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ESTIMATING THE KERNELS OF NONLINEAR
ORTHOGONAL POLYNOMIAL
FUNCTIONALS!

By BENJAMIN KIMELFELD
University of Haifa

Let (X(#), Y(#)) be a complex vector process stationary of order & for
any k, k = 1,2, - -+, such that Y(?) is expressed as a polynomial functional
of degree 2 operating on X(f). Then Y(f) can be rewritten as a sum of
orthogonal projections G;(Kj;, Y(2)), j =0, 1, 2. 1t is shown that there is a
set of functionals which approximate in mean square the projection
G3(Kz, Y(t)). Moreover, it is possible to determine the kernels associated
with these functionals.

1. Introduction. Let X(r), —oo < t < oo, bea zero mean continuous parame-
ter complex stochastic process stationary of order k for any k, k = 1,2, - -.
Second order stationarity implies that X(r) admits the spectral representation with
respect to a process of orthogonal increments Z,(4), —oo < 4 < oo, (e.g., see
[3], page 527). By a polynomial functional of degree » we mean a functional
of the form:

(1.1) Y(ry = § - Sexplit(d, + - + 4)H (4, - -+, 4,)dZ(4) - - - dZ(4,)
G e S eH(A) dZ(A) + H,, —o0 <1< 0,

where H, is a constant, and H;, j=1, ---, n, are complex continuous and
bounded functions (kernels). Integrals of this kind are discussed in [12], [13].
Let 7 be the subsequence of L,(2, By, P), where B, is the o-field generated by
X(t), which consists of all square integrable polynomial functionals of degree n,
n=0,1,2. In. % we define an operator T* by T'Y(S) = Y(S + 1); see [11].
Every two polynomials x, y are said to be orthogonal if Exp = 0.

Let £, be the subspace of “#”of all constants, £, be the subspace of all linear
functionals (degree 1) which are orthogonal to every constant, and let £, be the
subspace of all second degree functionals which are orthogonal to every constant
and every linear functional. Then Z#”can be expressed as the direct sum

(1.2) @i #; =7 .
(See [4, page 109], [7], [15].) Now let Y() be an element in #". Then by (1.2)
(1.3) Y(1) = Ty Gy(K;, V(1) —oo <1< oo,
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where G,(K,, Y(t)) = K, is a constant and for j = 1, 2, G(K;, Y(¢)) is the pro-
jection of Y(r) in 4, and K; is the leading (fixed) kernel of the projection (see
[7], [15]). For convenience assume EY(r) = O for all r. Then K, = 0 with prob-
ability one. Also by the orthogonality of G, and G,, K\(4) = [, (4)/fxx(4), —o0 <
A < oo, where [ and [, are the spectrum of X(r) and the cross spectrum of X{(¢)
and Y(r), respectively. Now it is difficult to solve for K, due to the complexity of
the resulting equations unless X(r) admits special properties; e.g., X(7) is Gaussian
(see [14]). In the following we suggest a way for getting around the difficulties
encountered in the solution for K, by considering a special class of polynomial
functionals.

The problem of kernels estimation drew much attention in the past twenty
years or so (see [2], [5], [6], [8], [9], [10], [14], [15] among others). In some of
the above references X(¢) was assumed to be Gaussian (e.g., in [2], [14]). How-
ever, in this paper we do not make this assumption.

2. Estimating the projection G,(K,, Y(¢)). In this section we show that under
some conditions there exists a subset of ~, of functionals whose kernels can be
determined. These functionals are used int approximating G,(K,, Y(f)) in mean

square.
Assume that K, admits the Fourier representation
2.1) Ky, &) = §§ exp[—i(t, 4, + 1, 4,)]b(t, t,) dt, dt,

where b is continuous and absolutely integrable.

