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WALD CONSISTENCY AND THE METHOD
OF SIEVES IN REML ESTIMATION

By Jiming Jiang

Case Western Reserve University

We prove that for all unconfounded balanced mixed models of the anal-
ysis of variance, estimates of variance components parameters that maxi-
mize the (restricted) Gaussian likelihood are consistent and asymptotically
normal—and this is true whether normality is assumed or not. For a gen-
eral (nonnormal) mixed model, we show estimates of the variance compo-
nents parameters that maximize the (restricted) Gaussian likelihood over
a sequence of approximating parameter spaces (i.e., a sieve) constitute a
consistent sequence of roots of the REML equations and the sequence is
also asymptotically normal. The results do not require the rank p of the
design matrix of fixed effects to be bounded. An example shows that, in
some unbalanced cases, estimates that maximize the Gaussian likelihood
over the full parameter space can be inconsistent, given the condition that
ensures consistency of the sieve estimates.

1. Introduction. In many cases exploration of asymptotic properties of
maximum likelihood (ML) estimates led to one of two types of consistency:
Cramér (1946) or Wald (1949) types. The former establishes the consistency
of some root of the likelihood equation(s) but usually gives no indication on
how to identify such a root when the roots of the likelihood equation(s) are
not unique. The latter, however, states that an estimate of the parameter
vector that maximizes the likelihood function is consistent. Therefore it is not
unusual that Wald consistency sometimes fails whereas the Cramér one holds
[e.g., Le Cam (1979)].

Often, obstacles to Wald consistency arise on the boundary of the parameter
space 2. For this reason, the maximization is sometimes carried out over a
sequence of subspaces which may belong to the interior of 2 and approaches
2 as sample size increases. Methods of this type have been studied in the
literature, among them those that Grenander (1981) called sieves.

In this paper we consider asymptotic behaviors of REML—restricted or
residual maximum likelihood—estimates in variance components estimation.
The REML method was first proposed by W. A. Thompson (1962). Several
authors have given overviews on REML, which can be found in Harville (1977),
Khuri and Sahai (1985), Robinson (1987) and Searle, Casella and McCulloch
(1992). A general mixed model can be written as

y =Xβ+Z1α1 + · · · +Zsαs + ε;(1)

Received February 1995; revised October 1996.
AMS 1991 subject classification. 62F12.
Key words and phrases. Mixed models, restricted maximum likelihood, Wald consistency, the

method of sieves.

1781



1782 J. JIANG

where y is an N × 1 vector of observations, X is an N × p known matrix of
full rank p, β is a p × 1 vector of unknown constants (the fixed effects), Zi

is an N ×mi known matrix, αi is a mi × 1 vector of i.i.d. random variables
with mean 0 and variance σ2

i (the random effects), i = 1; : : : ; s; ε is an N× 1
vector of i.i.d. random variables with mean 0 and variance σ2

0 (the errors).
Asymptotic results of maximum likelihood type estimates for model (1) are

few in number, with or without normality assumptions. Assuming normality,
and the model having a standard ANOVA structure, Miller (1977) proved a
result of Cramér consistency and asymptotic normality for the maximum like-
lihood estimates (MLE) of both the fixed effects and the variance components
σ2

0 ; : : : ; σ
2
s . Under conditions slightly stronger than those of Miller, Das (1979)

obtained a similar result for the REML estimates. Also under the normality
assumption, Cressie and Lahiri (1993) gave conditions under which Cramér
consistency and asymptotic normality of the REML estimates in a general
mixed model would hold, using a result of Sweeting (1980). Without assum-
ing normality, in which case the REML estimates are defined as solutions of
the REML equations derived under normality, Richardson and Welsh (1994)
proved Cramér consistency and asymptotic normality for hierarchical (nested)
mixed models. A common feature of the above results is that the rank p of
the design matrix X of the fixed effects was held fixed. A more important
and interesting question related to the (possible) superiority of REML over
straight ML in estimating the variance components is how the REML esti-
mates behave asymptotically with p → ∞. In such situations a well-known
example showing the inconsistency of the MLE is due to Neyman and Scott
(1948). The question was answered recently by Jiang (1996), in which Cramér
consistency and asymptotic normality of the REML estimates were proved un-
der the assumption that the model is asymptotically identifiable and infinitely
informative. The results do not require boundedness of p, normality, or any
structure (such as ANOVA or nested design, etc.) for the model. As a conse-
quence, Cramér consistency was shown to hold for all unconfounded balanced
mixed models of the analysis of variance. In contrast to the preceding results,
the only consistency result in variance components estimation that might be
considered as Wald type was Hartley and Rao (1967) for MLE. As was noted
by Rao (1977), a corrected version of Hartley–Rao’s proof would establish the
Wald consistency of the MLE, under the assumption that the number of ob-
servations falling into any particular level of any random factor stayed below
a universal constant. To our knowledge, there has not been discussion on the
method of sieves in variance components estimation.

From both theoretical and practical points of view, consistency of Wald type
(nonsieve or sieve) is more gratifying than that of Cramér type, although the
former often requires stronger assumptions. Since in nonnormal cases [e.g.,
Richardson and Welsh (1994), Jiang (1996)] the REML estimates are defined
as a solution of the (normal) REML equations, a natural question regarding
Wald type consistency is whether the solution that maximizes the (restricted)
Gaussian likelihood is consistent. The aim of this paper is to establish the
following.
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1. Wald consistency holds for all unconfounded balanced mixed models of the
analysis of variance. That is, estimates of the variance components param-
eters that maximize the restricted Gaussian likelihood are consistent.

2. The method of sieves works for all mixed models provided the models are
asymptotically identifiable and infinitely informative globally. That is, there
is a clear way of constructing the sieve which will produce consistent esti-
mates.

3. In both (1) and (2) the estimates are also asymptotically normal.

Again the results do not require normality or boundedness of p or struc-
tures for the model. The Wald consistency in the balanced case is also without
the assumption that the true parameter vector is an interior point of the pa-
rameter space. We also give an example showing that in some unbalanced
cases there is sieve Wald consistency but no Wald consistency.

The restricted Gaussian likelihood is given in Section 2. Wald consistency in
the balanced case is proved in Section 3. In Section 4 we discuss the method of
sieves for the general mixed model (1). An example and a counterexample are
given in Section 5. In Section 6 we make some remarks about the techniques
we use and open problems.

2. Definitions, basic assumptions, and a simple lemma. There are
two parametrizations of the variance components: θ0 = λ = σ2

0 ; θi = µi =
σ2
i /σ

2
0 ; 1 ≤ i ≤ s [Hartley and Rao (1967)] and φi = σ2

i ; 0 ≤ i ≤ s. There
is a one-to-one correspondence between the two sets of parameters. In this
paper, estimates of the two sets of parameters are equivalent in the sense
that consistency for one set of parameters implies that for the other.

The parameter spaces are 2 = �θx λ > 0; µi ≥ 0; 1 ≤ i ≤ s� and 8 =
�φx σ2

0 > 0; σ2
i ≥ 0; 1 ≤ i ≤ s�. The true parameter vectors will be denoted

by θ�0� = �θ0i�0≤i≤s = �λ0 µ
′
0�′ = �λ0 �µ0i�′1≤i≤s�′ and φ�0� = �φ0i�0≤i≤s.

