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The method of stochastic discrimination (SD) introduced by Kleinberg is
a new method in statistical pattern recognition. It works by producing many
weak classifiers and then combining them to form a strong classifier. How-
ever, the strict mathematical assumptions in Kleinberg [The Annals of Statis-
tics 24 (1996) 2319–2349] are rarely met in practice. This paper provides an
applicable way to realize the SD algorithm. We recast SD in a probability-
space framework and present a concrete statistical realization of SD for
two-class pattern recognition. We weaken Kleinberg’s theoretically strict as-
sumptions of uniformity and indiscernibility by introducing near uniformity
and weak indiscernibility. Such weaker notions are easily encountered in
practical applications. We present a systematic resampling method to pro-
duce weak classifiers and then establish corresponding classification rules of
SD. We analyze the performance of SD theoretically and explain why SD is
overtraining-resistant and why SD has a high convergence rate. Testing re-
sults on real and simulated data sets are also given.

1. Introduction. The method of stochastic discrimination (SD) introduced by
Kleinberg (1990, 1996) is a new method for solving general problems in statistical
pattern recognition. It is fundamentally different from previous methods in the
field. The traditionally used techniques in statistical pattern recognition either
assume some explicit forms of underlying population density functions and thus
require one to estimate parameters, or assume no mathematical structure of the
density functions and require one to pursue their estimates nonparametrically.
[See, e.g., Duda, Hart and Stork (2001), Fukunaga (1990), McLachlan (1992)
and Ripley (1996).] Such a discussion of estimation is not required in SD, yet
SD possesses many important properties, such as high convergence rate, high
accuracy, overtraining-resistance and ability to handle overlapping classes.

The underlying ideas behind SD were introduced in Kleinberg (1990). Since
then, a fair amount of research has been carried out on this method and on
variations of its implementation. [See, e.g., Berlind (1994), Chen (1998), Ho
(1995, 1998), Ho and Baird (1998), Kleinberg (1996, 2000) and Kleinberg and Ho
(1993, 1996).] The results have convincingly shown that stochastic discrimination
is a promising area in pattern recognition.
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The approach to establish classification rules of SD is simply described as
follows. One first uses resampling techniques to produce a sequence of weak
classifiers in light of training data. An individual weak classifier usually performs
poorly on the training data, but has high projectability on the test data. Then one
averages these weak classifiers to form a strong classifier. This strong classifier not
only has good performance on the training data, but also has high projectability on
the test data.

The simplest framework of classification rules of SD for two-class problems is
described in the following way. Suppose that certain objects to be classified are
coming from one of two classes, say class 1 and class 2. A fixed number (p) of
measurements made on each object form a feature vector q . All the q’s constitute
a finite feature space F , a subset of p-dimensional Euclidean space R

p
. The task

is to classify an object after observing its feature vector q , which means one needs
a classification rule that claims “q comes from class i.” The goal can be realized
by many known methods [see, e.g., Ripley (1996)] with the aid of a training set
TR = {T R1, T R2}, where T Ri is a given random sample of size ni from class i.
Completely different from those existing standard methods is the classification rule
of SD.

The classification of SD consists of three steps. First, one randomly generates
weak classifiers using rectangular regions. In this context, a rectangular region
in R

p
is a set of the points (x1, x2, . . . , xp) such that ai ≤ xi ≤ bi for

i = 1, . . . , p, where ai and bi are real numbers. For simplicity, a rectangular
region is denoted by

∏p
i=1(ai, bi). Let �1 be the smallest rectangular region

containing TR. For any fixed λ ≥ 1, let �λ be the rectangular region in R
p

such that �λ and �1 have the same center, �λ is similar to �1 and the “width”
of �λ along the xi-axis is λ times the corresponding width of �1. Suppose that
�λ = ∏p

i=1(Li,Ui). Inside �λ, a random rectangular region closely related to
the training data may be generated as follows: choose a training feature vector
q = (q1, . . . , qp) and numbers li and ui such that Li ≤ li ≤ qi ≤ ui ≤ Ui for
i = 1, . . . , p. Then form a rectangular region R = ∏p

i=1(li , ui). Let β , a and b

be fixed real numbers with 0 < β < 1 and 0 < a ≤ b ≤ 1. An S is a weak classifier
if S is a union of a finite number of rectangular regions R constructed above such
that a ≤ r(S,T R1 ∪ T R2) ≤ b and |r(S,T R1) − r(S,T R2)| ≥ β , where for any
subsets T1 and T2 of F , r(T1, T2) denotes the conditional probability PF (T1|T2)

= PF (T1 ∩ T2)/PF (T2) = |T1 ∩ T2|/|T2| with |T | representing the cardinality of
the set T . In this context, S is treated as the intersection S ∩ F when r(S, ·) is
incurred, and PF represents the uniform probability measure on F , under which
each element of F has the same probability. Note that PF has nothing to do with
the marginal distribution of the feature vector. The main usage of PF is to facilitate
the counting task related to feature vectors q . Figure 1 illustrates a weak classifier
for the case when p = 2. Using the above process, one generates t independent
weak classifiers S(1), . . . , S(t), where t is a natural number.
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FIG. 1. An illustration of a weak classifier for two-class classification in the plane. The training
data T R1 and T R2 are shown by solid and open figures, respectively. The union of the five
rectangular regions, denoted by S, is such that r(S,T R1) �= r(S,T R2) and hence is a weak classifier.

In the second step of SD classification, one combines weak classifiers
S(1), . . . , S(t) by the central limit theorem. Specifically, for each q ∈ F one cal-
culates the average Y (q,St ) = (X(q,S(1)) + · · · + X(q,S(t)))/t , where X(q,S)

is the base random variable, defined to be (1S(q) − r(S,T R2))/(r(S,T R1)−
r(S,T R2)) with 1S(q) denoting the indicator function. In the last step of the clas-
sification, one makes a decision by using the value of Y (q,St ). If Y (q,St ) ≥ 1/2,
classify q into class 1; otherwise classify q into class 2. The algorithm of SD is
outlined in Figure 2.

