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In survival analysis, the relationship between a survival time and a
covariate is conveniently modeled with the proportional hazards regres-
sion model. This model usually assumes that the covariate has a log-linear
effect on the hazard function. In this paper we consider the proportional
hazards regression model with a nonparametric risk effect. We discuss
estimation of the risk function and its derivatives in two cases: when the
baseline hazard function is parametrized and when it is not parametrized.
In the case of a parametric baseline hazard function, inference is based on
a local version of the likelihood function, while in the case of a nonpara-
metric baseline hazard, we use a local version of the partial likelihood.
This results in maximum local likelihood estimators and maximum local
partial likelihood estimators, respectively. We establish the asymptotic
normality of the estimators. It turns out that both methods have the same
asymptotic bias and variance in a common situation, even though the local
likelihood method uses information about the baseline hazard function.

1. The proportional hazards regression model. In survival analysis,
one is interested in exploring the possible relationship between a survival
time T and a covariate X. It is often convenient to work with the conditional
hazard function of T given X = x, defined as

1
AMtlx) = Alirflo Ep{t <T<t+AtIT>t¢t, X =x},

which is the instantaneous rate of failure at time ¢, given a particular value x
for the covariate X. The proportional hazards model is often used to describe
the covariate effect on the survival time. The model is given by

(1.1) A(tlx) = Ao(£)W(x).

When ¥(0) = 1, the function A,(¢) is the conditional hazard function of T
given X = 0, and it is called the baseline hazard function. Under model (1.1),
the conditional failure rates associated with any two values of the covariate

Received November 1995; revised November 1996.

'On leave from the University of North Carolina at Chapel Hill and supported by NSF Grant
DMS-95-04414 and NSA Grant 96-1-0015.

2Supported by “Projet d’Actions de Recherche Concertées” (No. 93,/98-164) and Research
Grant 15.001.95F of the National Science Foundation (FNRS), Belgium.

AMS 1991 subject classifications. Primary 62G05; secondary 62E20, 60G44.

Key words and phrases. Asymptotic normality, censored data, local likelihood, local partial
likelihood, proportional hazards.

1661



1662 J. FAN, I. GIJBELS AND M. KING

X are proportional. The most common form of the proportional hazards
regression model is obtained by taking the reparametrization

(1.2) W(x) = exp{¢(x)},

as is done in this paper. Model (1.2) was introduced by Cox (1972). See
Fleming and Harrington (1991), Andersen, Borgan, Gill and Keiding (1993),
and references therein for the literature concerning this model.

In many applications, the survival times of some subjects are not fully
observed; instead they are censored. Consider the bivariate data {(X;,T}):
i =1,...,n}, which form an ii.d. sample from the population (X, T). For a
variety of reasons, including, for example, termination of the study or early
withdrawal from the study, not all of the survival times T},...,7, may be
fully observable. Those incomplete observations are right censored. The ob-
served data can then be formulated as follows. Suppose we have an indepen-
dent censoring scheme, in which i.i.d. censoring times Cy, ..., C, are indepen-
dent of the survival times given the covariates. We observe for the ith
participant an event-time Z; = min(T}, C;), a censoring indicator §;, = I{T, <
C,}, as well as an associated covariate X;. Then we denote the observed data

(X;,Z,,8):i=1,...,n},
which are an i.i.d. sample from the population
(X,min(T,C), {T < C}).

For convenience, we assume throughout this paper that the random variables
T and C are positive and continuous. The covariate X is assumed to remain
constant over time.

It can be shown that under the proportional hazards model (1.1),

E{8|X = x}
V) = B (@)X =2

where A () = [{ Ay(w) du denotes the cumulative baseline hazard function.
This implies that ¥(x) can easily be estimated if the baseline hazard
function is known.

If a parametric form is assumed for both the baseline hazard function Ay(-)
and the risk factor (-), inference is often based on the likelihood function.
See for example Aitkin and Clayton (1980). If the function () is not
parametrized, we work with a local version of this likelihood function. Gentle-
man and Crowley (1991) propose such a version, with the uniform kernel
function, when A,(-) is known and use an iterative algorithm when A,(-) is
unknown. In the first part of this paper, we modify the estimator of Gentle-
man and Crowley (1991) (hereafter designated as G—C) to allow for a general
kernel function and to permit derivative estimation. Our approach is noniter-
ative when A,(-) is parametrized. The asymptotic distribution of the resulting
local likelihood estimators is established.

When the baseline hazard function is completely unknown and the form of
the function (x) is given, then inference can be based on the partial
likelihood, as in Cox (1972). If (x) is not parametrized, which is the main

(1.3)
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interest in this paper, we use a local version of the partial likelihood function.
This local partial likelihood is introduced in Tibshirani and Hastie (1987)
with nearest neighbor type of uniform windows. The generalization to
nonuniform kernels requires some careful thoughts. To this end, we derive a
general form of the local partial likelihood from a profile point of view. This
sheds some new light on the concept of partial likelihood, and elaborates
some connections between the local likelihood and the local partial likelihood.
One of the main objectives in this paper is to derive the sampling properties
of the proposed local likelihood and local partial likelihood estimators. These
properties have not been studied so far, not even for the case of a uniform
kernel.

When the baseline hazard function is parametrized, both the local likeli-
hood and the local partial likelihood estimator can be employed. The former
uses the knowledge of the baseline hazard function while the latter ignores
this knowledge. To gain some insight into the efficiency of the local partial
likelihood estimators, we compare the asymptotic biases and variances of
both estimators. A bit surprisingly, we find that the methods have the same
asymptotic bias and variance for the most common situation, where the
derivative curve is estimated with a local quadratic fit. In other words,
asymptotically, knowledge of the baseline hazard function does not provide
any extra information about the derivative curve. Hence, it is preferable to
use the local partial likelihood method since it is robust against misspecifica-
tion of a parametric form of the baseline hazard function and has the same
asymptotic efficiency as the local full likelihood method.

