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ON USING STRATIFICATION IN THE ANALYSIS OF LINEAR
REGRESSION MODELS WITH RIGHT CENSORING

By MENDEL FYGENSON AND MAI ZHOU

Rutgers University and University of Kentucky

We study two modified synthetic data least-squares estimation methods
for linear regression models with right censored response variables, unspec-
ified residual distributions and random censoring variables which may not
be i.i.d. These methods are the result of an investigation into the use of strat-
ification. We conclude that stratification should be used whether or not the
censoring variables are dependent on the covariates. We give the asymptotic
results of the estimators and numerical results.

1. Introduction. Consider the linear regression model
(D Y, =X8+e,

where ¢; are i.i.d. random variables with mean zero and finite variance, and
X; are covariates which are either nonrandom variables or random variables
that are independent of the ¢;. In this paper we consider the case in which
the dependent variables are generated by a random censorship; that is, one
observes (T3}, 6;,X;), with

T,; = min(Yi, Ci)a (5,; = I[YiSCi]’ i= 1, 2, Y (N

where C; are independent random variables that are independent of the ¢;, and
Ij4 is the indicator function of the event A.

This model has been used extensively in medical applications and in many
other fields [cf. Miller (1981), Amemiya (1985) and Maddala (1983)]. The major-
ity of the proposed estimators for the vector parameters 3 have been obtained
by modifying the least-squares method to accommodate right censoring. These
include the ones proposed by Miller (1976), Buckley and James (1979) and the
“synthetic data” method of Koul, Susarla and Van Ryzin (1981) (hereafter abbre-
viated as KSV). These methods differ with respect to their assumptions about
C; [from the highly restrictive (Miller) to the minimally restrictive (Buckley—
James)] and their reliance on the i.i.d. assumption of the ¢; (the Buckley—James
method relies on this assumption, the KSV method does not). Unlike the Miller
and Buckley—James methods, which require special programming and exten-
sive computer time and have convergence problems, the KSV method is acces-
sible since the estimators can be obtained quickly and easily using a standard
regression package. In addition, the KSV method is applicable to survival data
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748 M. FYGENSON AND M. ZHOU

even when the error distribution differs from one patient to another, as often
occurs in practice.

Despite the above advantages, the KSV method is not used because it has
been found to provide unreasonable estimators in cases where the censor-
ing times are not i.i.d. and/or are dependent on the covariates [cf. Miller and
Halpern (1982) and Leurgans (1987)]. We conducted an extensive simulation
study and found that the KSV method is extremely biased even when the cen-
soring times are i.i.d. and do not vary with the covariates. Leurgans (1987),
assuming i.i.d. censoring times, proposed an improved “synthetic data” method
that seems to provide better estimators than the KSV procedure while retaining
its advantages.

In this paper, we show how stratification can be used with these synthetic
data methods to increase their applicability to many data sets and to increase
the efficiency of their estimators when the censoring times are i.i.d. random
variables.

First, we note that in practice the censoring times often are not i.i.d. ran-
dom variables. We, therefore, consider the more realistic assumption that the
censoring times are independent random variables from k&, 1 < & < n, strata.
This allows group dependence of the censoring distribution on the covariates.
We assume, without loss of generality, that the following hold:

C1,Cy,...,Cy, arei.i.d. distributed as Gy(-);
Cn+1:Cnys2,...,Cny 4n, are iid. distributed as Go( - );

(1.2)

Cn1+~~~+n,,_1+1,Cn1+-~~+n,,_1+27---aCn1+-~-+nk_1+nk

are i.i.d. distributed as G;(-).

Under this assumption, we propose a corrected KSV (CKSV) method which
corrects the bias without resorting to Leurgans’ alternative synthetic data.
The CKSV method is based on using stratification and redefining the largest
observation in each stratum as uncensored. We show that, for the two-or-more-
sample case, the CKSV estimators are identical to Leurgans estimators; see
Theorem 2.2. Further support for our CKSV method is provided by numeri-
cal simulations.