1. Given λ, a, b and β, generate t independent weak classifiers.
(a) Use λ to obtain �λ = ∏p

i=1(Li,Ui) containing the training data.
(b) Randomly choose a training feature vector q = (q1, . . . , qp).
(c) Form R = ∏p

i=1(li, ui), where li and ui are randomly selected such that
Li ≤ li ≤ qi ≤ ui ≤ Ui .

(d) Repeat (b) and (c) for a finite number of times to form a union, denoted S,
of the rectangular regions R such that r(S,T R1 ∪ T R2) ∈ [a, b].

(e) If |r(S,T R1) − r(S,T R2)| ≥ β, then retain S as a weak classifier; otherwise
discard S and then go to step (d).

(f) Using the above procedure, obtain t independent weak classifiers
S(1), S(2), . . . , S(t).

2. For any q from F , evaluate X(q,S) = 1S(q)−r(S,TR2)
r(S,TR1)−r(S,T R2)

at S(1), S(2), . . . , S(t),

and then calculate the average

Y (q,St ) = X(q,S(1)) + X(q,S(2)) + · · · + X(q,S(t))

t
.

3. Set a level t classification rule as follows:
if Y (q,St ) ≥ 1/2, classify q into class 1; otherwise classify q into class 2.

FIG. 2. SD algorithm.
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This paper mainly carries out a concrete statistical realization of SD for two-
class pattern recognition. The strong assumptions of uniformity and indiscerni-
bility in Kleinberg (1996) have been greatly weakened, and the natural notions
of near uniformity and weak indiscernibility are introduced. We show why SD
classification rules built from training data work well for test data and why SD is
overtraining-resistant. We also show why the convergence rate of SD is high. Ex-
perimental results on real and simulated data sets are given. Comparisons of SD
with other pattern recognition methods are presented.

In Section 2 we study how to establish SD classification rules in detail. Section 3
attacks the issue of the performance of the SD classification rules. Experimental
results from simulation and real data sets are given in Section 4. Our conclusion is
given in Section 5.

2. Classification rules. This section studies the SD algorithm in detail.

2.1. Weak classifiers. Condition (e) of the SD algorithm in Figure 2 implies
that r(S,T R1) and r(S,T R2) are not equal. This fact may be used to define a
classification rule for any weak classifier S in the following way. If r(S,T R1) >

r(S,T R2), assign any q ∈ S to class 1 and any q ∈ Sc to class 2. In addition, if
r(S,T R2) > r(S,T R1), assign any q ∈ S to class 2 and any q ∈ Sc to class 1.
The error rate on TR of such a classification rule can be very high. Thus a weak
classifier may be very weak in terms of classification error. Note that the above
classification rule of a weak classifier does not take into account the class prior
probabilities of the two classes. This will not cause any problem. Combining
weak classifiers in SD is done through the central limit theorem and base random
variable instead of the direct use of weak classifiers. The base random variable X

is used to “separate” the two classes and this separation property is proved without
any assumption on the class prior probabilities (see Theorem 1). Additionally,
the central limit theorem is used to “amplify” this separation degree (see the first
paragraph of Section 2.3).

Denote the collection of all the weak classifiers defined above by M, called a
weak classifier space. Note that M depends on TR, λ, a, b and β . For any two
given members from M, if their intersections with F are the same, then they are
equivalent to each other in the sense of classification. This equivalence relationship
is implicitly used so that each member of M is considered unique.

2.2. Base random variables. To connect weak classifiers with feature vec-
tors, we need a special mechanism. This can be done through base random
variables X(·, ·). As outlined in Figure 2, the base random variable X is
the key to forming the classification rule. Theoretically, steps 2 and 3 in the
SD algorithm require the central limit theorem to be applied to the sequence
X(q,S(1)),X(q,S(2)), . . . ,X(q,S(t)), where the feature vector q is fixed. There-
fore it is critical to obtain the first and second moments of X(q,S). To calculate



STOCHASTIC PATTERN CLASSIFICATION 1397

these moments, we apply the usual conditional technique, which is based on a cer-
tain partition of M. This partition is made according to the values of r(S,T Ri).
The nature of such a partition then leads to the natural near uniformity assumption.
Both the partition and assumption enable us to obtain the first and second moments
of our base random variables.

Section 2.2.1 gives the strict definition of base random variables, Section 2.2.2
introduces the near uniformity assumption and Section 2.2.3 derives the first and
second moments of base random variables.

2.2.1. Definition of base random variables. Let PM denote the uniform
probability measure on the weak classifier space M, that is, under PM each mem-
ber of M has the same probability. Define the following function X on F × M:
for (q,S) in F × M,

X(q,S) = 1S(q) − r(S,T R2)

r(S,T R1) − r(S,T R2)
,(1)

where 1S(q) = 1 if q is contained in S and 0 otherwise.
Clearly X is a random variable on the probability space (F × M,2F × 2M,

PF × PM), where 2F and 2M denote the power sets of F and M, respectively. We
call X(·, ·) a base random variable.

The motivation of form (1) can be justified as follows. First note that 1S is a
weak classifier. In fact 1S functions exactly like S in terms of classification. If
1S(q) = 1, then q is assigned to class 1 if r(S,T R1) > r(S,T R2) and assigned
to class 2 otherwise. If 1S(q) = 0, then q is assigned to class 2 if r(S,T R1) >

r(S,T R2) and assigned to class 1 otherwise. For convenience, the standardized
version of 1S is needed. The idea of the standardization is that we seek a
transformation of 1S(q) that has an expectation (restricted to M) close to 1 for
q ∈ T R1 and close to 0 for q ∈ T R2.

For any fixed q ∈ T Ri , i = 1,2, the expectations EM1S(q) and EMr(S,T Ri)

are identical under the uniformity assumption [Kleinberg (1996), Lemma 3].
Thus informally, 1S(q) ≈ r(S,T R1) for q ∈ T R1 and 1S(q) ≈ r(S,T R2) for
q ∈ T R2. Hence one might try the straightforward (linear) transformation X(q,S)

in (1), since informally X(q,S) ≈ 1 for q ∈ T R1 and X(q,S) ≈ 0 for q ∈
T R2. Additionally, one might guess that such an X(·, ·) achieves our goal that
EM(X(q,S)) is close to 1 for q ∈ T R1 and close to 0 for q ∈ T R2. This is true;
see part (a) of Theorem 1 herein.