Given the data y, the restricted (or residual) Gaussian log-likelihood is the
Gaussian log-likelihood based on z = A′y, where A is a N × �N − p� matrix
such that

rank�A� =N− p; A′X = 0:(2)

Thus the restricted Gaussian log-likelihoods for estimating the two sets of
parameters θi; 0 ≤ i ≤ s and φi; 0 ≤ i ≤ s are given, respectively, by

LN�θ� = c−
(
N− p

2

)
log λ− 1

2
log �V�A;µ�� − 1

2λ
z′V�A;µ�−1z;(3)

and

L̃N�φ� = c− 1
2 log �U�A;φ�� − 1

2z
′U�A;φ�−1z;(4)

where c = −��N − p�/2� log 2π; V�A;µ� = G0 +
∑s
i=1 µiGi; U�A;φ� =∑s

i=0φiGi = λV�A;µ� with G0 = A′A; Gi = A′ZiZ
′
iA; 1 ≤ i ≤ s. The
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maximizers θ̂ = �θ̂i�0≤i≤s and φ̂ = �φ̂i�0≤i≤s of (3) and (4) do not depend on the
choice of A so long as (2) is satisfied. Therefore we may assume, w.l.o.g., that

A′A = IN−p:(5)

Note that the relation between θ̂i; 0 ≤ i ≤ s and φ̂i; 0 ≤ i ≤ s is the same
as that for the parameters. The dependence of V�A;µ� and U�A;φ� on A is
not important in this paper; therefore we will abbreviate these by V�µ� and
U�φ�, respectively.

Also w.l.o.g., we can focus on a sequence of designs indexed by N, since
consistency and asymptotic normality hold iff they hold for any sequence with
N increasing strictly monotonically. Thus, for example, p and mi; 1 ≤ i ≤ s
can be considered as functions of N, and y, X, Zi’s and so on as depending
on N [e.g., Jiang (1996)].

Let m0 = N, α0 = ε. The following assumptions A1 and A2 are made for
model (1).

A1. For each N, α0; α1; : : : ; αs are mutually independent.

A2. For 0 ≤ i ≤ s, the common distribution of αi1; : : : ; αimi
may depend on

N. However, it is required that

lim
x→∞

sup
N

max
0≤i≤s

Eα4
i11��αi1�>x� = 0:(6)

The basic idea of proving Wald consistency (nonsieve or sieve) is simple.
Consider, for example, the log-likelihood (3). The difference LN�θ� −LN�θ�0��
can be decomposed as

LN�θ� −LN�θ�0�� = eN�θ; θ�0�� + dN�θ; θ�0��;(7)

where

eN�θ; θ�0�� = Eθ�0��LN�θ� −LN�θ�0���

= −1
2

{
�N− p� log

λ

λ0
+ log

�V�µ��
�V�µ0��

+ λ0

λ
tr�V�µ�−1V�µ0�� − �N− p�

}
;

(8)

dN�θ; θ�0�� = LN�θ� −LN�θ�0�� −Eθ�0��LN�θ� −LN�θ�0���

= −1
2

{
z′
[

1
λ
V�µ�−1 − 1

λ0
V�µ0�−1

]
z

−Eθ�0�z
′
[

1
λ
V�µ�−1 − 1

λ0
V�µ0�−1

]
z

}
:

(9)
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Essentially, what we are going to show is that, with probability → 1 and
uniformly for θ outside a small neighborhood Nδ�θ�0�� = �θx �θ − θ�0�� < δ�,
the second term on the RHS of (7) is negligible compared with the first term,
which is negative. Therefore the LHS of (7) will be less than 0 for θ /∈Nδ�θ�0��,
and the rest of the argument is the same as Jiang (1996).

Let A;B;Ai; 1 ≤ i ≤ n be matrices. Define �A� = the determi-
nant of A, �A� = �λmax�A′A��1/2 (λmax denotes the largest eigenvalue),
�A�R = �tr�A′A��1/2, Cor�A1; : : : ;An� = �cor�Ai;Aj�� if Ai 6= 0; 1 ≤ i ≤
n, and 0 otherwise, where cor�A;B� = tr�A′B�/�A�R�B�R if A;B 6= 0;
diag�Ai� to be the block-diagonal matrix with Ai as its ith diagonal block.
Define b�µ� = �IN

√
µ1Z1 · · ·

√
µsZs�′; B�µ� = AV�µ�−1A′ [note that

B�µ� indeed does not depend on A], B0�µ� = b�µ�B�µ�b�µ�′; Bi�µ� =
b�µ�B�µ�ZiZ

′
iB�µ�b�µ�′; i = 1; : : : ; s.

Let pi�N�; 0 ≤ i ≤ s, be sequences of positive numbers. Denote
Ui�φ� = U�φ�−1/2GiU�φ�−1/2; 0 ≤ i ≤ s; V0�θ� = �1/λ�IN−p; Vi�θ� =
V�µ�−1/2GiV�µ�−1/2; 1 ≤ i ≤ sy I�N�ij �θ� = tr�Vi�θ�Vj�θ��/pi�N�pj�N�;

K
�N�
ij �θ� =

1
pi�N�pj�N�

N+m∑
l=1

�EW4
Nl − 3�Bi�µ�llBj�µ�ll/λ1�i=0�+1�j=0�;

i; j = 0;1; : : : ; s;

where m = m1 + · · · +ms, Bll denotes the lth diagonal element of B; WNl =
εl/
√
λ0; 1 ≤ l ≤N;

WNl = αi l−N−∑k<imk
/
√
λ0µ0i; N+

∑
k<i

mk + 1 ≤ l ≤N+
∑
k≤i
mk; 1 ≤ i ≤ s;

or WN = �WNl�1≤l≤N+m = �ε′/
√
λ0; α′1/

√
λ0µ01 · · · α′s/

√
λ0µ0s�′, where

αi/
√
λ0µ0i is understood as �0 · · ·0�′ (αij/

√
λ0µ0i ≡ 0; 1 ≤ j ≤ mi) if µ0i = 0.

Let IN�θ� = �I
�N�
ij �θ��;KN�θ� = �K

�N�
ij �θ��;JN�θ� = 2IN�θ� +KN�θ�.

We say model (1) has positive variance components if θ�0� is an interior
point of 2 and is nondegenerate if

inf
N

min
0≤i≤s

var�α2
i1� > 0:(10)

A sequence of estimates ��θ̂N0; : : : ; θ̂Ns�′� is called asymptotically normal
if there are sequences of numbers pi�N� → ∞; 0 ≤ i ≤ s and matrices
�MN�θ�0��� with lim sup��M−1

N �θ�0��� ∨ �MN�θ�0���� <∞ such that

MN�θ�0���p0�N��θ̂N0 − θ00�; : : : ; ps�N��θ̂Ns − θ0s��′
L−→N�0; Is+1�:(11)

Similarly we define the asymptotic normality of estimates for the φ’s.
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The following lemma will be used in proofs of both Theorem 3.1 and Theo-
rem 4.1 in the next two sections.

Lemma 2.1. Let X = �X1; : : : ;Xn�′ be a vector of independent random
variables such that EXi = 0; EX4

i <∞; 1 ≤ i ≤ n, and A = �aij� be an n×n
symmetric matrix. Then

var�X ′AX � =
n∑
i=1

a2
ii var�X2

i � + 2
∑
i6=j
a2
ij var�Xi� var�Xj�

≤ 2 ∨ max
1≤i≤n

{
var�X2

i �
�var�Xi��2

} n∑
i;j=1

a2
ij var�Xi� var�Xj�;

where var�X2
i �/�var�Xi��2 is understood as 0 if var�Xi� = 0.