We also investigate the use of a stratification-based method in cases where
the censoring times are i.i.d. random variables. This method, termed artificial
stratification, calls for treating the i.i.d. censoring times as if they were not
ii.d. random variables but rather independent random variables from 2 > 1
strata, as in assumption (1.2). The use of this counterintuitive method with the
KSV and Leurgans procedures results in more efficient estimators of 3 in large
samples; see Theorems 3.1 and 3.2.

The article is structured as follows. In Section 2 we propose our corrected
KSV method and a stratified Leurgans procedure and establish the asymptotic
distributions of their estimators. We present artificial stratification and its use
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in improving the KSV and Leurgans procedures in Section 8. We conclude in
Section 4 with simulations and closing remarks.

We close this section with some notation and definitions: for any real number
t, P(Y; < t) = F;(¢) with density f(#); P(C; < t) = Gg;(®); and 1 — H;(t) =
P(T; > t) = (1 = F;($))(1 — Gg)(2)), where g(-) is the stratum index, that is,
g@) =jifandonlyifny +---+nj_1 <i<ni+ - +nj_1+n;

We shall use the following well-known martingales associated with our model:

t

MP®) =TI, <t,6-11 -/ Iip, > 9 AAD (@),
t

MP® =Iig, <1, 5-01 — / I, > 0 dAT®),

with respect to the filtration F; = o{TIi1,<s; 6ili1, <3 i =1,2,...,n}, where

D dF (s) C _ ng(,')(s)
AD= / co,n 1= Fis=)’ A= [—c0,81 1 = Gigi)(5—)

[See, e.g., Gill (1980).] We also define the two related counting processes by

R®)= Y Ir>n and NP@®= Y Im<ss-0
gd)=j 8l)=j

Finally, let
- 1 ~
F@®) =lim =~ "Fi®), 1-H®=Ir,>s,

hi(t) = /oodei(s)x and A;(®) = /oo (1 - Fi(s)) ds.
t t

2. The corrected KSV and the stratified Leurgans estimators.

2.1. The corrected KSV estimators. Koul, Susarla and Van Ryzin (1981)
considered the linear equation

@.1) E[f—T

|-xs,

where G(¢) is the distribution of the censoring variables C;, which they assume
to be i.i.d. random variables. They then substituted an estimator G(¢) for G(¢)
and solved the usual least-squares normal equations based on (2.1). While Koul,
Susarla and Van Ryzin used a variation of the Kaplan-Meier (product-limit)
estimator for G(¢) in their original proof to avoid some technical difficulties, we
will use the standard, left-continuous version of the Kaplan—Meier estimator
and a different technique in deriving the asymptotic results.
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The great advantage of the KSV method is its accessibility and simplicity.
Unlike the Buckley—James and Miller procedures, this method is not iterative.
Therefore it does not require the selection of an initial value, and there are
no convergence problems. Once the synthetic data Y; = §;T;(1 — G(T;-))"1 are
computed, one can use a standard least-squares computing package to obtain
the estimators

(2.2) B =X'X)"1XTY* where Y = _ 4L

1-G(T;-)

This advantage is greatly magnified when one considers diagnostic procedures
or alternative models to (1.1), as is usually done in regression analysis.

The main known disadvantage of this method is its unrealistic assumption
that the C; are i.i.d. random variables with a distribution which does not de-
pend on the covariates [see Miller and Halpern (1982) and Leurgans (1987)].
To improve the KSV method, we replace this assumption with assumption (1.2)
and mal’(\e the following adjustments. First, we derive the Kaplan-Meier esti-
mators Gj(¢) for each stratum j = 1, 2..., k. Then, we compute the corrected
synthetic data

2.3) po-_ i
b 1-Gye(Tio)

where

5 = 1, ifY; <C;orY;isthe maximum in its stratum,
*7 10, otherwise.

Based on the corrected synthetic data (?}c) ,X;), the least-squares estimator is
2.4) BY = XTX)1XTY©,

Now we consider the asymptotic distribution of the corrected estimators,
hereafter referred to as the CKSV estimators. For simplicity, we present the
results for the simple linear regression. The extension of these results to the
multiple regression is straightforward. We also assume the X; are i.i.d. from
some nondegenerate distribution with a finite fourth moment, that is, a ran-
dom design.