We focus in this paper on estimation of the risk factor y(-), describing the
effect of the covariate on the hazard function. Estimation of the baseline
hazard function is of secondary interest here, and procedures for this estima-
tion task will be discussed rather briefly.

There are a vast number of references on nonparametric regression tech-
niques and it is impossible to mention them all. See the references in Hastie
and Tibshirani (1990a) and Fan and Gijbels (1996) for starting points. Much
closely related work has been done on censored data. Marron and Padgett
(1987), Miiller and Wang (1990, 1994), Stute and Wang (1993), and Hjort
(1996) among others, have studied the estimation of hazard rates via kernel
methods. Nonparametric estimation of the conditional hazard and distribu-
tion function using local linear fits was investigated in Li and Doss (1995).
Tibshirani and Hastie (1987) and G—C use a local modeling principle to study
the nonparametric proportional hazards model, while O’Sullivan (1988),
Hastie and Tibshirani (1990b) and Kooperberg, Stone and Truong (1995a, b),
among others, use spline methods to study the model. These papers give
convincing examples that demonstrate the usefulness of nonparametric tech-
niques and inspire our current work.

Section 2 of this paper deals with the situation where the baseline hazard
function is parametrized and discusses inference based on the local likeli-
hood. Section 3 considers a nonparametric baseline hazard function, intro-
duces the local partial likelihood estimators and studies their asymptotic
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behavior. Section 4 briefly discusses the relative efficiency between the local
likelihood method and the local partial likelihood method. In Section 5 we
investigate the finite sample behavior of the local partial likelihood method.
The proofs of the presented results are given in Section 6.

2. Parametric baseline hazard function.

2.1. Likelihood function. Assume temporarily that the baseline hazard
function A,(-) has been parametrized as A,(¢) = Ay(¢; 6) and that ¢(x) has
been parametrized as ¢(x) = ¢(x; B). Let f(¢|x) denote the conditional
density function of T given X = x, and let S(¢|x) = P{T > ¢t|X = x} be its
conditional survivor function. The conditional distribution function of C given
X = x is denoted by G(¢#|x). Under independent and noninformative censor-
ing, which is when G(¢|x) does not involve the parameters 6 and g, it can be
shown that the conditional likelihood function is given by

L= l_If(ZilXi) HS(Zi|Xi)’

where I1, and I'1, denote, respectively, the product involving the uncensored
and the censored observations. This kind of likelihood appears often in the
literature [c.f. Aitkin and Clayton (1980)]. See also Section 5.3.4 of Fan and
Gijbels (1996) for a simple derivation of this likelihood function. Under the
proportional hazards model (1.1), we have

o log L= 3 [o,{log Ao(%;0) + (X;; B))
—Ao(Z;; 0)exp{¢(X;; B)}]

Maximization of (2.1) leads to the maximum likelihood estimators of # and .

2.2. Local likelihood. Suppose now that the form of ¢(x) is not specified,
and that the pth order derivative of (x) at the point x exists. Then, by
Taylor’s expansion,

’ ¢(p)( x) »
P(X) = d(x) + 0 () (X —2) + (X~ 2)”,
for X in a neighborhood of x. Let A be the bandwidth parameter that controls
the size of the local neighborhood and let K be a kernel function that
smoothly weighs down the contribution of remote data points. Set

X={1,X-x,..,(X-2)") and X,={L,X,—x,...,(X, —2)"),

where T denotes the transpose of a vector. Then, locally around x, ¢(X) can
be modeled as

(2.2) y(X) =X,
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where 8 = (8,,--.., BP)T ={y(x),..., P (x)/p!}T. Using the local model (2.2),
and incorporating the localizing weights, we obtain the local (log) likelihood

1(B,0) =n1 Y [5{log Ao(Z:; 0) + X7B)
(2.3) i=1

—Ao(Z;; G)GXP(XL‘T.B)]Kh(Xi —x),

where K,(t) = h'K(t/h). Compare with (2.1). This local likelihood, with a
uniform kernel and a given \,, was used also by G—C. It can be easily seen
that [,(B, 0) is strictly concave with respect to B. Hence, this local log-
likelihood has a unique maximizer with respect to 8. However, [,( 8, ) is not
always concave with respect to 8 and 6. See Section 2.4 for further discussion
on this issue.

Let B and 6 be the maximizers of (2.3). Then, according to our

parametrization, a natural estimator of "(x), for v=0,..., p, is

As x varies across the range of a set, we obtain an estimated (derivative)
curve on that set.

2.3. Sampling properties. Throughout this section we assume that the
censoring scheme is independent and noninformative. We will use the super-
scripts ' and ” to indicate the gradient vector and the Hessian matrix,
respectively, of a function. For example, Xy (¢; 6) denotes the gradient vector
of A,(¢; 6) with respect to the parameter vector 6. For purposes of identifia-
bility, we assume that Ao(1; 6) = 1. The local maximum likelihood estimators
B and 6 solve the local likelihood equation I/( 8, 6) = 0. This equation is
given by

l 6
I(BO) _ (6, — Ao(Z:; 0)exp(X7B)]
9B i=1
X X, K Xi_x) =0,
(2.5) 21.( 8. 8) ) a(
% =n?! | {5i§(’)(Zi; 0) — ANo(Z;; O)eXp(XiTB)}

—

X K,(X, —x) =0,

where we introduce the notation £,(¢; 6) = log A,(¢; 6). Let 6, be the true
parameter of Ay(¢; ), and similarly let

BY = (4(x),..., P (x)/pl},

be the true parameter in the local model (2.2). In order to have a consistency
property for 8 and 6, the true parameters B° and 6, must solve the
asymptotic counterpart of (2.5). That this holds for the first local likelihood
equation follows from (1.3). For the second local likelihood equation, this is
justified by the following proposition.
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ProposiTION 1. If 6, is an interior point of the parameter space, and
B{| 06(Z: 6) || X = 2} <= and (| Ky(Z:6,)] X = 2} <

then
(2.6) E(8¢0(Z; 00) — No(Z;00)V(x) | X =x} =0,
where V(x) = exp{y(x)}.