LeMMA 2.1. Assume that the fourth order cumulant spectrum of X(t),
G vvva(As Ay Ay), is absolutely integrable. Also, in (2.1) let b satisfy

(1) §16(z, = + u)|dv < oo for each fixed u, —oo < u < oo.
(2) |b(z, = + u)| < ¢(7), integrable, —oo < u < oo.

Then there exist bounded and continuous functions, B,(4), k =1, ---, n, —oo <
A < oo, such that the quadratic functional

(2.2) §§ K4y, 4y) dZ (4)) dZ (%)

can be approximated arbitrarily closely in mean square by

(2.3) Vo= 2 N8 Bu(Ay + Ae' it dZ (4,) dZ (4,)
where u,, k = 1, - .., n, are real numbers.

Proor. The homogeneous functional (2.2) may be thought of as if it were
derived from the functional

(2.4) §§ 6(—7 — 1) X(2 ) X(2,) dr, dr, .
Let - = ¢, and ¥ = 7, — 7, and define

(2.5) g(t, u) = b(—t, —7 — u).
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Then (2.4) can be expressed as

(2.6) §§ 9(z, w)X(2)X(z + w)dr du,

(see Akaike (1966) for a similar transformation). Define

(2.7) B(Z; u) = § g(z, u)e™* dr .

Then by (1) B(4; u,) is a continuous and bounded function of 4 for each fixed u,,

and by (2) the family {B(4; +), —co < 4 < oo} is equicontinuous. Also, B(4; u)
is an absolutely integrable function of u for all 2. Define ¢,(4,, 4,) by

(2.8) (A &) = §% B(A, + A uye™adu — §= B(4, + 4y u)e™*> du,

—co0 < A Ay < o0
It follows that for any arbitrarily small ¢ > 0 there exists an a, such that
(2'9) |991(’21’ '22)| = qu:gae So—ooo IQ(T, u)l drdu < ¢, —oo ’11, /{2 < oo,

Partition (uniformly) the interval [ —a,, a] by letting —a, = u, <u/ <u, <.+ <
u, , < u, <u, =a, and define ¢,(4,, 4,) by

(2.10) Ay A) = 20y B(A + Ay u)ye™ e o(uy, — uy )

— o, B4, + Ay u)eedu,  —co < Ay Ay < 00
Obviously ¢, is bounded: .
(2.11) lel(4rs 4,)] < M, constant, —o00 < Ay Ay < 0O
Moreover, for any ¢, > 0 there exists N(¢,) such that whenever n = N (),
(2.12) loo(Ap A)] < s forall A,eA, —00 < 4, < o0,

where A is any finite closed interval. In particular, choose A such that on the
complement of A x A x A, denoted by (A x A x AY,

(2.13) U5 S axnnnr [Trvvildn Ay 4) dA, d2, dAy < ey & >0,
and on the complement of A x A, (A x AY, we have

(2.14) §Sonsnn Son(A)f v (&) dAyd2y < ey 6> 0.
For convenience let

(2.15) B4, + A) = B(A + Ay u/)u, — u,_)) k=1,.-,n.

E{§§ [0 Bu(A + A)e e 2] dZ (&) dZ (%)
— §S[§ B(4, + Ay wye™duldZ (4,) dZ (4,))
= E[§§ oA, 2) dZ (A) dZ(4) — §§ ¢u(4s 4) dZ (4) dZ (L))
(2.16) < M2y 4 e §§8 e Gy raalde A 4)| dA; dAg d2,
+ 3M%ey 4 35 §§ 0 an Son(A)f v (A) Ay dAy
8 19w (Ays A5 A)| dAy dAgd2, 4 3R ((0)
A+ 2(Me S |9y vl Ays Ay, Ay)| dAydAydA, 4+ 3M:RE ((0)) .
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Now interchange the order of summation and integration in (2.16), and note
that (2.2) can be rewritten as

(2.17) §§[§ B4 + Ay w)e2duldZ (X)) dZ (2,) . 0
It should be noted that polynomial functionals of the form