Proof. We have

X ′AX −EX ′AX =
n∑
i=1

{
a2
ii�X2

i −EX2
i � + 2

(∑
j<i

aijXj

)
Xi

}
;(12)

where
∑
j<i�·� = 0 if i = 1. The summands in (12) form a sequence of martin-

gale differences with respect to the σ-fields Fi = σ�X1; : : : ;Xi�; 1 ≤ i ≤ n.
The result then follows easily. 2

3. The balanced case: Wald consistency. A balanced r-factor mixed
model of the analysis of variance can be expressed (after possible repara-
metrization) in the following way [e.g., Searle, Casella and McCulloch (1992),
Rao and Kleffe (1988)]:

y =Xβ+
∑
i∈S
Ziαi + ε;(13)

where X = ⊗r+1
q=1 1

dq
nq with d = �d1; : : : ; dr+1� ∈ Sr+1 = �0;1�r+1; Zi =⊗r+1

q=11
iq
nq with i = �i1; : : : ; ir+1� ∈ S ⊂ Sr+1; 10

n = In;11
n = 1n with In and

1n being the n-dimensional identity matrix and vector of unit elements, re-
spectively. [For examples, see Jiang (1996).] We assume, as usual, that factor
r + 1 corresponds to “repetition within cells.” As a consequence, in (13) one
must have dr+1 = 1 and ir+1 = 1; i ∈ S. Also we can assume, w.l.o.g., that
nq ≥ 2; 1 ≤ q ≤ r (since if nq = 1, factor q is not really a factor and the
model not really an r-factor one). The model is called unconfounded if (1) the
fixed effects are not confounded with the random effects and errors, that is,
rank�X;Zi� > p;∀ i and X 6= IN; (2) the random effects and errors are
not confounded; that is, IN;ZiZ

′
i; i ∈ S are linearly independent [e.g., Miller

(1977)]. Note that under the balanced model (13) we have the expressions
mi =

∏
iq=0 nq; i ∈ S. This allows us to extend the definition of mi to all

i ∈ Sr+1. In particular, p =md =
∏
dq=0 nq, and N = m�00···0� =

∏r+1
q=1nq. Let

S̄ = ��00 · · ·0�� ∪S;µi = µ0i = 1 if i = �00 · · ·0� ∈ Sr+1.
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In the balanced case we have the following nice representations for the
eN�θ; θ�0�� and dN�θ; θ�0�� in (7).

Lemma 3.1. In the balanced case,

eN�θ; θ�0�� = − 1
2SN;2�θ�;(14)

dN�θ; θ�0�� = 1
2

∑
l6≥d
�rl�θ� − 1�ξl;(15)

where for u; v ∈ S;u ≥ v iff uq ≥ vq;1 ≤ q ≤ r + 1, and u 6≥ v iff u is not
≥ v; rl�θ� = λ0Cl�µ0�/λCl�µ� with Cl�µ� =

∑
i∈S̄ µi�N/mi�1�i≤l�y SN;2�θ� =∑

l6≥d�rl�θ� − 1 − log rl�θ��p2
l with pl = �

∏
lq=0�nq − 1��1/2; and ξl; l 6≥ d are

random variables whose definition will be given later on in the proof.

Proof. By the proof of Lemma 7.3 in Jiang (1996), there is an orthogo-
nal matrix T such that T′ZiZ

′
iT = diag�λij�; T′XX′T = diag�λdj�, where

�λi1; : : : ; λiN� = �
∏r+1
q=1 λiqkq; 1 ≤ kq ≤ nq; 1 ≤ q ≤ r + 1�; �λd1; : : : ; λdN� =

�∏r+1
q=1 λdqkq; 1 ≤ kq ≤ nq; 1 ≤ q ≤ r + 1� with λiqw = 1 − iq + nqiqδw;1; i ∈

S ∪ �d� (δx;y = 1 if x = y and = 0 otherwise). Let A′T = B = �b1; : : : ; bN�,
then since [by (5)] AA′ = PX⊥ = IN−X�X′X�−1X′ = IN−�p/N�XX′; B′B =
diag�γj�, with γj = 1− �p/N�λdj; 1 ≤ j ≤N: It is easy to see that

∏r+1
q=1�1−

iq + nqiqlq� = �N/mi�1�i≤l�; i ∈ S ∪ �d�; l ∈ Sr+1. Hence

r+1∏
q=1

λiqkq =
N

mi

1�i≤δk;1�; i ∈ Sy
r+1∏
q=1

λdqkq =
N

p
1�d≤δk;1�;

where δk;1 = �δk1;1; : : : ; δkr+1;1� for k = �k1; : : : ; kr+1�. Thus

�γ1; : : : ; γN� = �1�δk;1 6≥d�; 1 ≤ kq ≤ nq; 1 ≤ q ≤ r+ 1�:

Now Gi = A′ZiZ
′
iA = Bdiag�λij�B′ =

∑N
j=1 λijbjb

′
j; i ∈ S, thus

V�µ� = IN−p +
∑
t∈S
µtGt = BB′ +

∑
t∈S
µtGt

=
N∑
j=1

(
1+

∑
t∈S
µtλtj

)
bjb

′
j =

∑
γj 6=0

(
1+

∑
t∈S
µtλtj

)
bjb

′
j;

(16)

since γj = 0 ⇒ bj = 0. Hence V�µ�−1 = ∑
γj 6=0�1 +

∑
t∈S µtλtj�−1bjb

′
j since

γj 6= 0 ⇒ γj = 1. Let 0+ = �jx γj 6= 0�. Then �0+� = N − p (hereafter �E�
denotes the cardinality of a set E). It follows from (16) that the eigenvalues



1788 J. JIANG

of V�µ� are �1+∑t∈S µtλtj; j ∈ 0+�. Thus by (8),

eN�θ; θ�0�� = −
1
2

∑
γj 6=0

{
λ0�1+

∑
t∈S µ0tλtj�

λ�1+∑t∈S µtλtj�
− 1− log

λ0�1+
∑
t∈S µ0tλtj�

λ�1+∑t∈S µtλtj�

}

= −1
2

n1∑
k1=1

· · ·
nr+1∑
kr+1=1

1�δk;1 6≥d�

{
λ0�1+

∑
t∈S µ0t�N/mt�1�t≤δk;1��

λ�1+∑t∈S µt�N/mt�1�t≤δk;1��

− 1− log�· · ·�
}

= −1
2

1∑
l1=0

· · ·
1∑

lr+1=0

1�l6≥d�

{
λ0�1+

∑
t∈S µ0t�N/mt�1�t≤l��

λ�1+∑t∈S µt�N/mt�1�t≤l��

− 1− log�· · ·�
} ∏
lq=0

�nq − 1�

= −1
2

∑
l6≥d

{
λ0Cl�µ0�
λCl�µ�

− 1− log
λ0Cl�µ0�
λCl�µ�

} ∏
lq=0

�nq − 1� = −1
2
SN;2�θ�;

using a formula given at the end of the proof of Lemma 7.3 in Jiang (1996)
for the third equation; and by (9),

dN�θ; θ�0�� = −
1
2

∑
γj 6=0

[
λ−1

(
1+

∑
t∈S
µtλtj

)−1

− λ−1
0

(
1+

∑
t∈S
µ0tλtj

)−1]

× ��b′jz�2 −Eθ�0��b
′
jz�2�

= 1
2

n1∑
k1=1

· · ·
nr+1∑
kr+1=1

1�δk;1 6≥d�

[
λ−1

(
1+

∑
t∈S
µt
N

mt

1�t≤δk;1�

)−1

− λ−1
0

(
1+

∑
t∈S
µ0t

N

mt

1�t≤δk;1�

)−1]