Proor. Let N(¢) =KZ <t, §=1},Y() = KZ > t} and let

F=0{X,N(u),Y(u),0 <u <t}
be the history up to time ¢. Set
M(t) = N(t) — [Y(u)W(X)Ao(u; 0,) du.
0
Then, M(¢) is an Z-martingale. Note that
561(Z3 00) = No(Z5 60)W(X) = [ £)(t;60) dM(t).

Since &,(¢; 0,) is F-measurable, (2.6) follows by taking the conditional expec-
tation of the above equality with respect to Z given X = x. This completes the
proof. O

Equation (2.6) gives the first-order Bartlett identity of the local likelihood.
We also need the following second-order Bartlett identity.
ProrosiTION 2. If 6, is an interior point of the parameter space, and
! 2 "
E[[8(¢5(2 00} [1X = x| <= and E(|Ny(Z;05)]| X =2} < =,

then
E{Bfé’(Z; o) — No(Z;0,)¥(x)|X = x}

= —E[8{¢)(2;0,))°* |X = 2],

where A®? denotes AAT for a vector or matrix A.

(2.7)

Proor. Using the notation of the proof of Proposition 1, we have

Xo(Z;0) = Xo(u; 0)
L N(Z:0)W(X) = [ 2 dM(u).
Nz~ No(Zi 0¥ (X) fvo(u;eo) (u)
Hence,
E SXE) Z; 0o) N (Z:0,)¥(x) | X 0
2 (Z; 0) 0(Z50,)¥(x) | X =x) =0.

Using this and

(/)'(Z; 90) =

Xo(Z;5 6,) Xo(Z; 0,) °
Ao(Z; 6,) - {)‘o(z§00)}

we obtain (2.7). O
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Before we state the main results of this section, we first introduce some
notation. Let

H=diag{1,h,...,hP}T, u={1,u,...,up}T

and put
oo ®2
So(x;00) = [ E a(fé(z“;%)) X=x}K(u)du,
(2.8) .
S,(x;6,) =fin 5(66(211;90)) X=x}K2(u) du
and

(P+D( 5 -1
(2.9) b,(x)= %(l)l)h”“{fuuTK(u) du} fu"“uK(u) du.

We now impose some convenient conditions.

ConDITION A. (i) 6, is an interior point of the parameter space.
(ii) There exists an 1 > 0 such that

E{Ay(Z;6,)*" "X}, E{| 56(2;90)|2+”|X} and E{|A’O(Z; 00)|2+n|X}

are finite and continuous at the point X = x.
(iii) The functions
E(81X), E{Ao(Z;0,) X}, E{Ny(Z;06,) X}, E{Ny(Z;6,) X},
E(5¢4(Z;6,) X} and  E{8&5(Z; 00) | X}
are continuous at the point X = x.
(iv) There exists a function M(z), with EM(Z) < «, such that
93 A

Eo(2z;0)| <M(2), Ao(2;0)| <M(z),

36, 99,, 96, 36, 99, 96,
for all z, and for all 6 in a neighborhood of 6,.
(v) The kernel function K > 0 is a bounded density with a compact
support.
(vi) The function (-) has a continuous (p + 1)th derivative around the
point x.
(vii1) The density f(-) of X is continuous at the point x and f(x) > 0.
(viii) nh — « and nh?P*? is bounded.

THEOREM 1. Under Condition A, there exists a solution é and 0 to the
local likelihood equation (2.5) such that

H(B\_BO)_)PO and é_ao_)P 0.
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THEOREM 2. Under Condition A, the solution given in Theorem 1 is
asymptotically normal:

H(B - B°) = b,(x)
6— 6,

N{0, £71(x)So(x;500) " Sy(x;00)So(x;6,) ).

Vnh

(2.10)

REMARK 1. Note that the bias term

d"(p + 1)( x) -1
b,(x) = Whp”{fuuTK(u) du} /up“uK(u) du,

of é admits the same expression as that of the least-squares nonparametric
regression estimator. See expression (3.8) of Fan and Gijbels (1996). The
explanation for this is that the bias comes from the approximation error and
hence is independent of the model.

REMARK 2. For the parametric linear model ¢(X; B8) = X8, one would
directly maximize the log-likelihood (2.1). In that case, our proofs of Theo-
rems 1 and 2 show that

A _ npo
50 e,
0

X ®2
where 3 =E{3(§5(z; 60)) }

REMARK 3. The likelihood equations (2.5) depend on the point x in which
we would like to estimate the function ¢ and its derivatives. Only data points
falling in a certain neighborhood of x are involved in determining [3 B(x)
and 0 = A(x). Using simply the estimator 6(x) to estimate 6,, resulting from
solving equations (2.5), is not satisfactory and does not reflect our model
assumption. All data points should be used in order to efficiently estimate the
global parameter 6,. A possible approach is to maximize (2.3), with 0 fixed,
over a range of x-values to obtain an estimate ¢/( 0) for each 6, and then to
maximize (2.1) with (X;; 8) replaced by a,l/(X 0). This is essentlally a
profile likelihood method and can be implemented by the following simple
iterative algorithm: given 6, obtain (-) and given ¢(:), update 6 and so on.
This idea is similar to that given in G-C.

As an illustration of Theorem 2, we now consider the particular situation
that we estimate '(:) using a local quadratic fit. In this case, p = 2 and
v = 1. The bias and variance of the local likelihood estimator for ¢'(x) is then
given by the second marginal component of (2.10). For this special case we
obtain the following asymptotic normality result.
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COROLLARY 1. Under the conditions of Theorem 2 with p = 2, and if K is
symmetric, then

N 1
k) = 0°() = 5 [OKE (1) de ()1

o(x) .
-, N{ ) —— [Ki(t)* dt}

where o%(x) = E(8|X = x} ™! and K¥(¢) = tK(t)/ [ t2K(¢) dt.

