The Annals of Statistics
1994, Vol. 22, No. 2, 917-929

E-OPTIMAL DESIGNS IN WEIGHTED POLYNOMIAL REGRESSION

By BERTHOLD HEILIGERS
University of Augsburg

Based on a duality between E-optimality for (sub-) parameters in
weighted polynomial regression and a nonlinear approximation problem of
Chebyshev type, in many cases the optimal approximate designs on nonneg-
ative and nonpositive experimental regions [a, b] are found to be supported
by the extrema of the only equioscillating weighted polynomial over this
region with leading coefficient 1. A similar result is stated for regression on
symmetric regions [—b, b] for certain subparameters, provided the region is
“small enough,” for example, b < 1. In particular, by specializing the weight
function, we obtain results of Pukelsheim and Studden and of Dette.

1. Introduction. Consider polynomial regression of degree d > 1,
d .
yx) =D vt xe€la,bl,
i=0

where the controlled variable x is chosen from the interval [a, 5] and 6 = (¢, . . .,
Yq)’ (the prime denotes transposition) is an unknown parameter vector. This
setup is embedded in the usual statistical context: for estimating 0 (or a subvec-
tor K6 of 6), uncorrelated random variables Y,, can be observed under experi-
mental conditions x, € [a,d], such that Y, has expectation y(x,) and variance
02/w(x,),1 < v < n,where 02 > 0 and w # 0 is some nonnegative and continu-
ous weight function (also called efficiency function) on [a, b].

A design ¢ is a probability measure on [a, b] with finite support. The weights
of ¢ give the ideal proportions of observations to be taken under the experimen-
tal conditions designated by its support. Let M(¢) = (m, +,(§))o <y, <a denote
the moment matrix of ¢, built in the (weighted) moments m,,(¢) = [ w(x)x* d¢(x),
p < 2d. The choice of a design ¢ is based on its information matrix Cx(M(¢)) for
Ko,

Cx (M(8)) = min{LM(&L": L € Sk },

where the minimum refers to the Lowner partial ordering, and Gk is the set of
g-inverses of K’ [see, e.g., Gaffke (1987)]. A design is called E-optimal design for
K¢ if it maximizes the smallest eigenvalue Ay, [Cx(M(€))] of the information
matrices for K among all designs.
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918 B. HEILIGERS

In the case of w = 1 and [a,b] = [-1, 1], the E-optimal design problem is
partially solved in Pukelsheim and Studden (1993); see also Dette and Studden
(1993). Based on a duality between E- and c-optimality [A-optimality in Dette
and Studden (1993)], the optimal design for certain subparameters is found to
be supported by the extreme points of the Chebyshev polynomial of the first
kind of degree d, as conjectured by Preitschopf (1989), and an explicit formula
for its weights is given. E-optimal designs in case w(x) = (1 +x)*(1 — x)?, x €
la,b] = [-1, 1], with &, 8 € {0, 1} are shown in Dette (1993) to be supported by
the zeros of certain weighted Jacobi polynomials.

We utilize here another aspect of the duality to E-optimality. In Section 2
we obtain from general equivalence theorems for optimal designs that the E-
optimal design & is supported by the extreme points of a solution to a nonlinear
Chebyshev approximation problem. Section 3 gives conditions under which &,
can be computed explicitly: if [a, b] is nonnegative (or nonpositive) and if there
exists a solution to the nonlinear approximation problem with (at most) d + 1
global maxima in [a, 6], then, unless a = 0 and K6 = 9, & is supported by the
d+1 extrema of the only equioscillating polynomial built in vw(x)x#,0 < p < d,
with leading coefficient 1, and a formula for the associated weights is verified.

A main step for obtaining this description of &; is to identify a solution to the
nonlinear approximation problem as square of a polynomial in vw(x)x*,0 <
u < d, with coefficients given by the coordinates of an eigenvector of Cx(M(&))
t0 Amin [Cx(M(£y))]. Here, the results in Heiligers (1994) imply that Cx(M(&))
is totally positive (up to multiplication of certain rows and columns by —1), a
property which entails simplicity of the smallest eigenvalue and a characteristic
sign pattern of the coordinates of the corresponding eigenvector.