In summary, the above discussion shows that X(·, ·) can be understood as the
standardized version of 1S(q) and 1S(q) itself is a weak classifier, functioning
in the same way as S. Note that X(q,S) is symmetric with respect to T R1

and T R2. In fact, by switching T R1 and T R2, we have X∗(q, S) = [1S(q) −
r(S,T R1)]/[r(S,T R2) − r(S,T R1)] and clearly X∗(q, S) + X(q,S) = 1.
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2.2.2. Near uniformity assumption. In this section, we first give a partition
of M according to the values of r(S,T Ri) and then introduce the near uniformity
assumption on the partition. Intuitively, this near uniformity says that each
component of the partition of M is “almost uniformly spread over the training
set.”

Let x = (x1, x2) be a pair of real numbers with 0 ≤ xi ≤ 1 for i = 1,2, and
define

Mx = {
S :S ∈ M, r(S, T Ri) = xi for i = 1,2

}
.

It is easy to see that there exist pairs x(l) = (x
(l)
1 , x

(l)
2 ) with rational components,

l = 1,2, . . . , d, such that the x(l)’s are different from each other, none of the Mx(l) ’s
is empty and

M =
d⋃

l=1

Mx(l) .(2)

Equation (2) gives a partition of M into d disjoint sets Mx(1) ,Mx(2) , . . . ,Mx(d) .
Given l, all the S’s in Mx(l) cover the same number of feature vectors in T Ri .

We now want to impose some natural condition on the partition in (2). Before
proceeding with this condition, we motivate it by the following discussion of TR.
We have N = n1 +n2 feature vectors in TR, where ni is the size of T Ri (i = 1,2).
Suppose z

(1)
ν < z

(2)
ν < · · · < z

(kν)
ν is the ordered list of the distinct νth coordinates

(in R
p
) for all the feature vectors in TR, ν = 1,2, . . . , p. For each fixed ν, choose

numbers hνj such that z
(j)
ν < hνj < z

(j+1)
ν for j = 1,2, . . . , kν − 1. Then the

hyperplanes (in R
p
) zν = hνj divide R

p
into c = ∏p

ν=1 kν mutually exclusive and
exhaustive subsets R1,R2, . . . ,Rc so that each R contains at most one feature
vector from TR. Consider the following scenario. Let M′ be the set such that S

belongs to M′ iff S is a finite union of members in {R1,R2, . . . ,Rc}. Then for
the partition (2) associated with M′, we have the conditional probability equality
PM′({S :q ∈ S}|M′

x(l) ) = x
(l)
i , for any l (l = 1, . . . , d), i (i = 1,2) and q ∈ T Ri . In

fact, suppose x
(l)
i = cli/ni, where cli is a positive integer. Fix l and consider the

action of drawing an S from M′
x(l) such that the size of S ∩ T Ri equals cli . It then

follows that for any fixed q ∈ T Ri , 1S(q) is distributed as Bernoulli(x(l)
i ) and thus

the desired conditional probability equality is obtained.
Turning back to our original weak classifier space M, we note that each member

of M is determined by λ, a, b and β . This restriction usually does not lead to the
above conditional probability equality if no correction term is added. Thus the
following postulation is natural:

NEAR UNIFORMITY ASSUMPTION. There exists some positive function ε(q)

of q , dependent on λ, a, b, β and TR, such that for any l (l = 1, . . . , d), i (i = 1,2)

and q ∈ T Ri , the conditional probability

PM
({S :q ∈ S}|Mx(l)

) = x
(l)
i + oli(q),(3)
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where |oli(q)| ≤ ε(q).

If all the oli were 0, then (3) would imply that the probability that a feature
vector q1 in T Ri is captured by a weak classifier in Mx(l) is equal to the probability
that a feature vector q2 in T Ri is captured by a weak classifier in Mx(l) . Hence,
Mx(l) would be “uniformly spread over training set T Ri ,” which is the idea behind
the uniformity assumption in Kleinberg (1996). However, in reality oli may not
be 0. Thus, intuitively, (3) tells us that Mx(l) is just “near uniformly spread over
each of T R1 and T R2.”

Kleinberg (1996) mentioned the phenomenon of near uniformity, but did no
further analysis. Some research results under the assumption of near uniformity
can be found in Chen (1998). We will use NUA(ε) to refer to the above near
uniformity assumption.

2.2.3. Moments of base random variables. By utilizing the near uniformity
assumption we can establish the following results on the first and second moments
of base random variables.

THEOREM 1. For any given q , let EM(X(q,S)) and VarM(X(q,S)) denote
the expectation and variance, respectively, restricted to M, of X(q,S). Assume
NUA(ε) for M. (a) EM(X(q,S)) = 1 + τ1(q) if q ∈ T R1 and = τ2(q) if q ∈ T R2;
(b) VarM(X(q,S)) ≤ (1 + 4ε(q))/(4β2) − τ 2

1 (q) − 2τ1(q) for q ∈ T R1 and
≤ (1 + 4ε(q))/(4β2) − τ 2

2 (q) for q ∈ T R2, where all the τ ’s satisfy |τ | ≤ ε(q)/β .

PROOF. (a) From (2), M = ⋃d
l=1 Mx(l) . Let p

l
= PM(Mx(l) ). For any given

q ∈ T Ri (i = 1,2),

EMX(q,S) =
d∑

l=1

EM
(
X(q,S)|Mx(l)

)
p

l

=
d∑

l=1

[
EM(1S(q)|Mx(l) ) − x

(l)
2

x
(l)
1 − x

(l)
2

]
p

l

=
d∑

l=1

[
x

(l)
i + oli(q) − x

(l)
2

x
(l)
1 − x

(l)
2

]
p

l
,

(4)

where the last equality comes from NUA(ε). Note that |x(l)
1 − x

(l)
2 | ≥ β for

l = 1, . . . , d . Set uli(q) = oli (q)p
l
/(x

(l)
1 − x

(l)
2 ). We have |uli(q)| ≤ ε(q)p

l
/β .