Note that when 6, is known, one would maximize (2.3) with respect to .
The resulting derivative estimator has the same asymptotic bias and vari-
ance as those given in Corollary 1. In other words, under the conditions given
in Corollary 1, (x) is adaptive in the sense that it estimates '(x) as well
as in the case that 6, is given.

2.4. Concavity of the local likelihood. As in most of the parametric likeli-
hood theory [see, e.g., Sections 6.3 and 6.4 of Lehmann (1983)], we only know
that there exists a consistent solution to the local likelihood equation. But if
there are multiple roots, we don’t know which solution is consistent. How-
ever, if [,(B, 0) is strictly concave, then the solution to (2.5) is unique and
must be consistent.

The Hessian matrix of [,( 8, 6) is given by

L(B,0) = n! Z K, (X; —x)
i=1

-Ao(Z;; O)exp(XT/_; )X, ). ¢ —exp(XTB )X'A/O(Z,-; G)T
—exp(X[B)No(Z; 0)X]  —exp(XIB)Ny(Z;0) + 8 £5(Z;; 0)

(2.11)

®2

=-n! Z K (X; = x)Ao(Z;; 0)exp(X]B)
i=1

-n~! Z K, (X; —x)

i=1

No(Z;;0)/MNo(Z;;0)

0 0
“ 0 exp(XIB)Ao(Z:: 0){log Ao(Zi: 0))" - aisg(zi;e))'

Clearly the first term on the right-hand side of (2.11) is negatively definite
and if

(2.12) {log Ay(Z;;0)} =0 and &5(Z;;0) <0,

then [,( B, ) is strictly concave. We summarize the result as follows.
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THEOREM 3. A necessary condition for the strict concavity of 1,( B, 0) is
condition (2.12). For this special case, the maximum local likelihood estimator
is unique and possesses the property stated in Theorem 2.

ExaMPLE (Weibull distribution). For the Weibull baseline distribution
with scale parameter p and index «, the hazard and cumulative hazard
function are given by

Mo(t5p, k) = kp(pt) ™" and Ay(t;p, k) = (pt)".
Model (1.1) can be written as

A(tlx) =t Texp{yy(x)} where ¢,(x) = y(x) + log k + « log p,

and our estimation equations (2.5) estimate « and #,(-). Note that p is not
identifiable. The above expression can also be seen from the identifiability
condition Ay(1; 6) = 1, which implies that kp“ =1 and hence Ay(¢; p, k) =
t“~1. Clearly, A,(¢; p, ) satisfies condition (2.12).

3. Nonparametric baseline hazard function.

3.1. From likelihood to partial likelihood. Let t; < --- <ty denote the
ordered failure times and let (j) denote the label of the item failing at ;.
Denote by %; the risk set at time ¢; — that is, %, = {i: Z; > ¢;}. Consider the
“least informative” nonparametric modeling for A,(-); that is, A,(¢) has a
jump 0; at t;. More precisely,

N

(3.1) Ao(t;0) = Y 0,I{t; < t}.
j=1

Then

N
Ao(Z;50) = ) 0,1{i €z}
j=1

Substituting these two expressions into (2.1), we obtain that

N n N
(32) logL =Y [log6; + ¢{X;; B}] — ¥ l Y o1fi E%j}exp{(//(Xi;ﬁ)}l.
j=1 i=1]j=1
The maximum of log L with respect to 6, (j = 1,..., N) is obtained at
-1
(3.3) 0, = [ )y exp{t/f(Xi;B)}} :
i€,

This is the Breslow estimator of the baseline hazard function [see Breslow
(1972, 1974)]. Substituting (3.3) into (3.2), we obtain

N

(34) max logL =) (i,l/{X(j);B} - 1og[ )y eXp{l!’(Xi;:B)}}) - N.

j=1 e,
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Therefore, the maximum likelihood estimate of 8 under the nonparametric
model (3.1) is the B that maximizes (3.4). The objective function in (3.4) is the
same as the partial likelihood function in Cox (1975) and is a profile likeli-
hood. This kind of derivation is due to Breslow (1972). Theory on partial
likelihood can be found in Wong (1986).

In summary, when A,(-) is not specified, one should use the maximum
partial likelihood estimator. This method is equivalent to the maximum
likelihood estimator with the “least informative” baseline hazard function,
namely with the cumulative hazard function parametrized as in (3.1) with a
large number of parameters.

3.2. Local partial likelihood. When the forms of (x; 8) and Ay(¢; 6) are
not specified, one should use the local model (2.2) along with a local version of
the partial likelihood in (3.4). That is, find the B that maximizes the local
partial likelihood

N
(3.5) .;K"{X“’ —x}

X(Tj)B - 10g{ )y eXp(XLTB)Kh(Xi - x)”

LE%J»

Clearly (3.5) is just a localized version of (3.4). It can also be derived from
the local log-likelihood (2.3) using the “least-informative” nonparametric
modeling (3.1). In other words, the maximum local partial likelihood estima-
tor is the maximum local likelihood estimator when A,(-; 0) is parametrized
with a large number of parameters, as in (3.1).

Let B maximize (3.5) with respect to B8 =1{8,,-.., BP}T. Then an obvious
estimator of ¢(")(x) is as in (2.4), namely,

'ﬁl/(x) = V!év’

where é,, estimates B,. Note that the function value ¢(x) is not directly
estimable; (3.5) does not involve the intercept 3, = /(x) since it cancels out.
This is not surprising since from the proportional hazards model (1.1), it is
already clear that ¢/(x) is only identifiable to within a constant factor. The
identifiability of ¢(x) is ensured by imposing the condition ¢(0) = 0. Then
the function (x) = [§ '(¢) dt can be estimated by

() = [Tin(e) d.

