log 4 approaches Z? + Z,? when Z, Z, > 0 and max(Z?, Z;’) when
Z,Z, < 0. Thus an upper bound on the distribution of —2 log 4 is the distribu-
tion which is y,? with probability 1 and the maximum of two independent y;’s
with probability . This occurs when the great majority of the observations
are at t,. The fit is then quite sensitive to X;, which is very close to 0. The
residual sum of squares is usually O when X; X, > 0 and is essentially min (Z;?, Z;)
when X, X, < 0.

An interesting feature of this example is that in contrast to the standard like-
lihood ratio testing situation, the asymptotic distribution of —2 log 4 varies with
the configuration of the observation points of the independent variable.

The same geometry holds when n distinct observations are taken. Suppose
that 5(rf) = 0(r — r)* and n observations are takenat t,, t,, - - -, t,. The regression
set is a two-dimensional subset of n-space, composed of n — 1 contiguous seg-
ments of two-dimensional hyperplanes such as those in Figure 4.3. Each segment
is composed of two-sided rays through the origin. The ith segment consists of
all 5(¢) such that ¢,_, < = < t,. (See Figure 4.4.)

The segments are joined by rays through the origin corresponding to « = ¢,,
i=0,1,...,n— 1. The projection of Z onto the regression space lies either
in a segment or on a line, corresponding to whether ¢ lies between two observa-
tions or exactly at an observation. It is seen from Figure 4.4 that the chances
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are greater under the null hypothesis than under the alternative that the projec-
tion lies on a line = = ¢, Thus as with n = 2 it is necessary to consider the
marginal distribution of the projection length as the edge of fit varies. The
observation vector Z has an n-dimensional unit normal distribution centered at
the origin.

Leti* denote (n — k)™ 3 (i = k + 1)¢t,. Itis easily shown that the orthogonal
projection of Z onto the two-dimensional hyperplane which contains the segment
t, <t < t, isparameterized by 0 = Y (i = k + 1) Z,(t, — i*)/X (i = k+ 1) X
(t; —i®Yandr =[03 (i = k + 1)t, — 3 (i = k + 1)Z;]/(n — k)§. Thisimplies
that for any constant ¢, 6(cZ) = c6(Z) and z(cZ) = =(Z). Similarly for the or-
thogonal projection of Z onto the one-dimensional hyperplane determined by
7 = t,. These results imply that ¢ is constant for Z varying on rays through
the origin. Thus, the n-dimensional observation space can be partitioned into
cones through the origin in such a way that if Z lies in certain cones then
—2 log 4 is asymptotically the squared norm of the projection of Z onto a par-
ticular two-dimensional hyperplane and if Z lies in the other cones than —2 log 2
is asymptotically the squared norm of the projection of Z onto one of the one-
dimensional subspaces 7 = ,. The location of ¢ depends only on the direction
of Z. The conditions that ensure that the projection of Z onto the regression
space lies in a particular segment or line are:

(1) the projection of Z onto the hyperplane containing the segment or line

lies in the regression space;
(2) the length of the projection is the maximum over all segments or lines

for which (1) is satisfied.
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Note that since the regression space is not convex, the Kuhn-Tucker conditions,
as discussed in Hartigan [9], are not sufficient. Thus the distribution theory is
more complex than simply a mixture of chi squares, as described by Hartigan
[9], Section 3 or Shorack [15], Section 2.

The asymptotic distribution of —2 log 4 is the distribution of the maximum
of a large number of correlated ,” and y,* random variables. Hinkley [10] reports
on empirical grounds that the distribution resembles a y,’. As n — oo the number
of random variables over which the maximum is taken increases, but the cor-
relations between pairs of random variables approach 1. Thus some sort of
balance is maintained. The precise correlation structure depends on the spacings
of the observations and presumably different limiting distributions would result
from different spacings of the independent variable.

If = is arbitrarily set equal to a * (e.g. ) and the regression is fitted subject
to this additional constraint, then L{—2log} — 3,*>. This implies that the as-
ymptotic distribution of —2 log 2 is bounded from below by x,*.

Essentially the same results hold for the general two-segment model, »(¢) =
a + bt + c(t — 7)*. Suppose it is desired to test the hypothesis H: ¢ = 0 when
¢® = 0. In this case —2log 2 = s(4, b) — s(a, b, ¢, ), the difference between
the residual sums of squares from the two and four parameter fits respectively.
Let Z, = Z, — d — bt,. The previous discussion is valid with Z replaced by Z.
Thus, —2log 2 is the squared norm of the projection of Z onto a one- or
two-dimensional subspace, depending on the direction of 7. Again,
L{—2log 4} = 1,
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