Thus from (4), part (a) of the theorem is established, where τi(q) = ∑d
l=1 uli(q).
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(b) For any given q ∈ T Ri , we have

EM[X(q,S)]2 =
d∑

l=1

EM

((
1S(q) − x

(l)
2

x
(l)
1 − x

(l)
2

)2∣∣∣∣Mx(l)

)
pl

=
d∑

l=1

(1 − 2x
(l)
2 )PM({S :q ∈ S}|Mx(l) ) + (x

(l)
2 )2

(x
(l)
1 − x

(l)
2 )2

p
l

=
d∑

l=1

x
(l)
i (1 − 2x

(l)
2 ) + (x

(l)
2 )2 + (1 − 2x

(l)
2 )oli (q)

(x
(l)
1 − x

(l)
2 )2

p
l
.

(5)

Note that |1 − 2x| ≤ 1 and x(1 − x) ≤ 1/4 for 0 ≤ x ≤ 1. Therefore if i = 1, (5)
gives

EM[X(q,S)]2 = 1 +
d∑

l=1

x
(l)
1 (1 − x

(l)
1 ) + (1 − 2x

(l)
2 )ol1(q)

(x
(l)
1 − x

(l)
2 )2

p
l

≤ 1 + 1 + 4ε(q)

4β2
,

and if i = 2, a similar argument yields the bound (1 + 4ε(q))/(4β2). Part (b) now
follows from the above second moments and part (a). �

When the |τi|’s in Theorem 1 are small, the expectation of X(q,S) (q fixed) is
close to 1 if q is in T R1 and close to 0 if q is in T R2. In a sense, EM(X(q,S)) can
be used to separate T R1 from T R2: given a point q from TR, if EM(X(q,S)) ≥
1/2, one may assign q to T R1, and if EM(X(q,S)) < 1/2, one may assign q ∈ F

to class 2. Since the training set TR is a “representative” of the feature space F

and X(q,S) is an estimator of EM(X(q,S)), one may simply set the following
classification rule: given an S, if X(q,S) ≥ 1/2, assign q ∈ F to class 1 and if
X(q,S) < 1/2, assign q ∈ F to class 2. The rationale in setting this classification
rule is that the rule is at least reasonable for classifying the points in TR. Simple
algebra reduces the above rule to the following. When 1S(q) = 1, q is assigned
to class 1 if r(S,T R1) > r(S,T R2) and assigned to class 2 otherwise. When
1S(q) = 0, q is assigned to class 2 if r(S,T R1) > r(S,T R2) and assigned to
class 1 otherwise. Therefore this classification rule based on X(·, S) is actually
identical with the one given by S. Thus treated as one classifier, X(·, S) is (very)
weak. However, averaging multiple weak classifiers X(·, S) can lead to a strong
classifier.

2.3. Classification rules. In SD, the weak classifiers X(·, S) are combined via
the central limit theorem. Let St = (S(1), . . . , S(t)) be a random sample of size t
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from M (with replacement) and define, for any q ∈ F ,

Y (q,St ) = X(q,S(1)) + · · · + X(q,S(t))

t
.

Given q , both X(q,S) and Y (q,St ) have the same expectation, but the variance
of Y (q,St ) decreases as t increases. Thus Y (q,St ) will work better than X(q,S).
Assume NUA(ε) holds for TR. By the central limit theorem, when t is large
enough and the |τi |’s in Theorem 1 are reasonably small, there is a high probability
that Y (q,St ) is close to 1 for any q from T R1 and close to 0 for any q from T R2.
Hence it is seen that the difference between two classes detected by Y is much
more obvious than that detected by X. Naturally one can define the following rule:

LEVEL t STOCHASTIC DISCRIMINANT CLASSIFICATION RULE RSt . For any
q ∈ F , if Y (q,St ) ≥ 1/2, classify q into class 1, denoted by RSt (q) = 1; otherwise
classify q into class 2, denoted by RSt (q) = 2.

There is another aspect of the above classification rule. For a given St , one
can view Y (q,St ) as a map from R

p to R
1. Under this map, every point q in

the feature space F becomes a real number y. For i = 1,2, let fi denote the
probability mass function of the random variable Y (q,St ) for q ∈ T Ri (St is
fixed), where the uniform probability measure PF on F applies. Then the original
p-dimensional two-class problem is reduced to the univariate two-class problem
where the two classes are represented by f1 (class 1) and f2 (class 2). Under the
strict assumption of uniformity, one can show that as t becomes large enough,
EMf1 is approximated by the density of a normal distribution with mean 1 and
variance inversely proportional to t , and EMf2 is approximated by the density of
a normal distribution with mean 0 and variance inversely proportional to t [see
Kleinberg (1996)]. Then for any feature y from the univariate two-class problem,
an obvious way to classify y is to allocate y to class 1 if y ≥ 0.5 and to class 2
otherwise. Naturally this leads to the above SD classification rule.

The SD classification rule simply treats Y (q,St ) as a discriminant function.
This rule transforms the multivariate observations q to univariate observations y.
To a certain degree, this coincides with Fisher’s idea for constructing discriminant
functions [Fisher (1938)].

Note that we could instead classify q into class 1 iff Y (q,St ) ≥ γ for some
γ ∈ (0,1) other than γ = 1/2. If misclassifying into class 1 is considered more
serious than misclassifying into class 2, we may want to choose a γ > 1/2, for
example. Hereafter, we pursue the simpler case with γ = 1/2.

The word “stochastic” is used here, in part for the following reason. Let us
attach to each q a discrete stochastic process {Y (q,St ), t = 1,2, . . .}. Suppose that
the function ε in Theorem 1 is small. Then for each q ∈ T R1, the corresponding
process converges (a.s.) to some value larger than 1/2, while for each q ∈ T R2,
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the corresponding process converges (a.s.) to some value less than 1/2. Therefore,
actually the stochastic processes {Y (q,St ), t = 1,2, . . .} are used to perform the
classification task. For more information on the origin of the term “stochastic
discrimination,” see Kleinberg (1990).