× ��b′kz�2 −Eθ�0��b
′
kz�2�

= 1
2

1∑
l1=0

· · ·
1∑

lr+1=0

∑
δk;1=l

1�δk;1 6≥d��· · · − · · ·���b
′
kz�2 −Eθ�0��b

′
kz�2�

= 1
2

∑
l6≥d
�rl�θ� − 1�ξl;

where ξl = �λ0Cl�µ0��−1∑
δk;1=l��b

′
kz�2 −Eθ�0��b′kz�2�; l 6≥ d. 2

Let SN;1�θ� =
∑
l6≥d�rl�θ� − 1�2p2

l ; SN;3�θ� =
∑
l6≥d �rl�θ� − 1�pl. Define

S+ = �i ∈ Sx µ0i > 0�; S̄+ = ��00 : : :0��⋃S+y b0 = �mini∈S+ µ0i�−1∑
i∈S̄+ µ0i if

S+ 6= \, and b0 = 1 if S+ = \; ε0 = �λ0/3��
∑
i∈S̄ µ0i�−1; b = 1+��exp�log 2/r�−
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1�−1� (here �x� means the largest interger less than or equal to x); s = �S�;
and Tl = �qx 1 ≤ q ≤ r+ 1; lq = 1�.

The following lemma plays a key role in the proof of Wald consistency in
the balanced case.

Lemma 3.2. Suppose model (13) is unconfounded. For any B > 0,

inf
θ /∈2B

SN;1�θ� ≥ �1/2�r+3
{(

min
i∈S̄

mi

)
∧
(

ε0B

3�ε0 + sλ0�

)2}
;(17)

inf
θ/∈2B

SN;2�θ� ≥ �1/2�r+5 b−1
0

{(
min
i∈S̄

mi

)
∧
(

ε0B

3�ε0 + sλ0�

)2}
;(18)

sup
θ/∈2B

SN;3�θ�
SN;2�θ�

≤
(

2r+3b0

inf θ/∈2B SN;2�θ�

)1/2

+ �2
√

2�r+1
(

2b0 + 1
1− log 2

)(
min
i∈S̄

mi

)−1/2
;

(19)

where 2B = �θ ∈ 2x �λ− λ0� ≤ ε0B/
√
N; �µl − µ0l� ≤ b�Tl�B/

√
ml; l ∈ S�.

Proof. Let i∗ = 0 = �0 · · ·0� if nr+1 ≥ 2; i∗ = �0 · · ·01� if nr+1 = 1. It is
easy to show that i∗ 6≥ d, i∗ 6≥ i; i ∈ S, and p2

i∗
≥ � 1

2�r+1mi∗ = � 1
2�r+1N. So if

λ < �2/3�λ0 or λ > 2λ0, then

SN;1�θ� ≥ �ri∗�θ� − 1�2p2
i∗
= �λ0/λ− 1�2p2

i∗
≥ �1/2�r+3N:(20)

If �2/3�λ0 ≤ λ ≤ 2λ0 and µl > λ0/ε0 for some l ∈ S, then rl�θ� =
�λ0Dl�µ0�/λDl�µ�� < 1/2, where Dl�µ� =

∑
i∈S̄ µi�ml/mi�1�i≤l�. So SN;1�θ� ≥

�rl�θ� − 1�2p2
l ≥ �1/2�r+2ml.

Now suppose �2/3�λ0 ≤ λ ≤ 2λ0; 0 ≤ µl ≤ λ0/ε0; l ∈ S, and θ /∈ 2B. If
�λ− λ0� > ε0B/

√
N, then as in (20) we have SN;1�θ� ≥ �1/2�r+3�ε0/λ0�2B2. If

�λ− λ0� ≤ ε0B/
√
N and �µl − µ0l� > b�Tl�B/

√
ml for some l ∈ S, there is l ∈ S

such that �µl − µ0l� > b�Tl�B/
√
ml and �µi − µ0i� ≤ b�Ti�B/

√
mi; i ∈ S; i ≤

l; i 6= l. Then

�Dl�µ0� −Dl�µ�� ≥ �µ0l − µl� −
∣∣∣∣
∑
i∈S
�µ0i − µi��ml/mi�1�i≤l; i6=l�

∣∣∣∣ > B/
√
ml;

since
∑
i∈S
�µ0i − µi��ml/mi�1�i≤l; i6=l� ≤ �B/

√
ml�

∑
i≤l; i6=l

b�Ti�

= �B/√ml���b+ 1��Tl� − b�Tl��
≤ �B/√ml��b�Tl� − 1�:
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Therefore,

�λ0Dl�µ0� − λDl�µ�� ≥ λ�Dl�µ0� −Dl�µ�� − �λ− λ0�Dl�µ0�
≥ �2/3�λ0�B/

√
ml� − ε0�B/

√
N�

∑

i∈S̄
µ0i

≥ �λ0/3��B/
√
ml�:

Hence SN;1�θ� ≥ �rl�θ� − 1�2p2
l ≥ �1/2�r+2�ε0B/3�ε0 + sλ0��2:

To prove (18), let l∗ ∈ S+l = �i ∈ S+x i ≤ l� such that ml∗ = mini∈S+l mi if
S+l 6= \, and l∗ = i∗ if S+l = \. Then it is easy to show thatCl�µ0�/Cl∗�µ0� ≤ b0
and hence

rl�θ�
rl∗�θ�

= Cl�µ0�
Cl∗�µ0�

Cl∗�µ�
Cl�µ�

≤ b0:(21)

If rl�θ� ≥ 2b0 for some l 6≥ d, then rl∗�θ� ≥ 2 by (21). Therefore,

SN;2�θ� ≥ �rl∗�θ� − 1− log rl∗�θ��p
2
l∗

≥
(

1− log 2
2

)
rl∗�θ�p

2
l∗
≥ �1/2�r+1�1− log 2�min

i∈S̄
mi;

(22)

using that �x− 1− log x�/x ≥ �1− log 2�/2; x ≥ 2.
If rl�θ� < 2b0 for all l 6≥ d, then SN;2�θ� ≥ SN;1�θ�/4b0 by x − 1 − log x ≥

�x− 1�2/2L; 0 < x < L; L > 1.
To prove (19), let S∗ = �i∗� ∪S. Write

SN;3�θ� =
∑

l6≥d; rl�θ�<2b0

�rl�θ� − 1�pl +
∑

l6≥d; rl�θ�≥2b0

�rl�θ� − 1�pl = S1 +S2:(23)

For any ε > 0,

S1 ≤
( ∑

l6≥d; rl�θ�<2b0

12
)1/2( ∑

l6≥d; rl�θ�<2b0

�rl�θ� − 1�2p2
l

)1/2

≤ �
√

2�r−1
{
ε−1 + ε

∑

l6≥d; rl�θ�<2b0

�rl�θ� − 1�2p2
l

}

≤ �
√

2�r−1
{

ε−1

SN;2�θ�
+ 4b0ε

}
SN;2�θ�

(24)

by x ≤ �ε−1 + εx2�/2 and that SN;2�θ� ≥ �4b0�−1∑
l6≥d; rl�θ�<2b0

�rl�θ� − 1�2p2
l .