The following notations and assumptions are needed to state our theorem:

X,

X -X — -
bni= o3 —Xb,; X=
YT - XP ‘

Qnj =

S| =
S|
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(A1) The density f;(¢) has bounded variation on any finite interval.
(A2) There exist K > 0 and 0 < b < 1 such that, for all i,1 — Geu®) >
K1 —Fi(®)®.

fi(®) 1+b

————— <gt) with a=-—— and
(A3) [1 _ji(t)] 2
/ tg(t)dt < oo for some T < 0.
2 2
(A4) 0<:1<poo t_(l(_i_n_)%(i) < oo forsomey < 2.
(A5) sup /T 2dFt) >0 asT— —co.
(A6) sup E[e; — tle; > t] < co.
t>0
X -X ™
(B1) vn max ———__ - J —p0 asn — oo.
RSGES e B
d(F;@®)/|1-F;@®)|)/dt
- (rio/l-50))/

d(Gj(t)/[]. - Gj(t)])/dt —0 astooo

(S1) Forj=1,...,k, T} — oo as n — oo, where T} = max;{Ty); gG) =}
(82) (nj/n) — Ajasn — oo and ); € (0, 1).

REMARK 2.1. Conditions (A2)—(A4) are needed to insure the estimators’
behavior as ¢ — oo in cases where the censoring distribution Gy and the
survival time distribution F; share a common support on the positive real line.
They require that F; have a smaller tail than G,;). For example, when 1—Fj(z) ~
exp(—A;¢) and 1 — G(#) ~ exp(—pgt) with \; — pig6) < € > 0, (A2)—(A4) all hold.
These conditions are not needed, however, in cases where the support of the
censoring distribution is larger than that of the survival distribution.

In redefining the largest observation in each stratum [see (2.3)] the martin-
gale structure of the estimator is destroyed. To overcome this difficulty when
deriving the asymptotic results, we need to assume that either the size of the
last jump is asymptotically negligible [assumption (B2)] or that jump occurs
with a negligible probability [assumption (B1)].
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THEOREM 2.1. Suppose that the variance—covariance matrix elements o;;(7)
defined below are finite for all T and that o;(t) — 0;(c0) as T — oo. Under
assumptions (A1)—(A86), (S1), (S2) and either (B1) or (B2), the CKSV estimators
have limiting normal distributions with means (a*, 3*) and covariance matrix
¥ = (0yj), where

Tni
o =Y an [ tare), 1= b / tdF,(®)

and

n T T ] 2
o22(T) = lim an,z,i/ ( ¢ _ J; de,(s)) [l—Hi(t)] dAP(2)
i=1 —o0

1-Ggpy®) 1-H;@)

T T 2
+lim nibz' / " Zigw =g o J $AFUS) by f;” s dFi(s)
i=1 " Zl:g(l) =g(i)(1 - Hl(t)) 1- Hi(t)

x [1— Hy@®)] dAL(®),

011(7) = the same as o93 with b,; replaced by a,;,

n T T Fi 2
o12(r) = lim 7' Gibn / <1 = 5 fi f‘fq (f;)) [1— Hi®)] dAP(®)
i1 —oo 0 i .

- " > o) = o) €t S, TS AFU(S)
+limn a.;b / 1:g()=gG) ¢
; R e 11 ( g =g (1 — HI®)

J sdFy(s)
T1-H®)

en =bn, an

) [1- H®)] dAL®).

ProoF From the definition of 3 and 8*, we have
™

7 b /‘“—t-dz . -/“”tdF-(t) .
-p Zm[ o 1-Bo® mists=n= [ i

This can be written as

39 5=

oo 1= Gip(t-)

+me~/ ( —& )1 o7 —1)tdF,-(t)

qmi
Tt amPe

o \1-— Ggu)(t—
83)
- dMP @)
Z m/oo 1- Gg(t)( _) '
. Teo (H; H Gg(z)(t ) = Ggi) .