(2.18) §§ B(4, + A)es2dZ (2))dZ (A,) + § A2 dZ (2) — B,(0)R, (1),

with the condition

(2.19) AdDf xx(A) + By(2) § e (4 — 4, 4)dAy = 0,

are also elements of «,. In fact, sums of these functionals constitute a dense set
in £,

THEOREM 2.1. Let the hypothesis of the lemma hold and let y, be as in (2.3).
Define

(2:20) V¥ = TR l§S B + A)e e dZ (1)) dZ (4,)
+ § A(2) dZy(2) — B(0)R ;1 (u,)]
where for each k. k =1, ---,n, A, is related to B, by (2.19). Then y * —

G,(K,, Y(0)) in mean square as n — oo.
Proor. We see that y, = y * + y *t and
§§ K4, 4y) dZ(4) dZ(2y) = Go(K;, Y(0)) 4 G(K,, Y(0)) ",

where y, **, Gy(K,(Y(0))! € £,*, #£,* being the orthogonal complement of »~,. But
V= §§ Ky(4, 4,) dZ(4,) dZ (4,), and therefore by continuity y,* — G(K,, Y(0)),

n— oo. (]

COROLLARY 2.1. Under the hypothesis of the lemma and with the same notation,
there exists a sequence y *(t), —oo < t < oo, of functionals in £, given by

(2.21)  px(0) = ZEa [§Y explit(a + A)] explin, 4,]By(4 + 4) dZ (4) dZ (4,)
+ § e A(2) dZ(2) — BUO)Rx(U,)]

such that y *(t) — GK,, Y(t)) in mean square as n — oo.

Proor. By Theorem2.1, there exists y,* = y,*(0)such that y *(0) — G(K,, Y(0))
in mean square as'% — co. Therefore by the continuity of T* we have for each
t, —oco <t < oo,

T'y,*(0) — T'Gy(K,, Y(0))
or
Ya* () = Gy(Ks, Y(1)) 0

We shall now determine the kernels B,(4), - - -, B,(4). It is not difficult to see

that (2.21) can be rewritten as

(2.22) Zia[§ € By(2) dZ;, (1) + § e A4,(2) dZ ()],
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where U,(¢) for each k, k =1, .., n, is a stationary lag process defined by

(2.23) Uty = X()X(r + u,) — Ryy(uy,)
and
B(A)f xy,(2)
2.24 A () = — L AT —0 <A< 0o
. R ) <

Clearly, [y, (4) = § expliu, 4] fxxx(Z — 4 4)) dA; .
Now, for a sufficiently large n, Y(r) in (1.3) may be expressed by
4)
225 Y = G, (LD |y
=072 T0)
+ 2r_ [§ e By(4) dzZy (4) + § el A (A dZ (D],

—o Lt .
Multiply both sides of (2.25) by

(226) S expli(t + h)AB,(A) dZ, (2) + § exp[i(t + M)A, (2) dZ,(2) ,
p=1,.---,n.
Then on taking the expectations we have

@21 B = () = 2 @) (for) = L2 £

where

fr(4) = (fUin(l)) ’

B(2) = (Bi(4),- -+, B(A))s £.:(A) = (fu,x(A)s -5 fu, (D) £ (A) = (frr (A -,
fuv,v(4), and f (1) is the conjugate transpose of f;,(4).

3. Summary. The basic philosophy which characterizes the handling of a
nonlinear problem in this paper is that of orthogonalization and linearization.
Our linearization of quadratic functionals turned out to be fruitful due to the
fact that we were able to orthogonalize these linearized functionals and con-
sequently solve for their kernels. These functionals were used in the estimation
of G,(K,, Y(1)).

Suppose we let 7" contain all polynomial functionals of degree up to and
including n, n > 2. Then an extension of the proposed procedure to the esti-
mation of higher degree projections seems to be difficult as the number of lags
needed for an approximation increases rapidly and the orthogonality conditions
become complicated.
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