By (21), the facts that (according to the definition) l∗ only takes values in
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S∗ = �i∗� ∪S and l∗ ≤ l (therefore pl∗ ≥ pl), and the fact that

SN;2�θ� ≥
(

1− log 2
2

) ∑

i∈S∗; ri�θ�≥2

ri�θ�p2
i ;

it follows that

S2 ≤ �b0 + 1/2�
∑

l6≥d; rl∗ �θ�≥2

rl∗�θ�pl

= �b0 + 1/2�
∑

i∈S∗; ri�θ�≥2

ri�θ�
∑

l6≥d; l∗=i
pl

≤ 2r+1�b0 + 1/2�
∑

i∈S∗; ri�θ�≥2

ri�θ�pi

≤ 2r+1�2b0 + 1�
�1− log 2�mini∈S∗ pi

SN;2�θ�:

(25)

Inequality (19) now follows by (23)–(25), taking ε = �4b0 inf θ/∈2B SN;2�θ��−1/2

in (24), and the fact that

min
i∈S∗

pi ≥ �
√

2�−�r+1�
(
min
i∈S̄

mi

)1/2
: 2

Let θ̂N = �λ̂N; �µ̂Ni�′i∈S�′ ∈ 2 be the maximizer of (3) (one may define θ̂N as
any fixed point in 2 when the maximum can not be reached).

Theorem 3.1. Let the balanced mixed model (13) be unconfounded. As
N→∞ and mi→∞; i ∈ S, we have the following:

(i) �θ̂N� is consistent and the sequence ��
√
N− p�λ̂N − λ0�; �

√
mi�µ̂Ni −

µ0i��′i∈S�′� is bounded in probability.
(ii) If, moreover, the model has positive variance components and is nonde-

generate, then �θ̂N� is asymptotically normal with p0�N� =
√
N− p; pi�N� =√

mi; i ∈ S and MN�θ�0�� = J−1/2
N �θ�0��IN�θ�0��.

Remark. Part (i) of Theorem 3.1 does not require that the model have pos-
itive variance components. In particular, when such requirement does hold,
�θ̂N� constitutes (with probability → 1) a consistent sequence of roots of the
REML equations [e.g., Jiang (1996)], which are identical to the ANOVA esti-
mates in the balanced case [e.g., Searle, Casella and McCulloch (1992)]. On
the other hand, it is necessary for part (ii) of Theorem 3.1 that the model
have positive variance components since otherwise the estimates, which are
nonnegative, cannot be asymptotically normal.

Proof. According to the definition in Section 2, it is always true (no matter
whether µ0i = 0 or not) that Ziαi =

√
λ0µ0iZi�αi/

√
λ0µ0i�; 1 ≤ i ≤ s, and

z = A′y =
√
λ0A

′b�µ0�′WN:(26)
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Note that WN is a vector of independent random variables satisfying
EWNl = 0; var�WNl� ≤ 1 [var�WNl� = 1 if the corresponding µ0i 6= 0],
and EW4

Nl < ∞. By the definition of ξl at the end of the proof of
Lemma 3.1, Lemma 2.1 and assumption A2 in Section 2, we see that
with BN = b�µ0�A�

∑
δk;1=l bkb

′
k�A′b�µ0�′,

Eθ�0�ξ
2
l = varθ�0�

(
W ′
N

BN
Cl�µ0�

WN

)
≤ C

C2
l �µ0�

tr�B2
N�

= C

C2
l �µ0�

tr
(( ∑

δk;1=l
bkb

′
kV�µ0�

)2)
= Cp2

l

(27)

for some constant C. Thus, for any M> 0,

Pθ�0���ξl� >Mpl for some l 6≥ d� ≤ 2r+1C

M2
:(28)

For any ε > 0, choose M > �2r+1Cε−1�1/2. Then choose B > 0 and K such
that by Lemma 3.2, supθ/∈2B�SN;3�θ�/SN;2�θ�� < 1/�2M�; mi > K; i ∈ S̄. It
then follows by (7), (14), (15), (18) and (28) that

Pθ�0��LN�θ� < LN�θ�0�� ∀ θ /∈ 2B� > 1− ε;

when mi > K; i ∈ S̄. The conclusion of (i) then follows by the definition of
2B. The proof for (ii) is the same as that of Theorem 4.1 of Jiang (1996). 2

4. The general case: the method of sieves. For convenience we con-
sider in this section the parameters φi;0 ≤ i ≤ s.

Let δN;MN be two sequences of positive numbers such that δN →
0; MN → ∞. Let φ̂N ∈ �δN;MN� = �φ ∈ 8x δN ≤ φi ≤ MN; 0 ≤ i ≤ s� be
the maximizer of L̃N�φ� of (4) over �δN;MN�. The above procedure is called
the method of sieves [e.g., Grenander (1981)].

The following definitions are explained intuitively in Jiang (1996).

Definition 4.1. Model (1) is called asymptotically identifiable under the
invariant class (AI2) at φ ∈ 8�θ ∈ 2� if

lim inf
N→∞

λmin�Cor�V0�θ�; : : : ;Vs�θ��� > 0(29)

(see Section 2; λmin means the smallest eigenvalue). Here the invariant class
is the class of (location) invariant estimates

I = �estimates which are functions of A′y with A satisfying (2)�:(30)

Definition 4.2. Model (1) is called infinitely informative under the invari-
ant class (I3) at φ ∈ 8�θ ∈ 2� if

lim
N→∞

�Vi�θ��R = ∞; 0 ≤ i ≤ s:(31)
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The following notation is needed for this section: λN�θ� = λmin�Cor�V0�θ�;
: : : ;Vs�θ���; ρN�a; b� = inf θ∈�a; b� λN�θ�; τN�c; d� = infφ∈�c; d� λN�θ�; where
�a; b� = �θx a ≤ θi ≤ b; 0 ≤ i ≤ s� and so on.

Lemma 4.1. For any xi; 0 ≤ i ≤ s and φ ∈ 8,

∥∥∥∥
s∑
i=0

xiUi�φ�
∥∥∥∥

2

R

≥
(
λN�θ�

4�s+ 1�

){
x2

0�V0�θ��2R + λ−2
s∑
i=1

x2
i�Vi�θ��2R

}

≥
(

λN�θ�
4M2�s+ 1�

) s∑
i=0

x2
i�Vi�1��2R;

where M = max0≤i≤sφi.

Proof. By the relation (see Section 2): U0�φ� = V0�θ�−
∑s
i=1 λ

−1µiVi�θ�;
Ui�φ� = λ−1Vi�θ�;1 ≤ i ≤ s, we have

∥∥∥∥
s∑
i=0

xiUi�φ�
∥∥∥∥

2

R

= tr
(( s∑

i=0

yiVi�θ�
)2)
≥ λN�θ�

s∑
i=0

y2
i�Vi�θ��2R;

where y0 = x0; yi = λ−1�xi−µix0�; 1 ≤ i ≤ s. Let B = �1 ≤ i ≤ sx �xi−µix0� ≥
�1/2��xi��, then

s∑
i=0

y2
i�Vi�θ��2R ≥

1
s+ 1

x2
0�V0�θ��2R +

1
s+ 1

∑
i/∈B

x2
0�V0�θ��2R +

∑
i∈B

y2
i�Vi�θ��2R

≥ 1
4�s+ 1�

{
x2

0�V0�θ��2R + λ−2
s∑
i=1

x2
i�Vi�θ��2R

}
;

using the fact that �V0�θ��R ≥ λ−1µi�Vi�θ��R; 1 ≤ i ≤ s. The second inequal-
ity is obvious. 2

Lemma 4.2. Suppose model (1) is AI2 at all θ ∈ �a; b� with a > 0, then
lim inf ρN�a; b� > 0.

Proof. By direct computation it can be shown that (see Section 2):
∣∣∣∣
∂

∂θk
cor�Vi�θ�;Vj�θ��

∣∣∣∣ ≤ 4�Vk�θ�� ≤ 4a−1; 0 ≤ i; j; k ≤ s:

The result thus follows by an argument of subsequences [e.g., Billingsley
(1986), A10]. 2

Denote, respectively, the interiors of 2 and 8 by 2◦ and 8◦.