+ two higher-order terms.
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Ignoring the higher-order terms and integrating the second term by parts,
we get

B~ bu | [ —Y
~ ni o 1— G ,)(t—) i
©f [* Hi@ - Hi®
+me/ [/ SdFi(S)jl d(l_—}ll(t)>
+me/ f‘v[/ dei(s)]d(ggiﬁfL‘é_%l@)
— YgG)

Rewriting the above in terms of integration with respect to the individual mar-
tingales MP and M [recall h;() = [° sdF;(s)] and collecting terms, we get

. &) t hi(t) ) D
b dMP(t)
'3 Z / ( 1- Gg(t)(t ) 1 N Hi(t)
o 1-— @g(i)(t—) 1
(2.5) + Z /_ ( bnih(2) 1-Ggiy Rge®

L:g)=gG)
_ buihilt) ) aMED)

1-H;@®

The integrands in the last sums are predictable processes. It follows that the
above is a martingale. To show that the central limit theorem for martingales is
applicable here, we checked the Lindeberg condition and demonstrated that the
higher-order terms are 0,(1). [A similar verification can be found in Srinivasan
and Zhou (1991).]

Next, consider the predictable variation process of the martingale (2.5):

« t 20) )2 D
2.5 b Iip.>ndA; (&
@8)=2. / (1 G (t—) Ti1CHQ@ ) meath ®

~ 2

£6) 1-Gypt-) 1 bnihi(?)

+ b lhl(t) -

Z /_ (l g(lg:g(t) 1—-Gg)(®) Rgp(®) 1-— Hi(t))
X I[TiZt] dAi @).

When normalized by multiplying by n, it is not hard to show that the above has
a p-limit [= 09(00)],

lim n(ﬁ("’) - B*)
¢ hi®) 1 D
=limn "0, / (1 e~ T m) [1 - Hi) dAP()

2
. D tay =gty Othi®) bkt
_S_ : — _F. (P).
+lim n / (Zl:g(l):g(i) aA-H) 1-HO (1 - F))dGgu)(@®) O
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The following alternative expression for the asymptotic variance can be ob-
tained by expanding the square and collecting terms in og5:

022(00) = lim n{B® — §*)

26) .. T . (Sbuh®)®  dG;
= lim Var(x/ﬁme————l — Gg(i)(Ti)> —limn EJ: SA-H) 1-G

This expression suggests an estimator of ogg:

Gaz=n b% (————T"‘s" -a9 - E(”Xi>2
"\1 - Gg(TY)
2
[ Sttt 5T/ (1= G61)] ey
" / RO-1 RO

J

2.2. The stratified Leurgans estimators. Assuming that the C; arei.i.d. ran-
dom variables and independent of the X;, Leurgans (1987) suggested transform-
ing the censored observations (T3, §;) into the synthetic data

?{L) =/7mvo(———-—I[T‘,2\t] —I[¢<0]>dt
g o \1-G(®) ’

2.7
i=1,...,n, where T" = max T}‘,

and G() is the Kaplan—Meier estimator of the censoring distribution. [We in-
troduced a minor modification, V0, in the integral limit, which does not matter
asymptotically if 7" — oo as we assume in (S1).] She then applied the usual
least-squares procedure to (Y{”, X;). Zhou (1992) showed that these estimators
are asymptotically normally distributed.

We use stratification to adjust Leurgans’ method to meet assumption (1.2).
Leurgans (1987) used this same adjustment to her method in the analysis of
the Stanford heart transplant data without formally considering assumption
(1.2) and without deriving theoretical results for the estimators.

For the simple linear model

E(Yi|Xi)=a+,3Xi, i=1,...,n,
assuming (1.2), we define the stratified synthetic data as
N T,V 0
(2.8) Yi(s) = / @ <—I[Ti§t] — I[t<0]) dt,

where ég(i)(t) is derived in subsection 2.1. Applying the least-squares procedure
to (Ylgs), X;), the stratified Leurgans estimators are

B= 6,99,  a=Y a0
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In a manner similar to the proof of Theorem 2.1, we can prove the asymptotic
normality of the stratified Leurgans estimators. (Details are available from the
authors upon request.) See Section 3.2 for an expression for the asymptotic vari-
ance.

