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DYNAMIC SAMPLING PLAN IN SHIRYAYEV-ROBERTS
PROCEDURE FOR DETECTING A CHANGE IN THE DRIFT
OF BROWNIAN MOTION

By M. S. SRIVASTAVA AND YANHONG WU

University of Toronto and Stanford University

In this paper, a dynamic sampling plan in the Shiryayev—Roberts
procedure is considered. It is shown that a two-rate dynamic sampling plan
is optimal in the sense that it minimizes the stationary average delay time
(SADT). Analytical results as well as numerical comparisons show that it is
significantly superior to the fixed sampling plan. The comparison also shows
that it is as powerful as the dynamic sampling procedure of Assaf and Ritov.
The generalizations to the fast initial response and to the CUSUM procedure
are also briefly discussed.

1. Introduction. Quick detection of changes in distribution is an impor-
tant problem in quality control. Similar problems arise in many areas, such as
in the surveillance of birth records for a possible increment in the frequency
of genetic malformation considered by Weatherall and Haskey (1976). Several
competing procedures, such as the CUSUM, EWMA and Shiryayev—Roberts
procedures, have been discussed extensively in the literature [cf. Pollak and
Siegmund (1985), Roberts (1966) and Srivastava and Wu (1993)]. However,
usually a fixed sampling plan is carried out to monitor the process. Clearly, a
procedure which takes fewer samples when no change is expected but takes
more samples when a change is expected should be more efficient than the cor-
responding fixed sampling plan. Such a sampling scheme is called a dynamic
sampling plan.

The idea of dynamic sampling has been used by Girshick and Rubin (1952)
from a Bayesian decision point of view. Recently, Assaf (1988) considered a
Bayesian dynamic sampling procedure which reinitiated interest. Motivated
from batch-type production control, Assaf and Ritov (1988) considered a double
sequential sampling plan. Assaf and Ritov (1989) further considered another
dynamic sampling plan based on the CUSUM procedure [see also Assaf,
Pollak and Ritov (1992) for a more general discussion]. A two-interval sam-
pling CUSUM procedure has also been considered by Reynolds, Amin and
Arnold (1990) in the discrete-time case and by Wu and Srivastava (1993) in
the continuous-time case.

The main purpose of this paper is to study a dynamic sampling plan in
the Shiryayev—Roberts procedure which is formally discussed by Pollak and
Siegmund (1985). The proposed procedure can be used as a benchmark for
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806 M. S. SRIVASTAVA AND Y. WU

comparison as it has certain optimality and, more important, it can be eas-
ily implemented in practical situations. Consider the following two situations.
First, in a batch-type production process, instead of sampling a fixed percentage
of items in all the batches, one may change the sampling percentage (or num-
ber) [cf. Assaf (1988)]: Second, in a one-at-a-time production process, instead
of sampling at equally spaced intervals, one may change the sampling interval
[cf. Reynolds, Amin and Arnold (1990)]. A restriction in both situations is that
the maximum sampling rate is bounded from above due to the finite batch size
and the production time between two units, respectively.

A unified continuous-time model for the two situations can be formulated
as follows. We consider the change point problem in the drift of a Brownian
motion. Under the fixed sampling plan with sampling rate 1, the observation
process is

th = 5I[t> g]dt + dBt,

where B; is a standard Brownian motion, § is the change point and § is the
amount of change in the drift, assumed known. The Shiryayev—Roberts proce-
dure is defined to give an alarm at

7 =1inf{¢ > 0: R; > T},

for a specified control limit 7', where
t 62
Rt = / exp[&(Wt — Ws) — E(t — S)] ds.
0

It can be observed that the integrand in R; is the likelihood ratio of the observa-
tions up to time ¢ with change at time s with respect to no change. From Pollak
and Siegmund (1985), the process R; can be written in differential form as

dR; =dt + 6R;dW; with R, =0.

Suppose the sampling rate is a(y) when R; = y. Roughly speaking, this means
that the next sampling interval should be taken as 1/a(y), or the sampling
number in the infinitesimal time interval [¢,¢ + A#) is a(y) At, approximately.
We shall assume that a(y) is bounded such that

0<aj<aly) <as < oo,

where a; and a; are the lowest and highest sampling rates. For notational
convenience, we shall use the same R; and 7 to denote the detecting process
and the alarming time under the dynamic sampling plan. We first introduce
some standard notation.