Similar characterizations of optimal designs for certain subparameters K6
hold true if the experimental region and the weight function are symmetric
around zero, provided the region is not “too large.” Then Cx(M(&;)) decomposes
into a principal block diagonal matrix with two diagonal blocks, both of which
possess a simple smallest eigenvalue. These values can be compared success-
fully if the region is “small enough” and if the system of parameters of interest
satisfies the “neighborhood” condition from Pukelsheim and Studden (1993).

2. E-optimality and Chebyshev approximation. We denote by f(x) =
(1,x,...,x%), x € R, the vector of monomials in x up to degree d. Let J C
{0,...,d} describe the (s-dimensional) subparameter of interest, that is,
K06 = (9;)icq, and let Px, be the set of nonnegative (weighted) polynomials
pz,1 = wf'L'ZLf, where L ranges over 9x- and Z ranges over the set of non-
negative definite s x s matrices with trace[Z] = 1. Consider the approximation
problem of Chebyshev type,

(@H)] minimize m[a)%]pz,L(x) over pz 1 € Px.
x € la,

The following duality between E-optimality and problem (1) can be deduced
from the general equivalence theorems developed in convex design theory; see,
for example Pukelsheim (1980) and Gaffke (1987) [cf. Heiligers (1992), Lemma
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(2.4)]. Note that these equivalence theorems also ensure the existence of a
solution to (1).

We denote by £(p) the set of global maxima of the polynomial p € Pk in [a, b]
and by supp(¢) the support of the design &.

THEOREM 1. Let ¢ be a design and pz, 1, be a polynomial from Pg.. Then
; <
Amin [CK (M (5))] < mmax pz,0(x),

with equality for £ = & and pz 1 = pz,, 1, iff & is E-optimal for K6 and pz, 1,
solves (1), equivalently, iff the following three conditions are fulfilled:

(i) LoM(¢0)LyZy = Cx(M(£0)Zo = (maxy ¢ (o, b] PZ,, L, (%)) Z0;
(i) max, ¢ (4, 5) P2y, Lo (%) = Amin [Ck(M(£0))];
(iii) supp(&o) C &(pz,,L,)-

The duality stated above is closely related to the approach to E-optimality
considered in Dette and Studden (1993): It can be shown that if pz, 1, solves
(1), then the matrix Vi € R¥*" chosen from a full-rank factorization Z, =
VoVy,rank(Zy) = r, defines an in-ball vector of the generalized Elfving set
conv({vw(x)Lof(x)e': x € [a,bl,e € R, |le|| = 1}), ||€||? = €’e [cf. Heiligers (1992),
page 28].

According to Theorem 1, an E-optimal design £, for K6 can be computed as
follows. If we can find a solution p to (1) with finitely many global maxima in
[a,b], then &, is supported by &(py) with weights solving the system of linear
equations associated with condition (i) from above. Actually, if py has at most
d + 1 global maxima in [a, 6], then these equations have a unique solution. [It
should be noted that the particular formula for the weights of an optimal design
stated below becomes important in Section 3. This formula is also obtainable
from the results in Pukelsheim and Torsney (1991) or Dette and Studden (1993);
this, however, requires roughly the same arguments as in the present proof.]

THEOREM 2. Let pg = pz, 1, € Px be a solution to (1) with at most d + 1
global maxima in [a,b] [&(po) = {x0,...,%t},t < d, sayl. Then the E-optimal
design &g for K0 is uniquely determined; & is concentrated on &(py), and the
weights can be obtained as follows.

Set F = (x¥)o<pu<d,0<v<t and represent Z, = Z}fﬂﬂjzjzj’- (where B; > 0,
Zfﬂ B = 1,zzj = 1) as a convex combination of rank-1 matrices z;z,. Let
e,,0 < v < t, denote the unit vectors in R**!, and define

TT-111 171 .
L= IS <yt
wlx, )f'(x,)Liz;,
where, for each 0 < v < t,j, € {1,...,4} is arbitrary with w(x,)f'(x,)Lyz;, #0.
Then

A,

Z)t—OA“ forallOSVSt.
ll,:

£O(x|/) =
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ProoF. Let &, be E-optimal for K6, My = M(&). Set Py = 13,1 — K'Ly. Ob-
serving that G = {Lo + DPy: D € R®* @+ D} it follows from Theorem 1 that

0 < trace [(Lo + KZDP())M()(LQ + K,DP())IZO] — trace [L()M()L(I)Zo]
= k’trace[DP\M,PyD'Z] + 2x trace [DPoMoLyZ,] for all k € R;

thus trace[DPyM,L{Z,] = 0 for all D € R**@+V and PoMyL}Z, = 0, that is,
MoLz; = K'LoMoLyz; forall 1 <j <.