For practical implementation, Tibshirani and Hastie (1987) suggested ap-
proximating the integration by the trapezoidal rule.

When there is more than one covariate, one could use a multivariate
Taylor expansion to approximate ¢(-) locally with a polynomial of order p.
This would lead to a straightforward generalization of the results presented
here. However, a serious problem in multivariate situations is the curse of
dimensionality. A possible approach to tackle this problem is to consider
additive modeling [see Hastie and Tibshirani (1990b)] or low-order interac-
tion models [see Kooperberg, Stone and Truong (1995a, b)]. The advantage of
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such modeling is that one can use low-dimensional smoothing techniques
such as the one proposed here as building blocks along with a backfitting type
of algorithm [see, e.g., Hastie and Tibshirani (1990a)] to fit all low-dimen-
sional functions involved. Another possible approach is to use the average of
the estimated multivariate hazard regression surface to estimate each addi-
tive component. See, for example, Linton and Nielsen (1995) and Fan, Hardle
and Mammen (1995) for details. We would anticipate that these two ap-
proaches for estimating the additive components would enjoy optimal rates of
convergence as in Stone (1994). Formal theoretical derivations remain to be
done.

3.3. Estimation of the baseline hazard function. As mentioned in the
introduction, estimation of the baseline hazard function is not a primary goal
of this paper. We therefore only briefly outline two possible approaches to this
problem.

From (3.1) and (3.3), we suggest the following estimator for the cumulative
hazard function:

N -1
(36) Ro(t) = X [ > exp{lz(Xi)}] It < t}.

j=1|ie%;

A kernel smoothing technique can then be employed to obtain an estimate of
Ao(t) via

(3.7) Ro(t) = [W,(t —x) dRy(x),

where W is a given kernel function and g is a given bandwidth.

An alternative approach to estimating A,(-) and A,(-) is to use a local
polynomial fit. For simplicity, we use the local linear fit to illustrate the idea.
Locally around a given point ¢,, one can approximate

Ao(t) = exp( By + Bi(t — ty)), Ao(t) = exp( By + Bi(t — ty)) By

for ¢ in a neighborhood of ¢,. For a given estimator ¢ () of (), the local
version of the likelihood (2.1) can be expressed as

i W, (Z; - tO)[Si{BO + Bi(Z; — ty) +log By + L//}(XL)}
(3.8) i=1
—exp{ By + Bu(Z; — to)}EXp{dAf(Xi)}],

where W is a kernel function and g is a bandwidth. Let 3, and 8, maximize
(3.8). Then,

Ao(to) = exp( .éo) and Xo(to) = exp( éo).é1

are smoothed type estimators for A,(¢,) and A,(¢,), respectively.

The above approaches are quite different from the local full likelihood
procedure proposed by G—C. In order to estimate both, the covariate effect
and the baseline hazard function, G-C rely on the following iterative proce-
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dure. For a given estimate of (-), they estimate the baseline cumulative
hazard function using all data points, and applying for example the Breslow
estimator. Then, the obtained cumulative hazard function estimator is used
to build up a local (full) likelihood as described in Section 2.2, and maximiza-
tion of this local likelihood leads to an estimate of the function ¢(-). G-C
suggest iterating between the two estimation steps until some convergence
criterion is met.

As demonstrated in Corollary 2, our direct method of estimating #'(x) is
asymptotically already as good as the case where A,(:) is known. Thus, the
iterative approach cannot improve asymptotically the efficiency of our local
likelihood method. This is also demonstrated in our simulations.

3.4. Asymptotic property of the maximum local partial likelihood estima-
tor. Since the local partial likelihood (3.5) does not involve B, = ¢(x), we
write

B* = (Bi,--sB,) »  B*= (Bl,...,ép)T and
Xi={X, —x,.., (X, —-x)") .
Correspondingly, let
BY = {y'(x),..., pP(x)/p!), * = diag(h, ..., h")",

ut = {u,...,ur}".

Set v; = [u*K(u) du,

(389) A= [wu'K(u)du—vp] and B= [K*(u)(w* - )" du.
Put

(3.10) P(ulx) =P{Z>ulX=x} and A(t,x)= /:P(ulx))\o(u) du.

Writing the conditional probability as the conditional expectation of an
indicator function, it can easily be seen by exchanging the integration with
the conditional expectation that

A(t,x) = E[Ag{min(Z, ¢)} | X = x],

where A ,(-) is the cumulative baseline hazard function. Finally, let B* be the
maximizer of the local partial likelihood

N
(311 X KX~ )

X{76 — log| ¥ exp(X1T5*)K,(X, - )}1

i€X,;

with respect to 8*.
We now impose some convenient technical conditions for asymptotic nor-
mality.



1674 J. FAN, I. GIJBELS AND M. KING

ConDITION B. (i) The kernel function K > 0 is a bounded density function
with compact support.

(ii) The function ¢(-) has a continuous (p + 1th derivative around the
point x.

(ii1) The density f(-) of X is continuous at the point x and f(x) > 0.

(iv) The conditional probability P(u|-) is equicontinuous at x.

(v) The sequence nh — * and nh%P*3 is bounded.

We now state the main result of this section.

THEOREM 4. Under Condition B, we have

Vnh | H*( B* — Bo*) — —l'[j(zﬁl)(x) A~ 1ppPt1
" (B = B™) (p+1)!
(3.12) ,

= 8o, T A a0,

where a?(x) = E{§|X =x}"! and b = [u?* (u* — v))K(u) du.

Note that in general the bias vector and variance matrix in (3.12) depend
on K in a different way than in nonparametric regression [e.g., compare with
(3.18) and (3.19) of Fan and Gijbels (1996)]. Theorem 4 gives the joint
asymptotic normality of the derivative estimators. In particular, the bias and
variance of i (x) can be obtained by taking the vth marginal component of
(3.12). For example, if p = 2 and v = 1, we have the following result.