Let {7,...,7,} denote the consecutive alarming intervals until the change
in the process is detected. The delay time will be ¥77; — 6. Let Ey4(-) denote the
mean taken with the change at §. We shall write

ARLg=E.7 and ARL;=E,7
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for the average in-control and out-of-control run length, respectively. The sta-
tionary average delay time defined by

SADT = olinolo E, (;Ti - a)

is particularly important in our discussion. The average in-control sampling
rate in the long run will be written as

a(Rt) dt

ASR, = E., /

Without loss of generality, we shall always assume that ASR, = 1.

To design a dynamic sampling plan, we shall fix ARLy; = T'and ASRy = 1
This is only reasonable in a long run time, that is, with the change occurring far
away from the beginning. In Section 6, we shall show that the optimal sampling

‘plan which minimizes SADT is of the two-rate type:

ay) = a1liy < 51 + a2lis <y<m,

where S and T are the switching limit and control limit, respectively. The design
of S and T will be discussed in Section 2. Their properties are studied in several
interesting cases. The asymptotic behaviors of ARL; and SADT are discussed in
Section 3. The head-start technique is also investigated in order to reduce the
difference between ARL; and SADT. In Section 4, we first compare the proposed
plan with the fixed sampling plan. Then we compare it with the procedure of
Assaf and Ritov (1989) (A-R). It will be shown that although the proposed plan
has slightly smaller SADT than the A-R procedure, it has much larger ARL;.
However, with the head start under the proposed plan, the two procedures give
the same results in an extreme case. In Section 5, we also give the corresponding
results for the two-rate sampling CUSUM procedure. The optimality of the two-
rate sampling plan is shown in Section 6. Detailed proofs for the main results
are given in the Appendix. Technical tools used here are results from diffusion
theory. A convenient reference is Karlin and Taylor (1981); the same notation
will be used.

2. Design of the two-rate sampling plan. To design a two-rate sampling
plan, we shall fix ARL; and ASR. The first lemma gives the differential form
of R; under any sampling rate. The derivation will be delayed until Section 6.

LEMMA 1. Suppose the sampling rate is a(y). Then R; satisfies the following
differential form:

th =dt + (SRt th,
where W, is the observation process satisfying

dW, = 6a(R) ;> g dt + /a(Re) dB:,
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where B; is the standard Brownian motion.

From Lemma 1, it is easy to see that R; is always a martingale before the
change no matter what the sampling rate is. Thus,

ARLO =T

if Ry = 0. This implies that the control limit T is always taken as ARL,. It
remains to determine the switching limit S, which should satisfy the condition
ASR, =1.

Let Ly, ) denote the total time spent in the interval [a, ) for R; for 0 < ¢t < 7.
Then the two conditions on ARLj and ASR are equivalent to

T = EOOL[(),S) + EooL[S, T)

T'=a1ExL,s) +asExLis, 1)
That means S should satisfy

1—a1
az —ay

@) EoLis m = T.

To find E. L, 1), it is convenient to use the results from diffusion theory [cf.
Karlin and Taylor (1981), Chapter 15]. Before the change, the drift parameter
and diffusion parameter of R; are given by

px) =1, ol =bx[varly s+ Vazly>g).

By writing

B 2pu(x)
s(x) = exp(— / 22 dx)
=ex —-2——I + ex 2 (1 1 +——E——I
= exXp 82qmx ) B < P\ 525 a; as S2aqx | E2SD

and S(x) = [ s(x)dx, it can be verified that, fora < S anda <x < S,

. S@)-S@) _
}]ﬂm—l forx<S.