In summary, the SD classification rule is essentially an application of resam-
pling. One first uses resampling techniques to get a sequence of weak classifiers
S(1), S(2), . . . , S(t), and then employs the machinery of base random variables and
the central limit theorem to combine these weak classifiers to form a strong classi-
fier RSt .

This procedure of combining “components” to form a strong classifier is similar
to the recent work of boosting and bagging [Breiman (1996), Schapire (1990) and
Freund and Schapire (1997)], but SD is quite different from these two methods.
Some brief comparisons are listed below. For simplicity, we choose Real AdaBoost
in Friedman, Hastie and Tibshirani (2000).

• The methods of producing the components are different.

1. In SD, the weak classifiers S(1), S(2), . . . , S(t) are independently produced
from the space M, yielding an equivalent sequence of weak classifiers
X(·, S(1)),X(·, S(2)), . . . ,X(·, S(t)).

2. In Real AdaBoost, the weak learners f1, f2, . . . , ft are dependent on each
other and are generated sequentially by maintaining a set of weights over the
training set.

3. Bagging uses the bootstrap samples from the training set to form the
predictors ϕ(·,L(1)), ϕ(·,L(2)), . . . , ϕ(·,L(B)).

• The rationale underlying the combination of the components is different.

1. SD classification is built by checking the average of X(q,S(1)),X(q,S(2)),

. . . ,X(q,S(t)).
2. In Real AdaBoost, the sum of f1(q), f2(q), . . . , ft (q) gives rise to estimates

of the logit of the class probabilities [Friedman, Hastie and Tibshirani
(2000)].

3. The final predictor in bagging is obtained by the vote from ϕ(q,L(1)),

ϕ(q,L(2)), . . . , ϕ(q,L(B)).

3. Performance of SD. This section presents performance evaluation of
SD classification rules. We first give some general definitions of accuracies
on classification and then present some results on both training and test sets.
A discussion regarding the convergence rate, overtraining-resistance and selection
of parameter values is also given.

3.1. Definitions of accuracies. Suppose that we separate a sample T according
to class so that we have T = {T1, T2}, where Ti represents a sample from
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class i. Given a classification rule RSt , define the accuracy of RSt on T, denoted
by a(St ,T), as the proportion of feature vectors in T1 ∪ T2 which are classified
correctly, namely

a(St ,T) = 1

|T1| + |T2|
2∑

i=1

∑
q∈Ti

1(RSt (q)=i),(6)

where 1(RSt (q)=i) equals 1 if RSt (q) = i and 0 otherwise. For a fixed level t , the
expected accuracy of RSt , or the average performance of all the rules RSt with
respect to the proportion of the correctly classified feature vectors, is defined by

e(t,T) = EM(a(St ,T)) = 1

|T1| + |T2|
2∑

i=1

∑
q∈Ti

EM1(RSt (q)=i).(7)

It is seen that a(St ,T) is the probability in the space (F,2F ,PF ) that a randomly
chosen feature vector from T1 ∪ T2 is classified correctly (under the classification
rule RSt ), and e(t,T) is the probability in (F × M,2F × 2M,PF × PM) that a
randomly chosen feature vector from T1 ∪ T2 is classified correctly.

The above definitions are quite general. If T = TR, then we have a(St ,TR) and
e(t,TR), which indicate the performance of the classifier on the training set. If
Ti coincides with class i, then 1 − a(St ,T) is simply the overall error rate of the
classification rule RSt .

In general it is difficult to find a theoretical estimate of a(St ,T) defined in (6)
by a direct computation. In this paper we will focus on estimating e(t,T).

3.2. Accuracies on training sets. Note that whether a given feature point q

can be correctly classified depends on EM(X(q,S)). Let µ(q) denote EMX(q,S)

and let σ 2(q) denote VarM X(q,S). We write

T R
(1)
1 = {q ∈ T R1 :µ(q) > 1/2}, T R

(1)
2 = {q ∈ T R2 :µ(q) < 1/2},

T R
(2)
1 = {q ∈ T R1 :µ(q) < 1/2}, T R

(2)
2 = {q ∈ T R2 :µ(q) > 1/2},

T R
(3)
1 = {q ∈ T R1 :µ(q) = 1/2}, T R

(3)
2 = {q ∈ T R2 :µ(q) = 1/2},

TR(1) = {
T R

(1)
1 , T R

(1)
2

}
, TR(2) = {

T R
(2)
1 , T R

(2)
2

}
,

TR(3) = {
T R

(3)
1 , T R

(3)
2

}
.

Then TR = TR(1) ∪ TR(2) ∪ TR(3). If t is large, it follows from the central limit
theorem that TR(1) will be correctly classified and TR(2) will be misclassified with
a high probability by RSt , while the status of any q in TR(3) is virtually decided
by flipping a fair coin. The following theorem gives some corresponding results.
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THEOREM 2. Suppose NUA(ε) holds for M. Then

e(t,TR(1)) ≥ 1 − exp(−tB1),(8)

e(t,TR(2)) ≤ exp(−tB2),(9)

e(t,TR(3)) = 1

2
+ O

(
1√
t

)
,(10)

where the constants Bi = (2β2τ (i))/(β + 2)2 > 0 with τ (i) = inf
q∈TR(i){(µ(q) −

1/2)2} for i = 1,2.

PROOF. Recall the inequality in Hoeffding (1963): If X1,X2, . . . ,Xt are i.i.d.
and a ≤ Xi ≤ b (i = 1,2, . . . , t), then, with Xt = (X1 + X2 + · · · + Xt)/t ,
P (Xt − EX1 ≥ x) ≤ exp{−(2tx2)/(b − a)2} for every x > 0 and every positive
integer t . This inequality will be used to prove (8) and (9). Note that for

any given q ∈ T R
(1)
1 ∪ T R

(1)
2 , |X(q,S) − 1/2| ≤ 1/β + 1/2. Set L(q,St ) =

Y (q,St ) − 1/2 = 1
t

∑t
l=1[X(q,S(l)) − 1/2] and ν(q) = EM(X(q,S) − 1/2) for

q ∈ T R
(1)
1 ∪ T R

(1)
2 . Then if q ∈ T R

(1)
1 , ν(q) > 0 and if q ∈ T R

(1)
2 , ν(q) < 0.