COROLLARY 2. Under the conditions of Theorem 4 with p =2, if K is
symmetric, then

W{&l(x) —¢(x) - %ft?’Kf(t) dt ¢r(3)(x)h2}
(3.13) 2(x)

" f(x)

where Ki(t) = tK(t)/[t2K(¢) dt.

- N{O | Ki(#)* dt},

As a consequence of (3.13), the theoretical optimal bandwidth, which
minimizes the asymptotic weighted mean integrated squared error,

o%(x)

1 2 2
f[{gft3K;"(t)dt¢(3)(x)h2} + W(x)fKi"(t) dt |w(x) dx,
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is given by
9 1/17
P (x)w(a;)/f(x)dxw e
[y (2)} w(x) dx
with
%02 /7 2772 17
C(K) - 27/ K (t) dtzl . lzm K (t)dﬂ |
{/£°K3 (¢) dt} {[tK(¢) dt}

4. Relative efficiency. In this section, we comment on the relative
efficiency between the local likelihood and the local partial likelihood estima-
tors when the baseline hazard function is correctly parametrized. We are
interested in knowing how much efficiency is lost when the local partial
likelihood method, which ignores the form of the baseline hazard function,
is used.

For the convenience of the discussion, we assume that we use a local
quadratic fit (p = 2) to estimate the derivative function ¢ '(x), and that we
use a symmetric kernel. For this special case, the local likelihood and the
local partial likelihood estimators have the same asymptotic bias and asymp-
totic variance (see Corollaries 1 and 2). Hence the relative efficiency of the
two estimators, defined as the ratio of their asymptotic variances, is equal to
1. This result is somewhat surprising, because even though the information of
the baseline hazard function was used in the local likelihood, it does not
improve the sampling property of the local likelihood estimator. The reason
for this asymptotic result is that we assume that 2 — 0 and the kernel K is
symmetric. Hence, in (2.3), the local parameter B; is asymptotically orthogo-
nal to the other parameters B,, B, and 6.

The above result is asymptotic in nature. We are not sure how small A
should be in order for the orthogonality to exist, and hence it is possible for
finite samples that the local likelihood estimator performs better than the
local partial likelihood estimator.

We choose to compare derivative estimators instead of estimators for
itself because the local partial likelihood does not directly involve the local
parameter for ¢(x). We do not intend to compare the two methods for other
cases, such as local cubic and quartic fits, since such a large order of local fit
is rarely used in applications.

5. Simulation study. The proportional hazards model (1.1) is equiva-
lent to the following transformed regression model:

(5.1) log Ag(T) = —¢(X) + log(e),

where & has the standard exponential distribution. Model (5.1) enables us to
generate data easily from model (1.1) and to inspect visually the noise-to-
signal ratio for a simulated model (see Figure 1). The following four simu-
lated models are used in our simulations.
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¥(x)=0.54 + (x—40)/30- I(x>40)

1
Iy * © @ @ Uncensored
+++4  Censored

10
n=191, p=1

14.3% Censored =
sqrt(IMSE) = 0.325 X = Ulo,70]

@ @ Uncensored
4 444  Censored
161+

log AO(T)

1 M 1 M ] v T v 1 M T M 1
-3
hai, pmt

37.0% Censored X (Truncated Normal [0,9])

sqrt(IMSE) =0.721
(b)

Fic. 1. A typical simulated set of data and estimated curve for Models 1-4. The true curve (-)
is indicated as a solid line, and the estimated curve {:(-) as a dashed line. The estimated curves
are obtained by using the local partial likelihood method with the Epanechnikov kernel. Pre-
sented in Figures (a)—(d) are, respectively, results for Models 1-4.

MopEL 1. In this model, X is taken to be a uniform random variable
distributed on [10, 70], A,(¢) = 0.007 and (x) = ,(x) = 0.54 + (x — 40)/30
- {x > 40}. The censoring random variable C is independent of X and T and
its distribution is indicated in Table 1. The sample size for this example is
210. This model was suggested by G-C and is included here for purpose of
comparison.

MODELS 2-4. In the next three models, we take X ~ N(0,32) but trun-
cated at [ —3, 3], A,(¢) = 3¢%. The censoring random variable C, given X = x,
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Yx)=15x%-12

log AXT)

SQrIMSE) =0.683 X (Truncated Normal [0,9])

(c)

¥ (x) =4sin(2x) - 10

log AXT)

(d)

Fic. 1. (continued)

is distributed uniformly on [0, a(x)] where a(x) = explc,{(x) > b}/3 +
co {y(x) < b} /3], with b being the mean height of (x). Here ¢; and c, are
chosen so that about 15%—-20% of the total data are censored in each of the
regions {x: (x) > b} and {x: (x) < b}. Thus, the total censoring rate is
about 30%—-40%. The three ¢ functions in Models 2—4 are as follows:

o(x) =2x—8,  s(x) =15x%2—-12, (x) =4sin(2x) — 10.
The sample size is 200 for Models 2—4.
In the implementation of the local partial likelihood estimation, we use the

local linear fit with the Epanechnikov kernel. Three different bandwidths are
tried and results are reported in Tables 1 and 2.
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TABLE 1

Comparison of two methods for estimating s,

Method*

Span 70

Span 105

Span 140

No censoring

Censoring: U[0, 400]

Censoring: U[0, 200]

1
2
1
2
1

2

0.357 £+ 0.0082
0.289 + 0.0062

0.371 £ 0.0086
0.300 + 0.0079

0.366 + 0.0079
0.321 + 0.0089

0.354 + 0.0076
0.321 £ 0.0073

0.357 £+ 0.0085
0.316 + 0.0081

0.359 + 0.0079
0.338 + 0.0096

0.362 + 0.0076
0.351 + 0.0065

0.356 + 0.0074
0.335 + 0.0070

0.368 + 0.0086
0.350 + 0.0080

*Method 1 stands for the iterative local likelihood method of Gentleman and Crowley (1991).
Method 2 is the local partial likelihood method in this article.