The Green’s function cannot be written down directly, as 0 is an entrance bound-
ary. Instead, we first assume that the initial state Ry = x and the exiting bound-
aries are [a,T] with a < x < T'. Then we first let a — 0, then let x — 0. Direct
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calculations give that
G(0,2)

= lim G(x, 2) = o5 — S@)

0%(2)s(z)
2(S(T) - § (max(z,») ) (S (min(z, ) - S(@))
= lim lim 5
(2) *—0a—0 0%(2)s(2)(S(T) — S(a))

~ 2]‘23 exp(2/6%a1u) du + fST exp(2/6%aqu) du exp[(2/62S) (1/a1 — l/az)]
- 62a,122 exp(2/62%a12)

T 2

X Ipcg+ 2f2 exp(2/0"as) du S<z<Tl

6%a92? exp(2/6%a9z)
Thus,

! T —2/62 T
EooLis, 1) = / G(0,2)dz =2 / eXP(52 / ) agz)
s S QA9zZ“ | ;

T u 2
_ 9 exp( — 2/6%ayz)
=2 /s exp(2/6°asu) /s Pay? dzdu

=/: (1—exp[%(% - %)D du.

Therefore, we obtain the following lemma.

exp(2/6%azu) du dz

LEMMA 2. For a two-rate sampling plan (a1,as), given ARLy = T and
ASRg = 1, the control limit is T and the switching limit S satisfies

(1-apT [T 2 (1 1
3) g —ar _/s <l—exp[—%<§—z)}>du.

The equation can be solved numerically, for example, by the Mathematica
language.
Several interesting properties for S and T' are summarized as follows.

1. AsT — oo,

2 ag —a; -1

S—>62a2<ln a2_1> .
This can be easily proved from Lemma 2. Thus, as the control limit T' goes to
infinity, the switching limit S goes to a finite number rather than infinity. This
is due to the recurrent property of R; [cf. Pollak and Siegmund (1985)]. From

this property, a convenient method to design the switching limit S is to assume
T = 0.
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TABLE 1
Switching limit S with T = 100
5

(a;,az2) 0.01 0.05 0.1 0.2 0.5 1.0
0.5, 2) 66.22 56.37 41.22 23.41 7.10 2.86
(0.5, 5) 86.92 67.29 49.26 28.85 9.24 2.94
(0.5, 10) 90.92 69.64 51.29 30.37 9.90 3.17
(0.5, 20) 92.25 70.67 52.23 31.09 10.21 3.29
(0.5, 50) 92.88 71.24 52.77 31.51 10.40 3.36
(0.5, c0) 93.25 71.61 53.12 31.78 10.53 3.40
(0, 2) 49.75 43.73 31.41 16.62 4.54 1.33
(, 5) 78.40 57.62 38.84 20.25 5.55 1.64
(0, 10) 86.14 60.57 40.73 21.26 5.85 1.73
(0, 20) 88.79 61.85 4159 21.74 6.00 1.77
(0, 50) 89.97 62.57 42.09 20.14 6.08 1.81
(0, o) 90.63 63.03 42.42 22.20 6.14 1.82

v

2. If ag — oo, then from (8), S will approximately satisfy

(1-a)s?, T-8 T
4) 5 T= S —lng.
3. If both T and a; go to oo, then
2
S — ——52(1 mpt
In particular, if a; = 0,
- 2
4. If § — 0, then
s 2= 1 T
az—a;’’

which is linear in 7.

Table 1 gives some numerical values of S with T' = 100. For several values of
6, we choose several combinations of (a1, a2). When a; = 0, it means no sampling,
and when ay = 0o, the sampling rate is taken as large as possible. It can be seen
that, for small 6, the effect of a; is not very large and, for ay larger than 10, S
does not change significantly.

3. Asymptotic properties of ARL; and SADT and head start tech-
nique. In this section, we study the asymptotic behavior of the ARL; and
SADT under the dynamic sampling plan. We also investigate the head start
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technique. The following lemma lists the results for ARL; and SADT under the
fixed sampling plan; its proof can be found in Shiryayev (1963) or Pollak and
Siegmund (1985).