Although the CKSV procedure differs from the stratified Leurgans method
in motivation and in its synthetic data transformation, we prove next that it is
equivalent to the Leurgans method in some special cases. This provides further
support for the CKSV procedure.

THEOREM 2.2. For the simplest nontrivial linear model, the k(> 2)-sample
case, the CKSV and stratified Leurgans methods produce the same least-squares
estimators.

PRrOOF. We have to show that (1/n))Sgw-; Y = (1/n))Sew=; Y for each

j=1,2,...,k, where 1753) is the Leurgans synthetic data defined in (2.9) and 17?)
is defined in (2.3).
We start by rewriting the Leurgans estimator:

I
i L=
8@)=j "g(t)-J

bringing the summation inside and omitting the range of the summation,

Vo ( (1/n) Yy,
(2.9)=/ {( /m) % [T >1] —I[t<01} dt

—oo 1-G¢
(2.10) Vo (1 ﬁ(t)l()
=7 ==Y g }dt,
/_oo {1-Gj(t) <ol
where

l—ﬁj(t) — Z It >4q.

g(z) =j

Using the facts that (1 —E)(l - f}j) =1 —ﬁj and that, for¢ > T7, either 1 —F’j =0
or 1— Gj = 0, the right-hand side of (2.10) becomes

v
(2.11) / {I—F}—I[t<o]}dt.

—00

Notice that 1 — f’l is always a proper distribution under the modification given
above [i.e., F(T}) = 1]. Integrating by parts, we find

o _
2.12) @.11) = / tdF0) = St AR ),
. .
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where AF; (t,) F; H(ti+) — F (t;—) and the ¢; are the jump pomts of F Finally, by
noticing thatF jumps at T; with jump size 1/n; x 6§;/[1— G; 7(T;)], the right-hand
side of (2.12) reduces to the CKSV estimator (1/n;)¥4;)=; Y( ). o

ReEMARK 2.2. If the C; are i.i.d. random variables with distribution G;
[k = 1 in assumption (1.2)], the CKSV differs from the KSV method only in its
treatment of the largest T;. This is analogous to the derivation of the Kaplan—
Meier estimator for a survival function using the “redistribution-to-the-right”
algorithm [Efron (1967)]. The KSV procedure puts zero “weight” on a censored
observation and makes a larger uncensored observation carry a “weight” of
(1/n)1/[1 — G(-)] (where 1/[1 — G(-)] is the inflation factor). This suggests, to
complete the analogy, that we define the largest Y; as uncensored (even if it is
censored), since there are no larger Y; to which we can redistribute its “weight.”

3. Artificial stratification. It is a key assumption of the KSV procedure
that the censoring variables do not depend on the covariates and do share
a common distribution G(¢). Without this assumption, the estimator can be
inconsistent, as was first confirmed by Miller and Halpern (1982).

Our stratification adjustment in Section 2 relaxes this stringent assumption,
requiring the C; to be i.i.d. only “locally” (within each stratum). What happens
if the stringent i.i.d. censoring assumption is valid and we use stratification
artificially? Will efficiency be sacrificed? When stratification is unnecessary, it
should produce a poor estimator of G compared to the original KSV procedure.
Our goal, however, is to derive the best estimator for 3; G is a nuisance param-
eter and thus the quality of its estimator is less important.

Given that the censoring times are i.i.d. random variables and do not depend
on the covariates, we will show that using artificial stratification with the KSV
and the Leurgans methods results in more efficient estimators of g3; that is,
the resulting estimators have smaller asymptotic variances and MSE than the
estimators derived without artificial stratification. For clarity, we present the
technique in a simple linear model and use two artificial strata.