Moreover, by Theorem 1, the z; are normalized eigenvectors of LoM,L; to the
smallest eigenvalue \y = A\ [Cx(Mp)], and therefore (for all 1 <j < £ and all
0<v<y)

(2) €0, (e, )f'(x, )Lz, = Aoel,(F'F) 'F'K'z;.

For each 0 < v < ¢ there exists a 1 < j, < £ such that w(x,)f'(x,)Ljz,, #0;
otherwise, w(x,)f'(x,)Lyz; = 0 for all 1 < j < £ and some 0 < v < ¢. Thus
po(xy) = B Bw(x,)(f'(x,)Lizj)? = 0 and po = 0, contrary to our assumption.
Now the assertion follows from (2), since the weights of £, sum up to 1. O

We state here two examples for setups such that there exists a solution to (1)
with at most d + 1 global maxima in [a, b]. The proof of Lemma 3 can be found
in Heiligers [(1992), page 35ff.]; the proof of Lemma 4 is as that of Theorem 7.4
in Karlin and Studden (1966).

LEMMA 3. Let w = 1. Then there exists a solution to (1) with at most
d + 1 global maxima in [a, b] iff (at least) one of the following four conditions is

fulfilled:
(i) 0¢7;
(ii) d > 2;
(iii) d=1,7={0,1} and —ab < 1;
(iv) d=1,7={0} and 0 ¢ (a, b).

LEMMA 4. In each of the following cases, all solutions to (1) have at most
d + 1 global maxima in |la, b]:

(1) wx) =(x —a)b; —x), x € [a,b], witha; <a < b <bjand a,B > 0;
(ii) w(x) = exp{—=x}x®, x € la,b], where a > 0 and a > 0;
(iii) w(x) = exp{—x?}, x € [a, b];
(iv) {1,w®),w),...,wx)x?} is a Chebyshev system over [a, b];
(v) w~lis a positive polynomial on [a,b], and the (2d + 1)th derivative of w™?!
has no zeros in (a, b);
(vi) w can be approximated uniformly by functions of the type considered
in (v).

A direct minimization of the Chebyshev norm of p € Px. over [a, b] seems to
be a difficult task. Even the problem of checking whether or not a given non-
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negative polynomial belongs to Pk is not trivial. To give an example, consider
the case KA = 6. By some small modifications in the proof of Lemma 3.2 in
Heiligers (1988)it is seen that for each nonnegative weighted polynomial p there
exists a nonnegative definite matrix V with p = wf'Vf. In general, however,
if d > 2, then this matrix is not uniquely determined and even the trace of
corresponding matrices can depend on the particular choice of V [see Heiligers
(1992), page 29].

3. E-optimal designs. For characterizing E-optimality in Theorem 7, be-
low, we have to ensure that an optimal design has at least d + 1 support points.
In this context it is helpful to find conditions implying that an arbitrary design
¢ with regular information matrix for K6 possesses a regular moment matrix
M(€), that is,

3) #(supp(¢) N {x:w(x)#0}) > d + 1.

The following lemma states results on this problem; slightly weaker statements
are given in Preitschopf [(1989), Satz 2.9.4 and Satz 2.9.5].

LEMMA 5. In both of the following cases, regularity of Cx(M(£)) is equivalent
to (3):

(i) ¢ has nonnegative (or nonpositive) support, and 0 ¢ supp(¢) or J#{0}.
(ii) ¢ has symmetric support, that is, supp(€) = {xo, ..., %} = {—%0,..., —%z},
and there is at least one integer i € J,i#0, such that d — i is even.

ProoF. We show that under (i) or (ii) regularity of Cx(M(¢)) implies (3); the
converse implication holds triviality true. We consider case (i) only; case (ii) can
be treated similarly.