LEMMA 3. Under the fixed sampling plan,

2 2 *  exp(—x)
(6) ARL,; = 2 exp<W> /2/62T p dx,
_ 2 2 > exp(—=2)
(7) SADT = 6—2 (exp(gﬁ) ‘/2/6271 —Z_ dz -1

+—2— C><’ex ;23 ————ln(1+z)dz
T J, "\ &r ) 2 ‘

When T is large,

2 82T

The exact formulas of ARL; and SADT under the dynamic sampling plan
can be obtained by using the diffusion theory. For simplicity we only give ARL;.
From Lemma 1, R; follows the following differential form after the change

th = [1 + 52Rt (all[R' < 8] + a2I[Rt >S])] dt + 5Rt (\/a_lI[Rt <S] + \/‘EI[Rt >S]) dBt’

with the same diffusion parameter as before the change and the drift parameter
becomes

p@) = 1+ 6% (arl < 5+ aalie > 5)-

Following the same lines as in the proof of Lemma 2, we can obtain that

T
ARL = [ G(0,2)dz
0
2 [T (22
B 62(118 l/SZ P (520,1

+ 2 ex 2 /l/slex —K dz
52aq P 82aT ) Jyr 2 P &%aq

as 2 * 1 2z
X (a exp(—52Sa1> /1/s 72 exp( 62a1> dz S).
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As T — oo, to first order,

2 2 /87 —2
A =~ = ld
RLy 8%ay exp(62a2T> /l/T z exp(62a2> o,

which is approximately equal to ARL; under the fixed sampling plan with the
shift amount 6,/az. From Lemma 3, we know that

2
ARL, ~ 2 1n 18

ay 2 as T — oo.

Thus, the reduction on the average delay time is mainly dependent on the
higher sampling rate a,. In the following, we consider the most interesting case
with a; = 0, that is, no sampling when R; is below the switching limit.

Denote by ARL;(y) = Eylr|Ry = y] the average out-of-control run length
when the initial state Ry = y, and by a(y) the stationary distribution for the
controlled process (instantaneous return process) R; when there is no change
with switching limit S and control limit 7. ARL,(y) can be obtained similar to
ARLy.

Lemma 4 follows from renewal theory and the Markov property of R;.

LEMMA 4.
1 Y
oly) = = / G(0,2)dz
T Jo
and

T
SADT = / ARLy(y)do(y),
0

where G(0,z) is given in (2).

The following two lemmas give the asymptotic behavior of a(y) and ARL,(y)
as ag — o0; their exact forms are given by (16) and (17) in the Appendix.
LEMMA 5. Asay — oo,

Y

a(y)=T fory <8

and

oAT) — olS) = 0<_1_) .
ag

Thus, a(y) is uniformly distributed in (0, S) and has mass 1 — S/T aty = S
as ag — 00.
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To find an approximation for ARL;(y), we first note that if the initial state is
y < S, the process will linearly increase to S since no sampling is taken. Thus,

ARL;(y) =S —y+ ARL;(S) fory < S.
On the other hand, for Ry =y > S, we have the following lemma.

LEMMA 6. Asag — 00,ARLy(y) = O(1/ay) fory > S, and

S 2 T 1
ARL,(S) =S<1 - T) [lns T(T S)] (E;)

The exact form for ARL;(S) can be obtained from (18) in the Appendix. Com-
bining the above three lemmas, we get the following theorem.

THEOREM 1. Suppose a; =0, then as az — 00,

S 2 T 1
ARL1=2S<1 2T>+ [l 3 T(T S)}+o(a2>

S 2 T 1 1

From Theorem 1, we can see that although ARL; and SADT do not differ
much under the fixed sampling plan, they are quite different under the dynamic
sampling plan. As as — 00, ARL; is approximately twice the SADT. Also, as
T — o0, S — 2/62. Thus, we have the following corollary.

COROLLARY 1. IfT — oo in addition to the conditions of Theorem 1, then

S 2 52T 1
- 5)- ool o(2)

S\ 2 [ &T 1
SADT=S<1—ﬁ)+‘127[1n o1+ o( )]”(«Z)‘

In the special case vyith a; = 0 and ay = o0, the switching limit S satisfies

€))

2 -
® p TS T

S S’
and the corresponding SADT and ARL, are given by
(10) SADT =S{1- SN lARL
- 2T ) 27
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From a theoretical point of view, SADT is the only reasonable measure for
comparison since ARLy and ASR, are meaningful in a long run time. However,
a disadvantage under the proposed plan is that ARL is too large compared to
its SADT. One method to overcome this is to use the head start or the so-called
fast initial response technique [cf. Lucas and Crosier (1982)]. More specifically,
instead of starting at Ry = 0, we let Ry = S, that is, taking a sample at the
beginning. This has almost no effect on ARLg, but reduces ARL,; significantly.