Applying the Hoeffding inequality to the random sample {−(X(q,S(l)) − 1/2);
l = 1,2, . . . , t}, we obtain, for any fixed q ∈ T R

(1)
1 , PM(−L(q,St ) + ν(q) ≥

ν(q)) ≤ exp(−tB1). Therefore for q ∈ T R
(1)
1 , EM1(RSt (q)=1) = PM(Y (q,St ) ≥

1/2) = PM(L(q,St ) ≥ 0) ≥ 1 − exp(−tB1). Again applying the Hoeffding
inequality to the random sample {X(q,S(l)) − 1/2; l = 1,2, . . . , t}, we have,
for any fixed q ∈ T R

(1)
2 , PM(L(q,St ) ≥ 0) = PM(L(q,St ) − ν(q) ≥ −ν(q)) ≤

exp(−tB1), and thus EM1(RSt (q)=2) = PM(L(q,St ) < 0) = 1 − PM(L(q,St ) ≥
0) ≥ 1 − exp(−tB1). The proof of (8) follows from (7). The above procedure also
leads to (9).

For any fixed q ∈ T R
(3)
1 , EM1(RSt (q)=1) = PM(

√
t((Y (q,St ) − 1/2)/

σ (q)) ≥ 0). For any fixed q ∈ T R
(3)
2 , EM1(RSt (q)=2) = PM(

√
t((Y (q,St ) − 1/2)/

σ (q)) < 0). It follows from the Berry–Esseen theorem with Feller’s bound 3 that
|EM1(RSt (q)=i) − 1/2| ≤ 3H√

t
for i = 1,2, where H = sup

q∈TR(3){EM[|X(q,S) −
1/2|3/(σ (q))3]}. Now (7) results in (10). �

It is seen that the constants Bi depend on β and functions ε(q), τ1(q) and τ2(q)

in Theorem 1. Since ε depends on TR, Bi depend on the size of the training set
and the dimension of the feature space.

3.3. Accuracies on test sets. Theorem 2 presents a detailed look at the
performance of SD on training sets. The natural question now is, How does
this stochastic discrimination method perform on other data sets? To answer this
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question, we need the notion of weak indiscernibility between training and test
sets. Weak indiscernibility, in a certain sense, describes the fact that training and
test sets are each a representative of the feature space. Suppose there is a test set
TE = {T E1, T E2}—another available set of data, where T Ei is a given random
sample from class i.

DEFINITION. TE is said to be (M, δ) indiscernible from TR if for some
δ ∈ [0,1) and for any S ∈ M, |r(S,T Ri) − r(S,T Ei)| ≤ δ for i = 1,2.

This (M, δ) indiscernibility is also referred to as weak indiscernibility.
Note that r(S,T Ri) and r(S,T Ei) are just two empirical estimates of the

probability that a random vector q from population i (class i) falls into S. Thus if
the sample sizes of the T Ri ’s and the T Ei’s are large or the “volume” of each S is
big (e.g., when λ and a are large), then TE should be (M, δ) indiscernible from TR
for some small δ. In general, such a δ largely depends on the sizes of TR and TE,
λ and a.

Indiscernibility in Kleinberg (1996) is stronger than the above weak indiscerni-
bility. In Kleinberg (1996), a set M of 2F which makes TR indiscernible from TE
satisfies the condition that r(S,T Ri) = r(S,T Ei) for any S in TR. It is difficult
to find such an M, built from TR.

With the notion of weak indiscernibility, we will be able to see why SD works
well for test data. Note that our entire development so far concerning the training
data can be carried out for the test data. Let us begin with the near uniformity
assumption. Note that partition (2) is made according to T R1 and T R2. Now
we partition M in terms of {T E1, T E2} and assume the corresponding near
uniformity assumption with the involved function ε∗(q), denoted by NUA∗(ε∗).
For convenience, quantities involving test sets will be indicated with an asterisk (∗)

flag. Our first result concerning the test data set is the following theorem,
a counterpart of Theorem 1.

THEOREM 3. Suppose that there exists a δ (< β/2) for which TR is (M, δ)

indiscernible from TE. Assume NUA∗(ε∗) holds for M. (a) EM(X(q,S)) = 1 +
τ ∗

1 (q) + α(q) if q ∈ T E1 and = τ ∗
2 (q) + α(q) if q ∈ T E2; (b) VarM(X(q,S)) ≤

[(v(q))1/2 + 4δ/(β(β − 2δ))]2, where |τ ∗| ≤ ε∗(q)/(β − 2δ), |α(q)| ≤
4δ/(β(β − 2δ)) and v(q) ≤ (1 + 4ε∗(q))/(4(β − 2δ)

2
) + 1.

PROOF. Corresponding to the base random variable X(q,S) defined in (1), a
random variable based on r(S,T Ei) can be studied. Since there exists a δ (< β/2)

for which TR is (M, δ) indiscernible from TE, it is seen that |r(S,T E1) −
r(S,T E2)| ≥ β − 2δ > 0. For any (q, S) ∈ F × M, define

X∗(q, S) = 1S(q) − r(S,T E2)

r(S,T E1) − r(S,T E2)
.
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By NUA∗(ε∗), we see as in Theorem 1 that EM(X∗(q, S)) = 1 + τ ∗
1 (q) if q ∈ T E1

and = τ ∗
2 (q) if q ∈ T E2, and VarM(X∗(q, S)) ≤ (1 + 4ε∗(q))/(4(β − 2δ)

2
) −

(τ ∗
1 (q))2 − 2τ ∗

1 (q) if q ∈ T E1 and ≤ (1 + 4ε∗(q))/(4(β − 2δ)
2
) − (τ ∗

2 (q))2 if
q ∈ T E2, where |τ ∗| ≤ ε∗(q)/(β − 2δ).