To compare our method with that of G=C, we need to adjust the bandwidth
in order to have a comparable amount of smoothing. For example, G-C use
nearest neighborhood uniform windows with a span 70 for the uniform [10,
70] design with n = 210. This is essentially equivalent to a uniform kernel
with a bandwidth 2 = 10. To make the local linear fit with the Epanechnikov
kernel have a comparable amount of smoothing as that used in G-C, we use
the bandwidth A = 1.27 X 10. The factor 1.27 is calculated based on the
canonical kernel idea of Marron and Nolan (1988). Table 1 presents the
average of YMISE and its standard deviation based on 100 simulations. The
result for the performance of Method 1 is adapted from G-C. Table 1 reveals
the fact that the local partial likelihood method performs comparably to or
even somewhat better than the iterative procedure of G-C. This seems
consistent with our theoretical result that the noniterative local partial
likelihood estimator is effective. A typical set of simulated data and the
estimated curve are presented in Figure 1(a). The figure shown is the span
105 case with C' ~ Uniform[0, 400].

We now demonstrate the performance of our local partial likelihood esti-
mator via simulated Models 2—-4. Table 2 summarizes the result on vyMISE
based on 100 simulations. In each cell, the first, second and third numbers
represent the mean, standard deviation and the median of yYMISE based on
100 simulations. Note that for the small bandwidth A = 0.5, some local
neighborhoods can contain very few data points and contribute a lot to the

TABLE 2
Performance of the local partial likelihood estimator

Parameters
Model b, ¢, Cy h =05 h=1.0 h=15
2 7.5,14,9 1.698 + 5.034,1.001 0.723 + 0.315,0.683 0.594 + 0.300, 0.524
3 7.5,14,8 1.154 + 0.792,0.992 0.796 + 0.238,0.776  1.156 + 0.256, 1.148

4 9.5,16, 11 48.19 + 228.5,2.657 1.335 £+ 0.710,1.219 1.916 + 0.062, 1.920
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average of VMISE. Figure 1(b)-(d) depict a typical estimated curve for
Models 2-4. The bandwidth, yMISE and the censoring rate are indicated in
the lower left corner of each figure. The estimated curves have values of
VMISE close to the average of the 100 simulations. Figure 1 also indicates
the satisfactory performance of the local partial likelihood method, even
though the noise is quite large, the baseline hazard function is unknown and
the data are censored.

6. Proofs.

6.1. Proof of Theorem 1. Let a =H(B - B°), & =H(B - B°) and U, =
H'X,. Put

I(a,0)=n"1

13

; [6{&(Z;;0) + XTB° + Ula)
=1

—Ao(Z;; O)exp(XiTB0 + UL-Ta)]Kh(XL- —x).

Then the problem is equivalent to showing that there exists a solution & and
0 to the likelihood equation

il (a, 6 n
2 ) =n"t ) {Si_AO(Zi;a)eXp(XlTBO + UiTa)}
Ja i1
X UiKh(Xi_x) =0,
(6-1) il (a,0) n
—~ =p! 8.8(Z.;0) — No(Z.; 0)exp(XTB? + U
90 {t§0( i ) 0( i’ ) p( l:B i
i=1
X K(X; —x) =0,
such that

a—p0, 6—6,—p0.

Let y = (a7, 07)T and y, = (07, 67)T. Denote by S, the sphere centered at
vo Wwith radius e. We will show that for any sufficiently small &, the
probability that

(6.2) sup ,(v) <1(vo) = 1,(0,6)

YES,

tends to 1. Hence /,(y) has a local maximum in the interior of S,. Since at a
local maximum the likelihood equation (6.1) must be satisfied, it follows that
for any &> 0, with probability tending to 1, the likelihood equation has a
solution {a& (&), 0(e)} within S,. Let (&, 6) be the closest root to y,. Then

P{llal* + 118 — 6,]1° < &} — 1.
This in turn implies that

H(é—BO) -, 0 and 60— 6, —p 0.
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We now establish (6.2). Denote by y; and v,; the jth elements of y and v,,
respectively. By Taylor’s expansion around the point vy,

L(v) = L(%0) = Li(v0) (¥ = 7o)

+3(7 = %) (v (¥ = v0) + R.(¥"),
with y* lying between vy, and vy, and where

(6.3)

3

1
R, (v) =+ Yi = Yo;) (Ve — Yor) (Vi — Yor) —————L.(v)-
( ) 6j,%l( J OJ)( k Ok)( l Ol) (97] ayk ‘9'}/1 ( )

First of all, by recalling that B, = ¥(x), we see that
{6i = Ao(Z;; Bo)eXp(X?BO)}Ui
8:60(Z;5 00) — No(Z;; Oo)exp(XiTBO)
f(x) E{6 — Ao(Z;6,)¥(x) | X =x}/uK(u)du
- x
’ E[86)(Z; 00) — Xo(Z305) W (%) | X = ]
By (1.3) and (2.6), we conclude that
L(ve) =p 0.
Thus, with probability tending to 1,

(6.4) 1,(v0)" (v = 7o) | < &%,
Analogously,

5 (vo)

n
=-n"' Y Ku(X; - x)
i=1

Uiye) =n ' Y Ky(X, - x)

i=1

exp(XTB°) Ao(Z,; 00) U U exp(XTB°) U (2, 0,)"
eXP(XiTBO)A/o(Zﬁ 00U —8:£5(Z;500) + No(Z;; eo)eXP(XiTBO)

-p —f(x)

o[ PEOE(A(Z;80) | X = o} junK (u) du ¥ (x)fuK (u) duE{Xo(Z;00) | X = x}’

By (1.3), (2.6) and (2.7)
L(ve) = —f(x)

E{8|X = x}juu’K (u) du JuK(u) duE{8£)(Z;0,) | X = x}"
X 2
(6.5) E{8¢)(Z;0,) | X = x} [uTK (u) du E[8{ £)(Z;05)) °* 1X = x|
+ 0p(1)

= —f(x)So(x;60) + 0p(1).
Thus, with probability tending to 1,
(6:6)  (v= %) L(%)(y— ) < —af(x)e* forallyes,,
where «a is the smallest eigenvalue of S (x; 6,).