Consider the case wth a; = 0. Suppose the switching limit is S* and the
control limit is 7* under the head start Ry = S*. From the martingale property
of R;,ARL, = T* — S§*. On the other hand, from the proof of Lemma 2, the total
sample size in a cycle before the change is

™ .

-2/1 1 2 ([T -S* ™ 1
0,2/* <l—exp[6—%—2(§ — Z)])du— gj(T —ln§;> +O<;;),
as ay — 0o. Thus, S* and T* can be chosen from the two conditions ARLy = T
and ASR, = 1. The corresponding ARL; and SADT can be obtained as in the
case R, = 0, and the details will not be given here. For example, ARL; is actually
the ARL;(S) given in Lemma 6 with S and T replaced by S* and T™*.

As an example, we consider the special case a; = co. In this case, S* and
T* satisfy

11) ™ =T +S*,
2 (T*-S* T

As T — oo, S* — 2/62, as in the case without a head start. Under the head
start, it is obvious that

(13) ARL] = SADT* = S* (1 - %)

4. Comparison with fixed sampling plan and the Assaf-Ritov proce-
dure. We first consider the maximum reduction on the average delay time
under the (0, 00) plan compared with the fixed sampling plan. Table 2 gives
some numerical values of ARL; and SADT for T' = 100 and 500 without the
head start. For the dynamic sampling plan, the switching limit S, ARL; and
SADT are calculated from (9) and (10). All numerical evaluations are carried out
by using the Mathematica language. We see that the reduction is significant.

Table 3 gives the corresponding value with the head start based on (11)—(13).
Only S* is given as T* = T + S*. Comparing Table 2 with Table 3, we see that
the head start has very little effect on the behavior of SADT except for small 6,
but it reduces ARL; significantly.

In the following, we compare the proposed plan with the dynamic sampling
CUSUM procedure of Assaf and Ritov (1989). Their procedure can be briefly ex-
plained as follows. Suppose the samples are taken at the time points {¢, 2¢, .. .}.
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TABLE 2
Comparison of dynamic (0, co) and fixed sampling plans
T=100 : T=500
Dynamic Fixed Dynamic Fixed

5 S SADT(1ARL,) SADT(ARL,) S SADT(JARL,) SADT(ARL,)
0.1 42.42 33.42 39.61(72.37) 97.35 87.86 128.45(209.57)
0.2 22.20 19.74 27.81(46.15) 36.74 35.39 68.60(100.73)
0.5 6.14 5.95 12.15(17.57) 7.38 7.32 22.17(29.05)
1.0 1.82 1.81 5.16(6.85) 1.95 1.94 8.05(9.94)
1.5 0.85 0.84 2.92(3.73) 0.88 0.88 4.27(5.13)
2.0 0.49 0.48 1.91(2.38) 0.50 0.50 2.68(3.17)
2.5 0.31 0.31 1.36(1.66) 0.32 0.32 1.86(2.17)

At each sampling point, we take samples sequentially. If we let W;; denote
the information process at the ith sampling point, then the sampling will be
stopped at

7; = 1inf{t > 0: W;; < —Ce or > A},

where C and A are two prespecified constants. If W;; < —Ce, we move to the next
sampling point; otherwise, an alarm will be made. It is also assumed that the
entire batch consists of either defectives or nondefectives, that is, W;; has fixed
drift parameter O or §. The parameters C and A are chosen such that ARLy = T'
and ASR = 1 given the sampling interval length ¢.