3.1. Artificial stratification in the KSV method. In this section we consider
the simple linear regression model with censoring times that are i.i.d. random
variables. Throughout, the asymptotic variance refers to the variance of the
asymptotic distribution and it is denoted by AsVar. We begin with two lemmas
that provide expressions for the asymptotic variances in cases where we have
one or two strata. They follow directly from (2.6) upon taking 2 =1or k = 2.

LeEmMA 3.1. Suppose that k = 1 in assumption (1.2) and that the condi-
tions of Theorem 2.1 hold. Then the CKSV estimator is asymptotically normal
with variance

2
5T )—limn / [Tb,8,0)]° dG

Q) 2 —
(3.1) AsVar(G*®) = hngb Var(l—G(Ti) S1-Hit) 1-G
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REMARK 3.1. Koul, Susarla and Van Ryzin (1981) derived an expression for
the asymptotic variance. However, their variance formulas (3.6), (3.7) and (3.8)
are missing the factor » in the second (negative) term.

LEMMA 3.2. Suppose that k = 2 in assumption (1.2) [i.e., Gi(t) = Go(t) =
G)] and that the conditions of Theorem 2.1 hold. Then the CKSV estimator is
asymptotically normal with variance

N 5T,
()Y _ 14 2 i1
AsVar(3'9) =lim n ) _ b, Var(—————1 — G(T,-))
. [ etp=1 byhi®)]” dG
3.2 —limn J

[Sep=2 buhi®]” dG
Y=z (1-Hi®)1-G

—limn

The next theorem presents one of two main results. It shows that, by choosing
particular strata, the variance in (3.2) can be made smaller than the variance
in (3.1).

THEOREM 3.1. Suppose that the strata are such that gi) = 1 if b,; < 0 and
8@) = 2if by; > 0. Then the asymptotic variance in (3.2) is no greater than the
asymptotic variance in (3.1). The inequality is strict when

2 2
(3.3) lim /0 [ 3 b,,,-h,-(t)] [ ¥ b,,jhj(t)] % >0.

g(N=1 8()=2

PRrROOF. In comparing (3.2) with (3.1), it is clear that we only need to show
that the integrand of the negative term in (3.1) is smaller than its counterpart
in (3.2), that is,

lim M.(t)_]z [ Xey=1brihi(®)] 2

n <limn
3.4) >(1—-Hj) 2 =11 —Hy)
. > @)=2 bnihi(t)]2
+lim n—=&¢ .
2 s=2(1—H)
Let

Ayj=lim ) byhi(®), Ag=lim ) byh(t) and
g@)=1 g@)=2
Zg(i)= 1(1 - H)
Y(A-Hy)

A=lim



758 M. FYGENSON AND M. ZHOU

We can now apply the following lemma to complete the proof. Note that the
strict inequality holds in (3.4) if A; and A are both nonzero and have different
signs, which is the case when (3.3) holds. O

LeEMMA 3.3. For any two constants A; and As,

A2 A2
2 o4 2
(3.5) Ar<Sle 2

where A = A1 + Ay, ) €(0,1).

Generalization to more than two constants is immediate: for any constants A;,

2 2 2
_A ﬁ+ +ﬂ where A=A; +A1 +--- + Ay,
M Ag A

A€ Dand Y N=1

A2

ProoF. We shall only prove (3.5). The inequality is trivially true if A2 = 0
or A2 = 0. Therefore, we consider the case in which A? > 0 and A2 > 0.

Minimizing the right-hand side of (3.5) with respect to A we ﬁnd a unique
minimum with the value A} + 2,/a7,/7 + AZ. This is certainly greater than or
equal to A% + 24,4, + A2, whlch is the left-hand side of (3.5). It is not hard to
see that the strict inequality holds unless A; and A, are of the same sign and
A is equal to one and only one specific value. O

REMARK 3.2. Lemma 3.3 in fact implies that any stratification can reduce
the asymptotic variance of the estimator. By repeatedly applying Lemma 3.3,
we get the following upper bound for the right-hand side of (3.4) :

2, [bniki®)]”
®.6) 2 T H@

that is, for any stratification, the integrand of the negative terms in (3.1) and
(3.2) does not get larger than (3.6). Thus, we have the following lower bound for
the asymptotic variance of any artificially stratified CKSV estimator of 5:

2le) 2 6iTi
AsVar(5'¥) > lim an Var (1 G(T))
bnjh (t)

~limn /21 H(t)l G

Using the artificial stratification of Theorem 3.1, the asymptotic variance of
a© can also be reduced; see Section 4 for numerical examples.
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3.2. Artificial stratification in the Leurgans method. Results similar to the
previous section also hold for Leurgans estimators. Assuming the conditions of
Zhou [(1992), Theorem 3.1] plus the strata conditions (S1) and (S2), we can show
that, with or without artificial stratification, both estimators are asymptotically
normal with variances given in the next lemma.

LEMMA 3.4. Suppose that k = 1. Then the asymptotic variance of the
Leurgans estimator is

7 . 2 Zi(t) 2
AsVar(f) = lim an,,,./ [1 _H.] {1 -G)dF;+(1 -F)dG}

2
(zbnjhj(t)) i
SA-F) 1-GF

3.7 —limn

When k = 2 (artificial strata),

hi(t)

AsVar(3) = lim n 382, /[

limn / [Eg<j)=1bm‘hj(t)] . {Zg(mz b,,,-hj(t)] dG
2g(p=11-F) Sep-21-F) |[1-G

]{(1 @ dF; +(1 - F)dG}

(3.8)

THEOREM 3.2. Under the artificial stratification given in Theorem 3.1, the
asymptotic variance in (3.8) is no greater than the asymptotic variance in (3.7).

The proof of this theorem follows closely that of Theorem 3.1 and is there-
fore omitted.

Similar to Remark 3.2, by repeatedly using Lemma 3.3 on the integrand of
the negative term in (3.7), we get the following lower bound for the asymptotic
variance of any stratified Leurgans estimator:

Als) . 2 Zi(t) 2
AsVar(3®) > lim n 382, / 20| ta-odR+a-Foae)

lim /Z [6 h(t) dGG

The conclusion that artificial stratification can provide a smaller asymptotic
variance of the estimator is intriguing and somewhat counterintuitive. The
results for the two strata suggest that one should consider the use of artifi-
cial stratification at least for large samples when the censoring times are i.i.d.
random variables. For multiple regression, however, the implementation of ar-
tificial stratification is more complicated and demands further research. One
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TABLE 1

@) e ~ N(0, 0.52), C; ~ U(0, 4); sample size 100; censoring percentage 50.68%
Method Ea Vara EpS Var(3) MSE,,,( BYMSE(8)
KSv 1.6364 0.0661 0.5483 0.1076 1
CKSV 1.9688 0.0093 0.9637 0.0669 4.56
ACKSV 1.9696 0.0069 0.9639 0.0498 6.098
Leurgans 1.9688 0.0095 0.9603 0.0217 13.37
ALeurgans 1.9696 0.0070 0.9638 0.0141 20.19

(b) ¢ ~ N(0, 2.12), C; ~ U(0, 4); sample s1ze 100; censormg percentage 50.03%
Method Ea Var(a) Eﬁ Var(ﬂ) MSEksv(ﬁ)/MSE(,B)
KSvV 0.8729 0.1297 0.3106 0.1058 1
CKSV 1.6930 0.0403 0.8001 0.5038 1.068
ACKSV 1.6712 0.0389 0.7914 0.1476 3.040
Leurgans 1.6930 0.0402 0.7976 0.0492 6.44
ALeurgans 1.6712 0.0390 0.7916 0.0345 7.455

(e) ¢ ~ N(O, 0.5%), C; ~ U(—4, 8); sample size 100; censormg percentage 49. 87%
Method Ea Var(a) ES Var(3) MSE,,,(3YMSE(Q)
KSv 1.9902 0.0154 0.9780 0.0558 1
CKSV 1.9995 0.0140 0.9908 0.0530 1.060
ACKSV 1.9937 0.0067 0.98129 0.0290 1.917
Leurgans 1.9993 0.0137 1.0025 0.0841 0.669
ALeurgans 1.9937 0.0067 0.9824 0.0288 1.933