Corollary 4.1. Suppose model (1) is AI2 at all θ ∈ 2◦, then
lim inf τN�c; d� > 0 for all 0 < c < d <∞.
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Let model (1) be AI2 at all θ ∈ 2◦ and I3 at 1 = �1 · · ·1�′. Define sequences
�δN� and �MN� as follows.

Let qN = min0≤i≤s �Vi�1��, a, b be positive numbers such that

�a+ b��1− b�−1 < 2�3s+ 7�−1:(32)

Pick f, g, h such that

3a+ 2b < f < �s+ 1�−1�2− 4a− �s+ 7�b�;(33)

0 < g < min
(
f− 3a− 2b

2
; 1− 2a− s+ 7

2
b− s+ 1

2
f

)
;(34)

0 < h < min
(
f− 3a− 2b− 2g; 1− 2a− s+ 7

2
b− s+ 1

2
f− g

)
:(35)

Now pick sequences �cN� and �dN� such that 0← · · · ≤ c2 ≤ c1 ≤ 1 ≤ d1 ≤
d2 ≤ · · · → ∞ and

lim inf qhNτN�cN; dN� > 0(36)

(by Corollary 4.1, one certainly can do this). Finally, pick a “baseline region”
�δB;MB� such that 0 < δB < 1 <MB <∞ and let

δN = δB ∧ �cN ∨ q−aN �; MN =MB ∨ �dN ∧ qbN�:

Note. The selection of δB and MB will not make a difference for the fol-
lowing asymptotic result. However, a reasonable choice of δB and MB may
be of practical convenience since, when N is not sufficiently large, the region
�cN ∨ q−aN ; dN ∧ qbN� may appear to be “too narrow.”

Theorem 4.1. Consider a general mixed model (1) having positive variance
components.

(i) If the model is asymptotically identifiable and infinitely informative
(AI4) at all θ ∈ 2◦ (or φ ∈ 8o), then �φ̂N� is consistent and the sequence
���Vi�1��R�φ̂Ni −φ0i��0≤i≤s� is bounded in probability.

(ii) If, moreover, the model is nondegenerate, then �φ̂N� is asymptotically

normal with p0�N� =
√
N− p, pi�N� being any sequence ∼ �Vi�1��R; 1 ≤

i ≤ s and MN�θ�0�� = J−1/2
N �θ�0��IN�θ�0��.

Remark 1. Thus, with probability → 1, �φ̂N� constitutes a consistent se-
quence of roots of the REML equations.

Remark 2. The assumption that model (1) is AI4 at all θ ∈ 2◦ is equiva-
lent to saying that it is AI2 at all θ ∈ 2◦ and I3 at some θ◦ ∈ 2◦ and w.l.o.g.,
one can take θ◦ = 1.
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Proof. (i) Let 8∗N = �φ∗ = �φ∗i�0≤i≤sx φ∗i = δN + kiεN; 0 ≤ i ≤ s for some
integers 0 ≤ ki < KN; 0 ≤ i ≤ s�, where KN = �qb+fN �; εN = �MN − δN�/KN.
Let φ ∈ �δN;MN�, then by (4) we have a decomposition similar to (7):

L̃N�φ� − L̃N�φ�0�� = ẽN�φ;φ�0�� + d̃N�φ;φ�0��:(37)

By an expression similar to (8), we have

ẽN�φ;φ�0�� = Eφ�0��L̃N�φ� − L̃N�φ�0���

= �1/2�
{
log �U�φ�0��1/2U�φ�−1U�φ�0��1/2�
+ tr�IN−p −U�φ�0��1/2U�φ�−1U�φ�0��1/2�

}

= �1/2�
N−p∑
i=1

�log λi + 1− λi�;

where λ1; : : : ; λN−p are the eigenvalues ofB�φ� = U�φ�0��1/2U�φ�−1U�φ�0��1/2.
Since λmax�B�φ�� ≤ �1 ∨M0�δ−1

N , where M0 = max0≤i≤sφ0i, we have by x −
1− log x ≥ �x− 1�2/2L; 0 < x ≤ L; L ≥ 1 and Lemma 4.1 that

ẽN�φ;φ�0�� ≤ −
δN

4�1 ∨M0�
tr��U�φ�0��1/2U�φ�−1U�φ�0��1/2 − IN−p�2�

= − δN
4�1 ∨M0�

∥∥∥∥
s∑
i=0

�φi −φ0i�Ui�φ�
∥∥∥∥

2

R

≤ − δNτN�cN; dN�
16�s+ 1��1 ∨M0�M2

N

s∑
i=0

�Vi�1��2R�φi −φ0i�2:

(38)

It is easy to verify the following identity which holds for any φ∗ ∈ 8:

U�φ�0��−1 −U�φ�−1

=
s∑
i=0

�φi −φ0i�U�φ�0��−1GiU�φ�0��−1

−
s∑
i=0

s∑
j=0

�φi −φ0i��φj −φ0j�U�φ�0��−1GiU�φ∗�−1GjU�φ�0��−1

+
s∑
i=0

s∑
j=0

�φi −φ0i��φj −φ0j�U�φ�0��−1GiU�φ�0��−1/2

×H∗U�φ�0��−1/2GjU�φ�0��−1;

(39)

where

H∗ = �1/2�
s∑

k=0

�φk −φ∗k�U�φ�0��1/2

× �U�φ�−1GkU�φ∗�−1 +U�φ∗�−1GkU�φ�−1�U�φ�0��1/2:
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In the following we pick φ∗ ∈ 8∗N in (39) such that �φ∗i −φi� < εN; 0 ≤ i ≤ s.
By an expression similar to (9) and by (39) we get

d̃N�φ;φ�0��
= L̃N�φ� − L̃N�φ�0�� −Eφ�0��L̃N�φ� − L̃N�φ�0���

= �1/2�
{ s∑
i=0

�φi −φ0i��z′U�φ�0��−1GiU�φ�0��−1z−Eφ�0��· · ·��

−
s∑
i=0

s∑
j=0

�φi −φ0i��φj −φ0j�

×
(
z′U�φ�0��−1GiU�φ∗�−1GjU�φ�0��−1z−Eφ�0��· · ·�

)

+
s∑
i=0

s∑
j=0

�φi −φ0i��φj −φ0j�z′U�φ�0��−1GiU�φ�0��−1/2

×H∗U�φ�0��−1/2GjU�φ�0��−1z−Eφ�0�

( s∑
i=0

s∑
j=0

· · ·
)}

= �1/2��I1 − I2 + I3 −Eφ�0�I3�:

(40)

It follows from Lemma 2.1 and (26) that

varφ�0��z
′U�φ�0��−1GiU�φ�0��−1z� ≤ C�Ui�φ�0���2R ≤ Cδ−2

0 �Vi�1��2R;

where C = 2 ∨ �var�ε2
1�/�var�ε1��2� ∨ max1≤i≤s�var�α2

i1�/�var�αi1��2�; δ0 =
min0≤i≤sφ0i. Thus with L1 = �3�s+ 1�C�1/2qgN, we have on

E1 =
{
�z′U�φ�0��−1GiU�φ�0��−1z−Eφ�0� · · · � ≤ L1δ

−1
0 �Vi�1��R; 0 ≤ i ≤ s

}

that

�I1� ≤ L1�s+ 1�1/2δ−1
0

( s∑
i=0

�Vi�1��2R�φi −φ0i�2
)1/2

;(41)

and

Pφ�0��E
c
1� ≤

s∑
i=0

varφ�0��z′ · · · z�
L2

1δ
−2
0 �Vi�1��2R

≤ �1/3�q−2g
N :(42)