In general, the two procedures are not comparable, as the assumptions are
different. However, we shall show that when ¢ — 0, the Assaf-Ritov procedure
gives the same results as the proposed (0, c0) plan. It is clear that in the Assaf-
Ritov procedure, when ¢ = 0, ARL; = SADT and both achieve their minimum
values. Notationally, their § is our ¢ here; Ty, is our ARLg; 79 is our ASR; T is
our ARL;; and py is our 6. From Assaf and Ritov [(1989), Theorem 1] it is not
difficult to verify that C and A satisfy

exp(6A) — 1 —-Aé exp(6A) —1
(14) p(64) -T and =221
52/2 5T
TABLE 3
Average delay times with head start and under the Assaf-Ritov (A-R) procedure
T=100 T=500
§ (A0 (AR) SADT(ARL,) S* (4,0)(A-R) SADT(ARL,) S*

0.1 (8.58,014) 42.40 73.61 (16.36,6.08) 97.38 120.93
0.2 (7.53,0.18) 22.18 28.50 (13.06,0.13) 36.69 36.60
0.5 (5.58,0.31) 6.14 6.54 (8.43,0.27) 7.39 7.50
1.0 (4.01,0.54) 1.81 1.85 (5.55,0.51) 1.94 1.95
1.5 (3.18,0.78) 0.85 0.85 (4.23,0.76) 0.88 0.88

2.0 (2.67,1.04) 0.48 0.48 (3.46,1.01) 0.50 0.50
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and the corresponding SADT and ARL; are given by

(15) SADT = ARL, = l;e’gﬂ.

Carefully comparing (11)-(13) with (14)—(15), we can see that the two proce-
dures give the same results if we write 7*/S* = exp(6A). This means that the
maximum reductions under the two procedures are the same.

Table 3 also gives the corresponding values for (4, C). Again, the Mathemat-
ica language is used for the numerical evaluation. It is clear from this compari-
son that without the head start, the proposed plan has much longer ARL; than
the A-R procedure. With the head start in the proposed plan, the two become
equally powerful.

REMARK 1. As the referee pointed out, even without the head start under
the proposed plan, one can modify the A-R procedure such that the two pro-
cedures give the same result in the above extreme case. More specifically, in
the A-R procedure with ¢ = 0, we wait time W following every alarm without
sampling. Then (A, C) should satisfy

W+Tfa =T and Tona =T.

The corresponding SADT is given by

ww
SADT = 5Tt Ty,

as the stationary distribution is uniformly lying in (0, W) with total probability
W/T. Now one can choose the optimal W such that SADT achieves its minimum
value. It can be shown that this modified A—R procedure does give the same
results as the proposed (0, co) plan without the head start.

It may be noted that Assaf and Ritov (1989) also compared the average sam-
pling number during the delay detection time (SADN). In their procedure, when
e = 0, it is the same as ARL; under the fixed sampling plan. In our case,

3w
SADN = lim E VU aRy)dt,
-_ 00 6

where the 7; are defined in the introduction.
The following lemma gives the result for SADN.

LEMMA 7. Under the (0, c0) sampling plan,
T T-S ]

2

" The proof will be given in the Appendix. For example, as T' — oo,

2 . 8%
SADN = In == (1 +0(D),
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which is approximately equal to ARL; under the fixed sampling plan from
Lemma 3. Thus, the implementation of a dynamic sampling plan reduces the
average delay time, but not the average sample number in delay time.

5. Two-rate sampling CUSUM procedure. A natural problem is to con-
sider the two-rate sampling plan in the CUSUM procedure as in Reynolds, Amin
and Arnold (1990). Wu and Srivastava (1993) have studied this procedure, fol-
lowing the same lines as in this paper. Suppose the switching limit and control
limit are denoted by ¢ and d, respectively. The main results are given in the
following theorem.

THEOREM 2. Given ARLy =T and ASR = 1, ¢ and d satisfy

52T a2(1 — a1)
2 (ag—ay)
2

ézz = exp(éd) — 1 — éd.

= exp[(d — c)§] — 1 —6(d —c),

(i) As T — oo,

2 82T 2/1 1 1-a4 InT
ARL1—62—az<lnT—1) —5-2-'<a—1—a)lnl_al/a2 +0( T )

(ii) If in addition a1 — O,

2 82T 2 InT
ARL1=%<].D——2) +5-2-+0(T)

(iii) As a1 — 0 and ay — oo,

1 — exp(—éd)

llm(ARLl) = llm(SADT) = T—m

Again we note that, under the (0, co) sampling plan, it gives the same result
as the other two procedures.