Assume without loss of generality that ¢ has nonnegative support. Suppose
that ¢ does not fulfil (3) (i.e., supp(¢) N {x: w(x)#0} = {xo,...,x%:_1},¢ < d, say),
but Cx(M(¢)) is regular. Then, with F = (x%)o <, <d,0< v <¢-1, it follows from
Krafft (1983) that »

4) nullspace (M(¢)) = nullspace(F') C nullspace(K).

Choose positive numbers x;,...,x5_; and consider the polynomial g(x) =
-} (- x,) =% _gaux*, x € R. For u > 1 the coefficients

n=0
au=00 3 =

£C{0,..,d—1} LEL
#L=d—p
are different from zero, since at least d — 1 of the x,’s are positive. [If 0 ¢ supp(&),
then also ag # 0]. Thus, a = (ay, - . .,a4)’ € nullspace(F"), but a ¢ nullspace(K),
contrary to (4). O

Some further remarks are helpful for investigating E-optimal designs in the
case that the region [a, ] and the weight function w are symmetric around zero,
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that is, @ = —b and w(x) = w(—x) for all x € [-b,b]. Under these symmetries
there exists an E-optimal design &, for K6, which is symmetric around zero,
that is, such that &y(x) = £&(—x) for all x € [—b, b].

Moment and information matrix of any symmetric design ¢ decompose into
principal block diagonal matrices with (at most) two diagonal blocks. Precisely,
let the subvectors f;, £ = 1,2 of f (of dimension d + 1, say) consist of the monomi-
als in x whose degrees differ from d by odd numbers if £ = 1, and by even num-
bers if £ = 2. Then, apart from suitable permutations of the rows and columns,
M(&) = diag(M1(€), M2(¢)), where My(¢) = [ wfif, d€ is built in the moments of ¢
of even degree [the moment my(¢) of highest degree 2d is an entry of My(¢)].
Obviously, M,(¢) may be viewed as a (d¢ + 1) x (d¢ + 1)-dimensional moment
matrix of a certain design ¢ with nonnegative support, built w.r.t. w,, where
w1(x) = w(x) and wy(x) = x®w(x) if d is odd, and w;(x) = x2w(x) and we(x) = w(x) if
d is even.

Similarly, Cg(M(€)) = diag(Cg,(M1(¢)),Cx,(M(¢))), where, for ¢ = 1,2,
Ck, (M,(&)) coincides with the information matrix of E (considered as a de-
sign for polynomial regression y,(x) = Eflio Y, ext, x € [0,b2], of degree d; and
weight function w,) for the subparameters K60, = (¥9; ;); ¢ 5,, respectively with
J1={d1—j:d-2j—-1 €T} andJ; = {dy—j:d—2j € J}. [If J consists either of odd or
of even integers only, then Cx(M(¢)) = Ck,(M;(¢)) or Cx(M(¢)) = Ck,(M2()); in
these cases the E-optimal design for K is easily obtained from the optimal de-
sign (in polynomial regression of degree d; and d; on [0, %] and weight function
w1 and we) for K16; and K05, respectively]. If J contains even and odd integers
and if J fulfills the “neighborhood” condition (5) considered in Pukelsheim and
Studden (1993),

(5) J#{0} and d—2j—1cJimpliesd—2j €7,

then the smallest eigenvalue of the complete information matrix Cx(M(¢))
comes from the submatrix Cx,(M5(¢)), at least if b < 1.

LEMMA 6. Let b < 1 and suppose that J satisfies (5). Then we have, for all
symmetric designs £,

Amin [CK2 (Mz(f))] < Amin [CK1 (M 1(5))] ,
with strict inequality if M(€) is regular and b < 1.

Proor. We consider only the case 0 € J and d = 2m even; all other cases
are essentially the same.