) ¢ ~ N(O, 0.5%), C; ~ U(—4, 8); sample slze 100; censormg percentage 50. 63%
Method Ea Var(a) E,B Var(ﬂ) MSEkSV(ﬁ)/MSE(ﬂ)
KSv 1.8306 0.1230 0.8627 0.2408 1
CKSV 1.9799 0.0741 0.9777 0.2453 1.0564
ACKSV 1.9654 0.0670 1.0033 0.1158 2.242
Leurgans 1.9795 0.0744 0.9955 0.1664 1.560
ALeurgans 1.9655 0.0671 0.9966 0.0834 3.112

possible approach would be to use a grid partitioning of the vector of covariates.
A reduction in the asymptotic variance seems likely.

4. Monte Carlo simulations. To demonstrate the reduction in the vari-
ance and MSE by the artificial stratification of Theorems 3.1 and 3.2, we present
simulations that incorporate 200 samples of size 100 each. The data were gen-
erated according to the model

Y;=2+X;+¢;, with X;=-2+004;i and ¢ ~N(0,0%.
For the model T; = min(Y;, C;), the C; are drawn from a Uniform(a, b) distribu-
tion.

In Table 1, ACKSV denotes the CKSV method under artificial stratification,
and ALeurgans denotes the method of Leurgans under artificial stratification
(of Theorems 3.1 and 3.2).

The simulations presented here are a representative selection of the simu-

lations we conducted. We summarize the results as follows:
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1. The KSV estimator is consistently worse than the others. It is extremely
biased and its mean squared error is usually largest.

2. Under i.i.d. censoring times, the CKSV and the Leurgans methods are com-
parible. Both methods estimate the slope with relatively small bias and low
variance. The estimators of the intercept were more biased than those of
the slope, which is consistent with other methods of estimation [see Buckley
and James (1979)].

3. In most cases, artificial stratification reduces the variance of the CKSV and
the Leurgans estimators by up to 50% without significant change in bias.
This improvement is obtained when estimating either the slope or the con-
stant term of the regression model.

4. The behavior of the estimators was relatively unaffected when nonnormal
errors were simulated.

4.1. Closing remarks. It is our experience, and it is well documented [e.g.,
Miller and Halpern (1982)], that the unstratified synthetic methods tend to
produce extremely biased estimators in the following cases:

1. when the censoring distribution G(-) varies with the covariates;

2. when the censored observations are spread unevenly over the range of
the covariates.

Condition (1.2) relaxes the often unrealistic assumption ofi.i.d. censoring times,
making the methods we present less sensitive to the two departures listed
above. Even when the true strata are not known, we recommend stratifying
the censoring times with respect to the covariates so that within each stratum
cases 1 and 2 are less likely to occur.

The need for stratification can usually be detected by plotting the log-survival
time versus the various covariates. Nonuniformity in the proportion of the cen-
sored observations over the range of a covariate calls for stratification and also
indicates a possible set of strata. As is the case with other methods of data
analysis, one cannot provide exact rules for how to stratify. However, we have
found that when working with real data that needed stratification (e.g., Stan-
ford heart transplant data) any “sensible” stratification used with the CKSV
method provided better estimators than no stratification.

A “sensible” stratification can be obtained in several ways. Cluster analy-
sis techniques [Kaufman and Rousseeauw (1990)] applied to the log-censoring
times and the covariates may indicate a set of strata. Also there may exist sci-
entific evidence, interest and/or information about how the data was collected
that favors a particular stratification. When no such preference exists, another
possibility is to stratify the censoring times in as many groups as possible. Upon
stratification, one can derive the Kaplan—-Meier estimators G; and calculate t}}\e
proportion of censored observations p; for each stratum. A comparison of the G;
and p; of different strata may indicate which strata can be combined.

The possibility of using different stratifications for the same data set raises
questions about the sensitivity of the proposed methods to the particular strat-
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ification. Would an incorrect stratification be worse than no stratification at all
when stratification is present but not identified? This and other questions of
robustness call for further research.
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