From the definitions of X and X∗, one can show that for any (q, S) ∈ F × M,
|X∗(q, S) − X(q,S)| ≤ 4δ/(β(β − 2δ)). Since |EM(X(q,S) − X∗(q, S))| ≤
EM|X(q,S) − X∗(q, S)|, we have EM(X(q,S)) = EM(X∗(q, S)) + α(q) = 1 +
τ ∗

1 (q) + α(q) if q ∈ T E1 and = τ ∗
2 (q) + α(q) if q ∈ T E2, where |α(q)| ≤

4δ/(β(β − 2δ)). Also VarM(X) = VarM(X − X∗) + VarM(X∗) + 2 cov(X −
X∗,X∗) ≤ VarM(X − X∗) + VarM(X∗) + 2(VarM(X − X∗))1/2(VarM(X∗))1/2 ≤
(4δ/(β(β −2δ)))2 +v(q)+8δ/(β(β −2δ))(v(q))1/2, where v(q) = VarM(X∗) ≤
(1 + 4ε∗(q))/(4(β − 2δ)

2
) + 1. �

Recall that the SD classification rule works for the training data set TR simply
because EM(X(q,S)) separates T R1 from T R2 (see the discussion following
Theorem 1). Theorem 3 shows that when τ ∗

1 , τ ∗
2 and α are small, EM(X(q,S))

is close to 1 for q ∈ T E1 and close to 0 for q ∈ T E2, that is, EM(X(q,S))

also separates T E1 from T E2. Therefore under the assumption of NUA∗(ε∗)
and (M, δ) indiscernibility (δ < β/2) between training and test sets, the rationale
that the stochastic discriminant classification rule RSt works for the test set TE
is exactly the same as for the training set TR. Hence it can be expected that
the performance of SD on the training set will be projected on the test set. An
immediate consequence of this projectability is that results similar to Theorem 2
hold for TE.

Let

T E
(1)
1 = {q ∈ T E1 :µ(q) > 1/2}, T E

(1)
2 = {q ∈ T E2 :µ(q) < 1/2},

T E
(2)
1 = {q ∈ T E1 :µ(q) < 1/2}, T E

(2)
2 = {q ∈ T E2 :µ(q) > 1/2},

T E
(3)
1 = {q ∈ T E1 :µ(q) = 1/2}, T E

(3)
2 = {q ∈ T E2 : µ(q) = 1/2},

TE(1) = {
T E

(1)
1 , T E

(1)
2

}
, TE(2) = {

T E
(2)
1 , T E

(2)
2

}
,

TE(3) = {
T E

(3)
1 , T E

(3)
2

}
.

We have the following:

THEOREM 4. Suppose that NUA∗(ε∗) holds for M and that there exists a
δ < β/2 for which TR is (M, δ) indiscernible from TE. Then

e(t,TE(1)) ≥ 1 − exp(−tB∗
1 ),(11)

e(t,TE(2)) ≤ exp(−tB∗
2 ),(12)

e(t,TE(3)) = 1

2
+ O

(
1√
t

)
,(13)
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where the constants B∗
i (> 0) depend on β , δ and functions α(q), ε∗(q), τ ∗

1 (q)

and τ ∗
2 (q).

PROOF. From Theorem 2 or its proof, the statements hold. �

Note that the constants B∗
i depend on the dimension of the feature space and

the sizes of the training and test sets. This is simply because ε∗ is dependent on
TE and thus the dimension of the feature space, and δ is dependent on the sizes of
TR and TE.

3.4. Convergence rate, overtraining-resistance and parameter tuning. In this
section, we discuss the convergence rate, overtraining-resistance and selection
of parameters.

3.4.1. Convergence rate. Sections 3.2 and 3.3 break TR and TE down into
TR(i) and TE(i): TR = TR(1) ∪ TR(2) ∪ TR(3) and TE = TE(1) ∪ TE(2) ∪ TE(3).
We conjecture that both r(TR(3),TR) and r(TE(3),TE) are negligible. This
simply states that each of TR(3) and TE(3) has a very small size compared with TR
and TE, respectively. Neglecting the size of TR(3) and TE(3), one sees, from (8),
(9), (11) and (12), that both e(t,TR) and e(t,TE) converge at least exponentially
fast. This indicates that SD is a fast algorithm with respect to t .

3.4.2. Overtraining-resistance. Overtraining-resistance is one of the impor-
tant properties of SD. The empirical evidence is that good performance of SD on
training data translates into good performance on test data. In theory, we believe
that overtraining is prevented by the weak indiscernibility between training and
test data sets, which is usually controlled by λ, a and b. A supporting argument for
a special case is given as follows. Suppose ε ≈ 0. Then from Theorem 1, µ(q) ≈ 1
for q ∈ T R1 and µ(q) ≈ 0 for q ∈ T R2. From Theorem 2, we see that TR is
perfectly classified by SD. When will TE be perfectly classified? To answer this
question, we assume that the natural condition ε∗ ≈ 0 holds and that there exists
(M, δ) indiscernibility between TR and TE (δ < β/2). Then from Theorem 3,
µ(q) ≈ 1 +α(q) for q ∈ T E1 and µ(q) ≈ α(q) for q ∈ T E2. Since the magnitude
of α is unknown, one cannot be sure that TE will be perfectly classified. However,
if we further assume that δ ≈ 0, then α(q) ≈ 0 and Theorem 4 indicates that TE is
perfectly classified.

3.4.3. Tuning parameters. It appears that parameters λ, a, b and β have a
strong influence on the performance of SD.

In fact, it is seen that λ, a and b determine the volume of S. A big volume
is required for weak indiscernibility to hold so that good performance of SD on
training data can translate into good performance on test data.
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Theoretically, large β is required. There are several reasons for this. First, let
us note that the size of TR(2) ∪ TR(3) and the size of TE(2) ∪ TE(3) contribute to
the training and test error rates, respectively. From the definitions of TR(2), TR(3),
TE(2) and TE(3), the sizes of these sets can be reduced by choosing large β and
small δ, since there will be more points q in T R1 and T E1 such that µ(q) > 1/2
and more points q in T R2 and T E2 such that µ(q) < 1/2. Second, the condition
δ < β/2 is more likely satisfied when large β is used. Third, the upper bound
of τ in Theorem 1 may become smaller when β is larger and, consequently,
EM(X(q,S)) for q ∈ T R1 is closer to 1 and EM(X(q,S)) for q ∈ T R2 is closer
to 0. This shows that with larger β , weak classifiers may “discern” the two classes
more easily. A disadvantage of using larger β is that the training process usually
takes more time.