For convenience, we rearrange the vectors f; and the columns of K, as fol-
lows. Let J; 1 and J;,5 be the sets of odd integers i with i € J, and i ¢ J but
i +1 € J, respectively, and let J; 35 consist of the remaining odd integers from
{1,...,d—1}.Setfi () = (); ¢, ,,1 < k < 3 (if some of the sets J; , are empty,
the corresponding subvectors of f; are undefined), and arrange f; according to
fi=fi 1 Flos ) Let fy = (fy 1, f 50 £330 1) and fo,a(x) = 2y 4, 1 < b < 3.
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When arranging the columns of K, accordingly then, due to (5),

I, 0 00
K1=(Isla0) and K2=<0 132_31_1 0 0),
0 0 01
where s, = #];,£ = 1,2. Choose a g-inverse L, of K with Cg, (M1(£)) = L1M1(§)L}
and a normalized eigenvector z; of Ck,(M1(€)) to Apin[Cx,(M1(£))]. Partition
L, = (I,,,B1,2, B1,3) according to f1, and define the g-inverse Ly of K, and the
vector zg by

I, 0 Bys 0
L2 = < 0 132_31_1 0 0> and 2/2 = (Z’l,zllBl’z,Ol).
0 0 0 1

[Note that z{Lofo(x) = x2]L1f1(x) for all x € R.] As in Pukelsheim and Studden
[(1993), page 410], it follows that

Amin [CKZ (Mz(ﬁ))] < 23 LaMp()Lizs
- / W) 22 (2 Lafy(x))? de(x)
< / w) (4 Lafy(0)2dew) = 2 LMy (O)L )z,
= Amin|Ci (M) |.

Notice that the condition b < 1 becomes important in the last inequality of (6).

Equality in (6) entails w(x)(1 — x2)(z|L1f1(x))? = 0 for all x € supp(¢). Thus, if
b < 1 and M(¢), and hence Cx(M(£)), are regular, then & has (at least) d + 1 sup-
port points in {x: w(x) # 0}, all of which are zeros of the polynomial z{L;f;. Now,
degree(z}L1f1) < d — 1 gives 2] L1f; = 0, hence Ay [Ck, (M1(£))] = 0, contrary to
the regularity of Cg, (M1(£)). O

(6)

We will characterize E-optimality for K6 = (¢;); ¢ s in the following two setups:

(A) a > 0, where J#{0} ora > 0.

(B) J fulfills (5), a = —b with b < 1 and w(x) = w(—x),x € [-b,b], where in
the case b = 1 either w = 1 or w is one of the weight functions considered in
Lemma 4.

We note that for the constant weight function w = 1 conditions (A) and (B)
are also considered in Pukelsheim and Studden (1993).

THEOREM 7. Let either (A) or (B) be fulfilled, and suppose that there exists a
solution pg to (1) with at most d + 1 global maxima in |a,b]. Then the E-optimal
design & for K is supported by the d + 1 extrema b > xg > --- > xq > a in
[a, b] of the polynomial R = \/wr'f which, in case (A) is the only equioscillating
polynomial over [a,b] with leading coefficient rqy = 1, and in case (B) is the
only equioscillating polynomial over [—b,b] with leading coefficient rqy = 1, and
R(x) = (—1)2R(—x) for all x € [-b,b].



924 B. HEILIGERS

In both cases, & is given by
bolxy) = (-1)’ae,W V2F-IK'Kr/|Kr|?, 0<v<d,

with F = (x)o< p,v<a, W= diagog y Sd(au(x,,)) and o = max, ¢ 4, 5 |[R(x)|, and Kr
is an eigenvector of Cx(M(&y)) to the smallest eigenvalue o?||Kr||~2.

ProOF. (i) We start with setup (A). It follows from Theorem 1 and Lemma
5 that ¢, is supported by exactly d + 1 points & > xy > --- > x5 > a, all of
which are global maxima of p in [a, b]. The information matrix Cx(M,), My =
M(&), is regular, and by Heiligers [(1994), Lemma 4] this matrix has a simple
smallest eigenvalue Ay > 0. Letz = (2, ...,2,_1) be a corresponding normalized
eigenvector. Then py = (y/wz'Lof)? for some Ly € Gk, where the polynomial

R = \/wz'Lof has the property that
) IR@)| < |R@,)| = /Ao forallx € [a,b] andall 0 < v < d.