Similarly,

varφ�0��z
′U�φ�0��−1GiU�φ∗�−1GjU�φ�0��−1z�

≤ C�U�φ�0��−1/2GiU�φ∗�−1GjU�φ�0��−1/2�2R
≤ C�Ui�φ�0����Uj�φ�0����Ui�φ∗��R�Uj�φ∗��R
≤ C�δ0δN�−2�Vi�1��R�Vj�1��R:

(Here is a brief derivation of the second inequality in the above:

�U�φ�0��−1/2GiU�φ∗�−1GjU�φ�0��−1/2�2R = �AB�2R ≤ �A′A�R�B′B�R;
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whereA = U�φ�0��−1/2GiU�φ∗�−1/2; B = U�φ∗�−1/2GjU�φ�0��−1/2. NowA′A ≤
λmax�Ui�φ�0���Ui�φ∗�. Using the fact that A;B ≥ 0; A ≤ B⇒ tr�A2� ≤ tr�B2�
[note that it is not true that A;B ≥ 0; A ≤ B ⇒ A2 ≤ B2 (e.g., Chan and
Kwong (1985))], we get �A′A�R ≤ �Ui�φ�0����Ui�φ∗��R, and so on.) Thus with
L2=�s+ 1��3Ks+1

N C�1/2qgN we have on

E2 =
{
�z′U�φ�0��−1GiU�φ∗�−1GjU�φ�0��−1z−Eφ�0� · · · �
≤ L2�δ0δN�−1�Vi�1��1/2R �Vj�1��1/2R ; 0 ≤ i; j ≤ s; φ∗ ∈ 8∗N

}

that

�I2� ≤ L2�δ0δN�−1
( s∑
i=0

�Vi�1��1/2R �φi −φ0i�
)2

≤ L2�s+ 1�3/2�δ0δN�−1�M0 ∨MN�
( s∑
i=0

�Vi�1��2R�φi −φ0i�2
)1/2

;

(43)

and

Pφ�0��E
c
2� ≤

∑
φ∗∈8∗N

∑
0≤i; j≤s

varφ�0��z′ · · · z�
L2

2�δ0δN�−2�Vi�1��R�Vj�1��R
≤ �1/3�q−2g

N :(44)

Finally, I3 = U′H∗U, where U = ∑s
i=0�φi − φ0i�U�φ�0��−1/2GiU�φ�0��−1z.

We have

�H∗� ≤ �1/2�
s∑

k=0

�φk −φ∗k��U�φ�0��1/2 · · ·U�φ�0��1/2� ≤ �s+ 1�M0δ
−2
N εN;

�U�2 ≤ �s+ 1�
s∑
i=0

�φi −φ0i�2�U�φ�0��−1/2GiU�φ�0��−1z�2

and

Eφ�0� �U�φ�0��
−1/2GiU�φ�0��−1z�2 ≤ δ−2

0 �Vi�1��2R:

Thus with L3 = �3�s+1��1/2qgN we have on E3 = ��U�φ�0��−1/2GiU�φ�0��−1z� ≤
L3δ

−1
0 �Vi�1��R; 0 ≤ i ≤ s� that

�I3� ≤ L2
3�s+ 1�2δ−2

0 M0δ
−2
N εN

s∑
i=0

�Vi�1��2R�φi −φ0i�2(45)

and

Pφ�0��E
c
3� ≤

s∑
i=0

Eφ�0� � · · · z�2

L2
3δ
−2
0 �Vi�1��2R

≤ �1/3�q−2g
N :(46)

It also follows that

Eφ�0� �I3� ≤ �s+ 1�2δ−2
0 M0δ

−2
N εN

s∑
i=0

�Vi�1��2R�φi −φ0i�2:(47)
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Combining (37), (38), (40), (41), (43), (45) and (47), we have onE = E1∩E2∩E3
that for φ ∈ �δN;MN�,

L̃N�φ� − L̃N�φ�0��

≤ Q2
N

{
− δNτN�cN; dN�

16�s+ 1��1 ∨M0�M2
N

+ �1/2��s+ 1�2δ−2
0 M0�L2

3 + 1�δ−2
N εN

+ �1/2��s+ 1�1/2δ−1
0 �L1 + �s+ 1�L2δ

−1
N �M0 ∨MN��Q−1

N

}
;

(48)

where QN = �
∑s
i=0 �Vi�1��2R�φi−φ0i�2�1/2. And, combining (42), (44) and (46),

we have

Pφ�0��E
c� ≤ q−2g

N :(49)

Note that by I3 at 1 (= �1 · · ·1�′), qN tends to infinity, and so the probability
of E tends to 1.

It remains to show that for any η > 0 there is N0 > 0 such that for N ≥
N0 the �· · ·� in (48) is less than 0 for all φ ∈ �δN;MN� ∩ Sη�φ�0��c, where
Sη�φ�0�� = �φ ∈ 8x �φi − φ0i� < η; 0 ≤ i ≤ s�. Since δN → 0; MN → ∞ as
N→∞, this implies that �φ̂N� is consistent.

Since φ ∈ �δN;MN� ∩Sη�φ�0��c implies QN ≥ ηqN,

�· · ·� in (48) ≤ − qhNτN�cN; dN�
16�s+ 1��1 ∨M0�

q−a−2b−h
N +C1q

2a−f+2g
N

+C2η
−1q

a+��s+3�/2�b+��s+1�/2�f+g−1
N ;

where C1;C2 are constants. Also lim inf qhNτN�cN; dN� > 0, and

−a− 2b− h > max
(

2a− f+ 2g;a+ s+ 3
2

b+ s+ 1
2

f+ g − 1
)

by the way we picked a, b, f, g, h. Thus �· · ·� in (48) is less than 0 for large
N uniformly for all φ ∈ �δN;MN� ∩Sη�φ�0��c:

To prove that ���Vi�1��R�φ̂Ni−φ0i��0≤i≤s� is bounded in probability, replace
δN; MN; KN; εN and qgN by δ = �1/2�δ0, M = �3/2�M0, K, ε = �M− δ�/K
and η−1, respectively. Then by the same argument we have with probability
greater than or equal to 1− η2 that for all φ ∈ �δ;M�,

L̃N�φ� − L̃N�φ�0�� ≤ Q2
N

{
− δτN�δ;M�

16�s+ 1�M0M
2
+C1η

−2δ−2ε

+C2η
−1K�s+1�/2δ−1MQ−1

N

}
:

(50)

The result follows from (50) and the consistency of �φ̂N�.
The proof of (ii) is the same as that of Theorem 4.3 in Jiang (1996). 2
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5. Examples. The first example is used to illustrate the AI4 condition.