Since the quantitative relationship among these parameters is unavailable, we
can only obtain a near optimal result by selecting an appropriate combination of λ,
a, b and β . As discussed above, λ, a and b are used to determine the volume
of a weak classifier. For convenience, we fix a = 0.1 and b = 1.0. Then tuning
λ and β can be done through cross-validation or the usual training/test procedure.
We simply run SD by stepping through some ranges of λ and β to find out
the appropriate values for these two parameters that correspond to the best test
performance achieved. The range of λ may be set to be λ ∈ [1,2] and the range
of β may be set to be β ∈ [0.05,0.95]. Examples of this tuning process are seen
in Section 4.

4. Experimental results. In this section, we report some results of our
experiments conducted on one simulated data set and two popular data sets from
the repository at the University of California at Irvine. The experiments are used
to provide a simple look at how SD works in practice.

In all the experiments, only one set of values of λ, a, b and β was used for
all the runs associated with each data set. The selection of the parameters was
made in the following way (see Section 3.4.3). We used a = 0.1 and b = 1.0 for
all the data sets. Tuning λ and β was done through fivefold cross-validation for
Examples 1 and 2, and via the usual training/test procedure for the simulated data
in Example 3. This tuning process consisted of two steps. In step 1, we conduced
a coarse tuning. We considered λ ∈ [1.0,2.0] and β ∈ [0.05,0.95]. We ran SD
for each choice of λ and β by looping over the ranges with a step size of 0.1 for
both λ and β . For Examples 1 and 2, we selected the combination of λ and β

that corresponded to the best averaged test performance. For Example 3, we fixed
a training set of size 400 and a test set of size 4000, and then we selected the
combination of λ and β that corresponded to the best performance on the test data
set. Denote the selected parameters by λ0 and β0. In step 2, we conducted a fine
tuning. We considered new ranges of λ and β centered at λ0 and β0, respectively.
The length of each range was set to be half of that in step 1. An obvious truncation
was done if the new range extended beyond the range in step 1. We ran SD for
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each choice of λ and β by looping over the ranges with a step size of 0.05 for both
λ and β . As in step 1, we chose the combination of λ and β that corresponded to
the best test performance as the fine tuning result. Denote the selected parameter
values by λ1 and β1. These values λ1 and β1 were used with the actual runs of the
experiments. (During the tuning process, a combination of λ and β was discarded
if, with this combination, it took a long time to locate a weak classifier.)

EXAMPLE 1 (Breast cancer, Wisconsin). The data came from Dr. William
H. Wolberg, University of Wisconsin Hospitals, Madison [Wolberg and Mangasar-
ian (1990)]. The data set contains 699 points in the nine-dimensional space R

9

that come from two classes: benign (458 cases) and malignant (241 cases). We
used fivefold cross-validation to estimate the test error rate and we reran each
cross-validation 10 times using different seeds. The SD test error is 3.1%. Breiman
(1996) reported an error rate of 3.7% from bagging. Friedman, Hastie and Tibshi-
rani (2000) reported various error rates from different versions of boosting: their
three lowest error rates corresponding to 200 iterations were 2.9, 3.1 and 3.2%.

EXAMPLE 2 (Pima Indians, diabetes). The data were gathered among the
Pima Indians by the National Institute of Diabetes and Digestive and Kidney
Disease [Smith, Everhart, Dickson, Knowler and Johannes (1988)]. The data set
contains 768 points in the space R

8 from two classes: tested positive (268 cases) or
tested negative (500 cases). We used fivefold cross-validation to estimate the test
error rate and we reran each cross-validation 10 times using different seeds. The
test error of SD is 26.2%. The five lowest error rates from bagging and boosting
reported in Freund and Schapire (1996) are 24.4, 25.3, 25.7, 26.1 and 26.4%, where
tenfold cross-validation was used.

EXAMPLE 3 (Two classes with the same mean). Consider two ten-dimensional
normal distributions N(0, I) and N(0,1.85I), where I is the 10 × 10 identity ma-
trix. Let π1 = π2 = 1/2 so that the Bayes error is 25%. The training set TR con-
tains 400 points from each class. This is the example used in Friedman, Hastie and
Tibshirani (2000) for an illustration of overfitting of boosting. The averaged results
over 10 independently drawn training/test set combinations were used to estimate
the error rates. Overfitting does not occur here. Figure 3 shows the performance
of SD.

The above examples were simply used to demonstrate the application of the
SD algorithm in Figure 2. We have not tried to find the best setting of the
parameters λ, a, b and β . Although the tuning process proposed above often
works well, it is in no way the best or the unique method. As better methods
are found to pick up the parameters, the classification results will definitely
be improved. For more experimental results of SD, we refer the readers to
Kleinberg (2000), where a technique called uniformity forcing was incorporated
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FIG. 3. Training and test errors for two ten-dimensional normal distributions with the same mean.
The training set contains 400 points from each class. The dashed horizontal line indicates the Bayes
error 25%.

into the algorithmic implementation of SD. There the performance of SD on
24 public data sets was compared with those of various pattern recognition
methods, including boosting and bagging, and the results showed that SD placed
first on 19 of them, second on two others, fourth on another, and fifth on the
remaining two.

5. Conclusion. SD, treated as a statistical method in pattern recognition, does
not fall into the classical sampling paradigm or the diagnostic paradigm. [For the
definitions of sampling and diagnostic paradigms, see Ripley (1996), page 27.]
This paper studies SD for two-class classification under relaxed assumptions.
Uniformity and indiscernibility have been replaced by near uniformity and weak
indiscernibility, respectively. An algorithm implementing SD is described. In
addition, theoretical results of the classification accuracy on both training and
test sets are provided to judge the performance of SD. In practice, SD, a method
especially suitable to parallel implementation, is effective.

The two-class case is the core of the whole structure of SD. Higher class pattern
recognition using SD may be realized on the basis of two-class classification,
and the major results developed in this paper can be extended to the multiclass
situation.
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