The sequence R(x,), 0 < v < d, alternates in sign, as can be seen as follows.
From equation (2) in the proof of Theorem 2 we get that R(x,) and e/, W—1/2
x F~1K'z have the same sign. Let iy < - -- < i _ ; be the elements of J, arranged
according to increasing values. Lemma 4 in Heiligers (1994) implies that there
are exactly s — 1 sign changes in the sequence (—1)* 4z, 0 < ¢ < s — 1, where
none of the coordinates z, vanishes; therefore we may assume that sgn(z,) =
(=1)4~#,0 < £ < s — 1. Moreover, Theorem 8.12.4 in Graybill (1983) yields for
the entriesg,, ,,0 < u, v < d, of the inverse of F that sgn(g,,, ) = (~1)?*#*¥ and
that at most the first column of F~! may contain zeros. Hence, for all 0 < v < d,

sgn(ﬁ(x,,)) = sgn (e, W-1/2F~1K'z)
(8) s ~1/2 y
=sgn > (W) gy iz | = (1.
£=0
In addition, from (7) and (8) we find, for the vector 7 of coefficients of ﬁ,
7= EV W TARE)) oo, < g = VIE) W (1Y),

in particular, reasoning as above, it follows that the leading coefficient 74 is
different from zero with sgn(7y) = 1. Hence, the polynomial R = 7; 'R = \/or'f
has leading coefficient 1 and possesses the equioscillating property

IR@)| < v/Ao/Fg =(~1)"R(x,) forallx € [a,b] andall 0 < v < d.

Note that 74||Kr|| = || K7|| = [|2]| = 1; thus v/A¢ = max, ¢ (5, 5 [R@)| /| K7
Inserting (7) and (8) into the formula for the weights of & given in Theorem
2 and observing that K’z = K’K ¥, we obtain

. Mor = FW'2diag, <, <q(hoe, W™/*F~'K'2/R(x,)) W'/ *F'r
® =Tg MoF W'/ idiagy ¢, < o(F1Ve, W2F 1K) (1)) 5, <
= )\oKIKT‘,
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and the theorem in Krafft (1983) yields
CK(Mo)Kr = )\QKI‘.

Finally, let R = VwT'f be a (further) equioscillating polynomial in Vwxk 0 <
p < d,with7, = 1, and fix associated points b > %) > - - - > %; > a such that the
following hold:

|B@)| < |R&,)| (=4, say) for all x € [a,b] and all 0 < v < d,

(10) -
R(,)R(x,.1) <0 forall0<v<d.

Consider the c-optimal design {A within the set of designs supported by {%, ...,
X4}, where ¢ = K'K7,

€&,) =70 Ye,W 2FIK'KF|, 0<v<d

[cf. Pukelsheim and Torsney (1991)]. Here § is a normalizing constant and the
matrices  and W are defined as F and W, respectively, with x, replaced by %,,.
Relation (10) implies that WY/2F'7 = +5((—1)*)y< , <4, and therefore, arguing
as above, the coordinates of 7 must alternate in sign, where the Ty >1,do
not vanish. Consequently, 7; = 1 ensures sgn(7,) = (—1)?~* for all u; hence
sgn(e, W-Y2F-1K'K7) = (~1)" for all 0 < v < d. As in (9) it follows that

M7 =7K'K7 and

(11) ~
KT is an eigenvector of Cx (M(€)) to the eigenvalue 7.

The sequence sgn((—1) = 47;,) = (—-1)¢, 0 < £ < s — 1, alternates in sign, and by
Heiligers [(1994), Lemma 4] 7 is the smallest eigenvalue of Cx(M(€)). Premul-
tiplication of (11) by 7' yields

oo f1§2(x)d2(x)= 32
[|1K7|2 K72

Now, E-optimality of §A for K6 follows from
VP A [ Cie (M(@))] = max B2 > PM(©
> 7'K'Cg (M(&))Kr
> || K7(I* Amin [CK (M(&))] for all designs ¢.
Consequently, Theorem 2 gives £=¢; thusz, = x,,for all v, and R = R.
(ii) Consider setup (B), first with b < 1 or J; = @ (with J; defined as above).