Example 5.1. Consider a two-way (unbalanced) nested model

yijk = βi + αij + εijk;(51)

where i = 1; : : : ; p; j = 1;2; k = 1; : : : ; ni; β; α and ε correspond to the fixed,
random effects and errors, respectively. Assume, w.l.o.g., that ni ≥ 1; 1 ≤ i ≤
p. Let X = diag�1ni ⊗ 12�; Z = diag�1ni ⊗ I2�, then the model can be written
as

y =Xβ+Zα+ ε:(52)

So N = 2
∑p
i=1 ni. Direct calculation shows

H = Z′AA′Z = Z′�IN −X�X′X�−1X′�Z = diag�ni�I2 − 2−1J2��;

where J2 = 121′2, and Z′AV�µ�−1A′Z =H−H�µ−1I2p+H�−1H = diag�ni�1+
µni�−1�I2 − 2−1J2��: Thus

tr�V1�θ�� = tr�Z′AV�µ�−1A′Z� =
p∑
i=1

ni
1+ µni

;

tr�V2
1�θ�� = tr��Z′AV�µ�−1A′Z�2� =

p∑
i=1

(
ni

1+ µni

)2

:

Let q =∑ni>1�ni − 1�; r = q/p, then it is easy to show that

lim inf λmin�Cor�V0�θ�;V1�θ��� > 0

for all θ ∈ 2◦ = �θ = �λ;µ�x λ > 0; µ > 0�
(53)

iff lim supp/N < 1/2 iff lim inf r > 0. Since q ≥ ��1 ≤ i ≤ px ni > 1��;
lim inf r = 0 would mean the model is asymptotically confounded.

Note s = 1 in this example, so (32)–(35) become �a+b��1−b�−1 < 0:2; 3a+
2b < f < 1− 2a− 4b; 0 < g < �0:5f− 1:5a− b� ∧ �1− 2a− 4b− f�; 0 < h <
�f− 3a− 2b− 2g� ∧ �1− 2a− 4b− f− g�.

The next example is a counterexample showing that AI4 is not enough for
Wald consistency.

Example 5.2. Let λ1 = 0; λ2; : : : ; λN be positive numbers such that

lim sup
∑N
i=1 λi/�1+ µλi�

N1/2�∑N
i=1�λi/�1+ µλi��2�1/2

< 1;(54)

and

lim
N∑
i=1

(
λi

1+ µλi

)2

= ∞(55)
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for all µ ≥ 0 [e.g., λ2 = · · · = λ�N/2� = a; λ�N/2�+1 = · · · = λN = b, where
a; b > 0; a 6= b].

Consider

yi =
√
λiαi + εi; i = 1; : : : ;N;(56)

where αi’s are random effects, εi’s are errors satisfying P�ε1 = 0� > 0. Thus

y = Zα+ ε;

where Z = diag�
√
λi�. Equations (54) and (55) imply lim inf λmin�Cor�V0�θ�;

V1�θ��� > 0 and lim �Vi�θ��R = ∞; i = 0;1 for all θ ∈ 2 = �θ = �λ;µ�x λ >
0; µ ≥ 0�, so the model is AI4 not only at all θ ∈ 2◦ but all θ ∈ 2.

Assume φ�0� ∈ 8o. It is easy to derive

L̃N�φ� − L̃N�φ�0�� =
1
2

{ N∑
i=1

log
(
σ2

00 + σ2
01λi

σ2
0 + σ2

1λi

)

+
N∑
i=1

(
1− σ

2
00 + σ2

01λi

σ2
0 + σ2

1λi

)
w2
i

}
;

(57)

where wi = �εi +
√
λiαi�/

√
σ2

00 + σ2
01λi; i = 1; : : : ;N.

Let B = �φ = �σ2
0 ; σ

2
1 �x σ2

i ≥ σ2
0i/2; i = 0;1�; φ∗ = �σ2

∗0; σ
2
01� with

0 < σ2
∗0 < σ

2
00 exp

{
−3δ−1

(
N+ �σ2

00/σ
2
01�
( N∑
i=2

λ−1
i

))
−N log 2

}
;

where δ=Pφ�0��ε1=0�. Define ξN=�1/N�
∑N
i=1w

2
i ; ηN=

∑N
i=2 λ

−1
i w

2
i /
∑N
i=2 λ

−1
i ;

E = �ε1 = 0; ξN ∨ ηN ≤ 3δ−1�. Then it follows from (57) that on E

L̃N�φ� ≤ L̃N�φ�0�� + �N/2��log 2+ ξN�

< L̃N�φ�0�� + �1/2�
{

log
σ2

00

σ2
∗0
−
(
σ2

00

σ2
01

)( N∑
i=2

λ−1
i

)
ηN

}

< L̃N�φ∗�; φ ∈ B:

Thus

Pφ�0�

(
sup
φ∈B

L̃N�φ� < L̃N�φ∗�
)
≥ Pφ�0��E� ≥ δ/3:

Therefore with probability greater than some positive number the maximum
point φ̂N will not fall into B no matter how large N is. Note that in this
example the REML estimates are the same as the MLE.
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6. Concluding remarks.

6.1. In virtually all problems regarding Wald consistency, there are two
sources of difficulties. The first is the arbitrariness of the parameters (here,
θ or φ). The second is the randomness of some quantities involved in the
likelihood function (here, z = A′y). Somehow, one does not want these two
kinds of things to be tied up, and this turns out to be the technical origin of our
proofs.

As we mentioned in Section 2, the basic idea is to prove the difference,
say LN�θ� − LN�θ�0��, is negative for θ outside a small neighborhood of θ�0�.
Since the first term in the difference decomposition [e.g., (7)] is nonrandom,
the focus is therefore on the second term (i.e., the d term).

In the balanced case, we are able to further decompose dN�θ; θ�0�� as a sum
such that each summand is a product of two factors—the first depends only on
θ and the second only on z, and the number of terms in the sum is bounded.
This technique of separating the two kinds of difficulties mentioned above has
been proved totally successful since it then becomes clear how to construct the
“small neighborhood” (see the proof of Theorem 3.1).

Unfortunately, this nice decomposition of the d term no longer exists in the
unbalanced case (thanks to a counterexample we are able to construct which
helps clarify that). In the unbalanced situation we go back to the old idea
of Wald (1949), that is, dividing the parameter space by small regions and
approximating the likelihood within each small region by its value at, say, the
center of the region. Note that once φ is fixed at some point φ∗; L̃N�φ� =
L̃N�φ∗� becomes a function of z alone. So this technique often does the job of
separating φ and z except for one thing: the number of such small regions has
to be “well under control,” which is impossible, as we have found, without using
the method of sieves. Since we are dealing with some nonstandard situations,
namely, quadratic forms of non-Gaussian random variables which can not be
expressed as “i.i.d. sums,” special techniques are needed to evaluate carefully
the orders of different quantities and hence eventually construct the sieve.
These include an expansion of some matrix-valued function and an inequality
for the variance of a quadratic form.

Finally, the counterexample has made it clear that sieve-Wald consistency
is all one can expect in a general unbalanced non-Gaussian situation.

6.2. In Section 4 a sequence of approximating spaces (i.e., a sieve) is con-
structed, and the consistency of the resulting estimates can be ensured under
AI4. Although the AI4 condition seems minimal for a theorem of this general-
ity, the convergence rate of the sieve to the full parameter space could be slow.
The rate can be much improved if, for example, the true parameter vector is
known to belong to a compact subspace of the interior of the parameter space,
say, φ0 ∈ �δ;M�, where 0 < δ < M < ∞ (e.g., δ = 10−6; M = 106). In such
a case the actual parameter space is 80 = �δ;M�, each approximating space
can be taken as 80 (i.e., δN = δB = δ; MN =MB =M) and the corresponding
sequence �φ̂N� is consistent [see (50) in the proof of Theorem 4.1].
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6.3. However, the AI4 condition is not sufficient for Wald consistency. Ad-
ditional assumptions are needed, either on the structure of the model or on
distributions of the random effects and errors. For example, it would be inter-
esting to see whether Wald consistency holds when normality actually holds
(in which case Gaussian likelihood is the true likelihood). Note that in Exam-
ple 5.2 the distribution of the errors is not normal.
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