It would be interesting to compare the three dynamic sampling plans
mentioned in this paper in the discrete-time case, especially in the one-at-a-
time production case. The Assaf-Ritov procedure seems more natural to be
adapted to this situation after some modifications since it is periodic. The
proposed plan is also quite convenient as the sampling procedure consists of
a sequence of sampling and no-sampling intervals and, more important, the
no-sampling interval is predictable [cf. Girshick and Rubin (1952)]. It seems
that the two-rate sampling CUSUM procedure has certain disadvantages
compared to the other two. For example, the lower sampling rate cannot be
taken as zero, and also the switching time from lower to higher sampling rate
is random [cf. Reynolds, Amin and Arnold (1990)]. We shall present the results
in a future communication.
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6. Optimality of the two-rate sampling plan. Now we give a brief proof
for the optimality of the two-rate sampling plan in the sense that it minimizes
the SADT.

The idea of the proof is based on the results of Shiryayev (1963), where it was
shown that under the fixed sampling plan the Shiryayev—Roberts procedure is
optimal in the sense that it minimizes SADT for fixed ARL,.

We shall show that the two-rate sampling plan is the limit of a sequence of
two-rate Bayesian sampling procedures which are known to be optimal in a
certain sense.

Suppose the change point § has an exponential prior distribution with pa-
rameter ), that is,

P(6 > t) = exp(—At).
Let H; denote the history of the observation process up to time ¢. Write
T =P(0 < tIHt)
as the posterior probability of {# < ¢} up to time ¢, and write

N ™
Rt A(l bl 7l't) '

Assume that the sampling rate is dependent on ;. Since R is a deterministic
monotone increasing function of 7;, we may assume that the sampling rate is
a(R™) at time ¢. Thus, the observation process dW; has the same probability

law as

a(Rg’\)) 5[[9 >4 dt + A/ a(Rﬁ")) dB;.

Since the dynamic sampling procedure is adaptive, we have

A J3 exp(—Xs) exp[ — [ [a(BM)] “1(6a(R§;\)) aw, — 262a%(R) du)] ds
exp(—Xt) + X [y exp(—/\s)exp[ — J! [a@®M)] " (5a(RD) dW,, — %62a2(R§f‘))du)] ds

S

T =

and
t t _
RV = / exp[A(t — s)] exp[ - / [a(R&\))] 1 (6a(R§;\)) dW, — 162a?(R) du)} ds.
0 s

Now, from It&’s formula, we find that RV satisfies the following differential
form:

dR® = (1+ARY) dt + R dW,,

with RV = 0.
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Suppose T is a stopping time adapted to R™>. We consider the minimization
of E(t\ — 6 | 7 > 6) under the following two conditions:

P(’I',\ <=«
and

TX
E / a(RP) dt = Er,.
0

The first condition is the constraint on the false alarm probability. The second
condition is the constraint on the average sampling rate, which is equal to 1 in
our case.

To satisfy the first condition, the optimal stopping time is

7\ =inf{t > 0: 1 > 1 —a}
= inf{t > 0: RW > 1—‘°i}
A
by the definition of R¥ for any sampling rate a(y). Assaf (1988) has considered
the optimal dynamic Bayesian sampling procedure and showed that, when the
sampling rate is unbounded, the (0, co) sampling plan is optimal under the two
constraints in the sense that it minimizes the average delay time. Using the
same argument here, we can easily show that the two-rate (a1,as) sampling
plan is optimal under the two constraints if the sampling rate is bounded. This
means that there exists a switching limit such that the sampling rate will be
switched from a4 to as as long as R™ crosses the limit from below. Obviously,
(a1, as) should depend on the parameter A as well as on the parameter .
Now let A — 0, that is, the change point occurs far from the beginning. Then
R; = R" satisfies

th =dt + 6Rt th,

as given in Lemma 1. Let & — 1 in such a way that the ratio (1 —-a)/A = T, a
specified number. Then it is easy to see that

7\ — 7 =inf{t > 0: R, > T}.
Now the first constraint becomes

lim P(r), > 0) _

A—0 A T.