Again, supp(§o) = &(po) has cardinality d + 1, and is symmetric around zero;
Amin [Cx(M(£)))] is a simple eigenvalue and Z, = 22/, where the eigenvector z
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to the smallest eigenvalue of Cx(M(&))) corresponds to Ck,(Ma(&p)) (as follows
in the case J; # @ from Lemma 6). Consequently, by Heiligers [(1994), Lemma
5] all coordinates of z associated with Cg, (M1(§)) vanish and the sequence
(=1)¢=%24, 0 < £ < sy — 1, built from the remaining coordinates (J; = {iy,...,
Is,—1}, o < --- < Is,_1) alternates in sign. (In particular, p, must be an even
polynomial). Now the assertions can be verified as in case (i), where the crucial
equation (8) is implied by the sign pattern of the nonvanishing coordinates
of z and of the corresponding entries of the inverse of F, which is derived in
Pukelsheim and Studden [(1993), page 407].

(iii) It remains to investigate the case b = 1 (and J; # D). Let {b,}nen be a
sequence of nonnegative numbers b, < 1 with lim,, _, ., b, = 1. It follows from
part (ii), above, that the E-optimal designs &, on [-b,, b,] for K are supported
by the d + 1 extrema of the only equioscillating polynomials R,, = \/wr), f over
[=b,,b,] with leading coefficient 1 and R,(x) = (—1)?R,(—x) for all x. We may
assume that the sequence {{,},cn converges to a design on [-1,1], &, say,
which is symmetric, since the &, have this property. &, is easily found to be
E-optimal for K. Because Lemma 5 ensures regularity of M(&,) we obtain from
Theorem 1 that

Tim i [Coe (M(E) | = X0 = A [Cie (M(60))
, 2
= lim max w(x)( rof (x)) .

n-— 00 x € [—by, byl “Krn“

In particular, boundedness of the sequence {r,/|Kry|}»en follows, which we
may therefore assume to converge to 7, say. Obvious limiting arguments yield

for the polynomial B(x) = vo@#f(x), x € [-1, 1], that

|R(x)| < |R(x,)| = VX forallx € [a,b]l and all 0 < v < d,
R(x,)R(x,,1) <0 forall0 <v <d,

and the proof can be completed as above. O

The equioscillation property of the polynomial R from Theorem 7 means
that this polynomial solves the linear Chebyshev approximation problem:

minimize max, ¢ (4, |@(x)| over all polynomials Q(x) =
E;‘L 0quVwx)x# with leading coefficient g4=1 [a.nd Qx) =
(=1)?Q(—x) for all x in case (B)].

[See, e.g., Jones and Karlovitz (1970), page 139.] In addition, Theorem 7 en-
sures that R is the only oscillating solution to the linear problem. Uniqueness
of this polynomial is not obvious, since w may have zeros in [a, b], and there-
fore vw(x)x*, 0 < u < d, may form a weak, but not a strict Chebyshev system
over [a, b]. [Actually, if w is strictly positive, then R is the only equioscillating
polynomial among all polynomials with leading coefficient 1, in case (A) as well
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as in case (B).] Due to the uniqueness, R might be computed (numerically), for
example by using the algorithms of Remes [see, e.g., Watson (1980), Section
3.5]. In some cases explicit solutions can be given. For example, for setups (A)
and (B) we have R(x) = vT4(h(x)) in the case w = 1, and R(x) = §,/wUy(h(x))
in the case w(x) = (x — a)(b — x), where T; and Uy are the Chebyshev polyno-
mials of degrees d of the first and second kind; % is the bijective affine linear
mapping transforming the interval [—1, 1] onto [a, b]; and v and § are suitable
normalizations. Thus, as special cases we obtain from Theorem 7 some of the
results on E-optimality given in Pukelsheim and Studden (1993) and Dette
(1993). A simple continuity argument shows that, for some nonsymmetric re-
gions [a,b] having zero as an interior point and for some symmetric regions
[-b,b] with b > 1, the designs defined as in Theorem 7 are E-optimal for K6
[see Heiligers (1992), page 61]. However, an example showing that these de-
signs are not E-optimal for all symmetric regions [—b,b] in case K6 = 6 (and
w = 1) is given in Dette and Studden [(1993), Example 5]; see also Dette (1993).
Lemma 8 gives an analogous statement for all functions w = w; of the form
wp(x) = wi(x/b), x € [-b, b]l, where w; is some fixed symmetric weight function
over [—1,1].

Let R = ,/wir'f be an equioscillating polynomial over [-1,1] with R(x) =
(=12R(—x) for all x and positive leading coefficient, normalized so that
max,e¢(-1,1) R() = 1. Fix associated extreme points 1 > x¢9 > -+ > x4 >
-1 with x, = —x4_,, and set F = (*¥)o< <4, W = diagy <, < g(w1(x,)) and
H, = diagy<, <4(b7"). By Theorem 7 the candidate for an E-optimal design
over [—b,b] for K@ = 6 (and weight function wy) is &, given by

(12) ¢p(bx,) = \p(—1)e!, WY/ 2F-1H2r, 0<v<d,

where X, = (T2_,(—1)e, WY 2F‘lH,fr)_l. [Actually, as in the proof of Theo-
rem 7, the nonvanishing coordinates of r are found to alternate in sign, and
thereby the sign pattern of the entries of F~! implies that the numbers on the
r.h.s. of (12) are positive.] It is easily seen that &, is symmetric and that Hyr
is an eigenvector of M(¢,) to the eigenvalue ). Due to the sign changes of the
sequence of nonvanishing coordinates, Hyr corresponds to Api, [M2(&;)]. Conse-
quently, )\ is either the smallest or the second smallest eigenvalue of M(&); it is
the smallest eigenvalue iff M(&,) — M\yI4. 1 is nonnegative definite, equivalently,
iff, with II = diagy < , < ;((=1)¥),

Dy = IW~Y2F~ Hy (M(&) — Molas1) Ho(F~YW/211
= diagy <, < 4(&®x,)) — N IIWV2F1HZ(F-1YW /211

is nonnegative definite.

LEMMA 8. Let d > 2. Then, for sufficiently large b > 0 the design &, given
by (12) is not E-optimal for 6 on [—b,b] and weight function wy.

ProOOF. As an example, we consider the case of an odd regression de-
gree d = 2m + 1 only. Denote the elements of IW~Y2F-1HZ(F-1yW-1/211
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by vy 15,0 < pyv < d. Let 15,1 € R?*! consist of 1’s at all positions. By
the equioscillation and normalization of R we have IT1y,; = WY2F'r; thus
Db 1d+ 1= 0 and

0=1,,,Dplg,;

=1_/\b Z Uu,v;b t+ Z v”,,,;b+2 Z Up,v;b

0<pu,v<m m+1<p,v<d 0<pu<m
m+1<v<d

Denoting by ¢’ = (1], ,,—1/. ;) the vector consisting of 1’s at the first m + 1,
and —1’s at the remaining positions, it follows that

Ay 1p2d¢'Dyc

=)\;lb2d 1-X Z Up, ;b + Z Up,vib -2 Z Uy, uib

0<pu,v<m m+1<p,v<d 0<pu<sm
m+1<v<d

=4 > by, ,, [=q0), say].
0<pu<m
m+1<v<d

Using Theorem 8.12.4 in Graybill (1983) and observing that x,, = —x,_ , for all
i, the numbers in the latter sum are found to be
Y re0 @, 0@q — y g% 42

|Pu(eu )Py — (g — )| /w1 wiCeg — )

bzdv,,,,,;b =(1- b2x,xq _ v)

with

m m
P,(x)=(x+x,) H (® — x2) = (x +x,,) Z(—l)m—lau,exu, 0<pu<m,
£=0 £=0
L#p

where all coefficients a,, ; are positive. Hence, g (considered as a function of b)
is a polynomial of degree(q) = 2d and leading coefficient

0.

m d
XpXd —v@pu, 00d — v, 0
_4 [ad My ) <
l; V§+l IPu(xu)Pd—u(xd—u)l\/wl(xp)wl(xd— 1/)

Therefore, for sufficiently large b > 0, D, is not nonnegative definite. O

When assuming that the smallest eigenvalue of the moment matrix M(&,) of
an E-optimal design &, on [-b, b] for § has multiplicity 1, then, by arguments as
in part (ii) in the proof of Theorem 7, £, and &, defined as in (12) must coincide.
Thus, Lemma 8 implies that for sufficiently large b > 1 the smallest eigenvalue
of M(&,) has multiplicity 2 and corresponds to both submatrices M;(¢;) and
My(&o).
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