However, since 6 has an exponential distribution, it can easily be shown that

lim P(r), > 0) - lim 1 — Eexp(—Aty)
A—0 A A—0 A

= A11111 E’ b

Eom=T.
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The second condition becomes

T T T
}\irr(l)E a(RV) dt = Eq / a(R,)dt = / a(y)G(0,y)dy =T,
- 0 0 0

which is the condition on the average sampling rate before the change.

From the memoryless property of the exponential distribution, it is easy to
show that E[7y — @ | 7» > 6] is the same as the unconditional average delay time
[cf. Shiryayev (1963) and Assaf (1988)]. In addition, the limit of the switching
limit is only dependent on the constant T'. Thus, we have proved that the two-
rate sampling plan in the Shiryayev—Roberts procedure is optimal in the sense
that it minimizes the stationary average delay time.

APPENDIX

Proofs of main results. In this appendix, we prove Lemmas 5-7 and
Theorem 1.

ProOOF OF LEMMA 5. For fixed a; and aq, from renewal theory we see that
for y < S the stationary distribution is equal to

1
aly) = T/o G(0,x)dx

y _9/82 s
_ %/0 exp(62§1/:2a1u) /Z exp<62zlu) dudz
(16) L2 exp( —2/8%asu) dz /T exP< : )du exp{i <i _ i)}
T Jo 52a,22 S 52aqu 62S\a; as
S
= % + % exp( — 323—13/) /y exp(%;) du
e Yol (2~ 1) [ ()
T 62a1y 628 \a; as S 52aqu

As a; — 0, S as a function of a; is decreasing to a constant. For notational
convenience, we still use the same S to denote this limit. Thus, fory < S,

aly) — % asaj; — 0.

That means a(y) is uniformly distributed in (0,S). Similarly, from (2) we can
show that, fory > S,

1 T
o) — aly) = = / G(0.2)dz
T y

17
o g 121 ],
=Tt Y T‘/y exp62a2 Uy “
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which is free of a; functionally. Thus as as — oo, if we still use the same S to
denote the limit of the switching limit, then, fory > S,

1 /7T 2 /1 1 1
a(T)—a(y)=T/y %(;—;)du+o<a—2)

o(2)

which proves Lemma 5. O

PROOF OF LEMMA 6.

( _S(T)-8S@)
02(2)s(2)

2 (M1 2 2
=— = — | a - forz >
#a; |, exp( 62a2x> dx exp( 62a2z)’ orz > S,

S(T) — S(S)
(18) G(s,2) = ¢ a2(2)s(2)

_ i ex — _?_ /T _]:_ ex _2_. dx
" 0,62 P 82a12 ) Jg 2 P 82aqx

2 (1 1
L xexpléTS- (a - @)]’ forz < S.
First, we note that, for z > S, G(S, 2) is free of a;. Letting ag — oo, we find that

G(@S,2) = i(l - l) +o(al) forS <z<T.

T 82a\z T 2

On the other hand, asa; — 0,

—E—-/Sex __2 dz ex _2_
a162 J P 52a,2 P §2Sa,

2 \2[® 1 2 .
() Jpuusi o () = &

Similarly, as ag — oo,

/T_l_ex L)dxex 2
s x2 P 52a9x P 62Saq
1 1 1
) <§_T>+O<55>'
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Thus, for a; = 0, we have, as as — oo,

S T
ARL,(S) = / G(S,2)dz + / G(S,2)dz
: 0 S

S\ 2 [.T 1 1
=S<1_T> +5—2d3[1n-§—7(7"—s>} +o<a;).

Obviously, fory > S, ARL(y) - 0asas — co. O
The proof of Theorem 1 can thus be obtained by Lemmas 5 and 6.

ProoOF OF LEMMA 7. The proof of Lemma 7 can be obtained from the proof
of Lemma 6. We note that for any a1, as ag — oo,

1

aG(S,z) = 62—2(2 - T) forS<z<T.

On the other hand, we have shown that for a; = 0, as as — oo,

S S
/0 G(S,z)dz — S(l - T)

Thus, under the (0, co) sampling plan, the total sample number after the change

1S
Taoar1 1 2 T T-8
Lﬁ(;"f)dz=5§[m§—T]'
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