V() E{Xo(Z:00) | X = x} K (u)du  E{—56§(Z;0) + V(x)No(Z;00) |X =} |

D
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By Condition AGv),
(6.7) |R,(v)| <Ce®n™ ' Y M(Z;)) = Ce*{EM(Z) + op(1)}
i-1

for some constant C > 0.
Substituting (6.4), (6.6) and (6.7) into (6.3), we conclude with probability
tending to 1 that when & is small enough,

L,(y) —1,(yy) <0 forallyesS,.
This completes the proof of Theorem 1. O

6.2. Proof of Theorem 2. We continue to use the notation introduced in
the proof of Theorem 1. By Taylor’s expansion and Condition A(iv), we have

0 ="1,(%) = L(v0) + Li(v0) (¥ = o) + Op(IF = %lI*).
Hence, by (6.5),
(7= 70) = {Ta(70) +0p(1)} ' T1(¥0)

71 f
= {=F(x)So(x; 00) +0p(1)} 1h(¥0)-
Thus, we only need to establish the asymptotic normality of 7/ (y,). We first

compute the mean and the variance of I, (y,).
First of all, by Taylor’s expansion,

exp{iy(X;)} — exp(X7B°)

(6.9) PP D (x) pil
= ‘I’(x)m(Xi —x2)"" {1 + 0p(1)}.

By (6.1), (1.3) and (2.6), we get

(6.8)

{6i - ANo(Z;; Oo)eXP(XiTBO)}Ui
8:60(Z;5 00) — No(Z;; Ho)exp(XiT,BO)

Ao(Z;; 05) [exp{i(X,)} — exp(XTP )]Q
No(Z;; 60)[exp{1/;(X )} - exp XT,B ]
From (6.9), it can be calculated that

El(v) = EK,(X; - X)(

= EK,(X; — x)

’ - P (x) E{Ay(Z;0,) | X = x}[uu”'K(u) du
o) ZFEV G By(2500) 1X - w)ur 1K () du
o(1
(610) (lp)(p+1)( ) E{6|X=x}fuup“K(u) du
_f( )W {Bgé(z,go)|X:x}fup+1K(u)du +0(1)

= f(x)b,(x) +o(1).
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Similarly,
82

{6 = Ao(Z; 6,)exp(X"B°)}U

Var{li(vo)} = n" EKG(X - x)(aga(z; 00) — No(Z; 0,)exp(XB°)

~1p2p+2
(6.11) +O0(n""h )

= n'EKZ (X — x)

(5 - Ao(Z; 0)W(X)U |
8E0(Z; 00) — No(Z; 0,) ¥ (X)

+o(nt).
We now use the counting process notation introduced in the proof of
Proposition 1 to simplify the expected value in (6.11). Note that
{6 —Ay(Z;0,)¥(X)}U % U
= / dM(t).
j;) §6(Z;00) (2)
By conditioning on X and using the fact that the predictable variation
process

8E0(Z; 00) — No(Z; 0,)¥V(X)

(M, M>(t) =Y(t)V(X)A(¢;0,),
the expected value in (6.11) can be expressed as

EK2(X - x)f:( g(;(tl;jeo)) Y(£)W(X)A(t; 6,) dt

- EK2(X - x)fox(f(’)(t(;]%)) dN(t)
=EK5(X"C)3(§5(ZU;GO>)

Therefore, we have
Var{l,,(v,)}

n—1h—1f(x)f+:E{8( f(,)(Zu; 00))
n'hf(x)S(x;0,) + o(n A7),

To prove the asymptotic normality, we use the Cramér—Wold device. For
any constant vector b # 0, we need to show

(6.12)  Vnh (b7, (vy) — bTEL (7o)} —p N[O, £(x)b7S(x;6,)b).
Note that the left-hand side of (6.12) admits the form

X = x}Kz(u) du +o(n A1)

Filin ' Y AR,(X, - )Y, - EK,(X, - x)Y}
i=1
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To establish the asymptotic normality, we only need to verify the Lyapounov
condition:

|2+

EY. nhn {K,(X; ~ )Y ~ EK,(X ~0)T)[" " = o(1),

for some n > 0. By Condition A(ii), the left-hand side of the above expression
is bounded by
2(n " th) "V nE|YK,(X — x)[*T" = Of(nh) "%} > 0.

This verifies (6.12). Consequently, by (6.8) and (6.10),
Vih {§ = o + So(x;60) b, ()}

= {=£(2)So(x305) + 0p(1)} " {L(v0) — EL(70))

+ op(Vnh h?*+1)
— N{0, £71(x)So(x; 85) "' Sy (x5 0,)S,(x56,) '}

It remains to simplify the bias expression S,(x;6,) 'd,(x), namely to
show that

1+n/2

(6.13)

(6.14) So(xi00) B = (709,

where S,(x;6,), b,(x) and b,(x) are given, respectively, by (2.8), (6.10) and
(2.9).

Since [u’K(u)du is the first row of the matrix [ uu’K(u) du, it follows
that

{fuTK(u) du}{/uuTK(u) du}l = (1,0,...,0).

One can easily verify the above equality by multiplying with the matrix
[ uu”K(w) du on both sides. Hence,

{fuTK(u) du}{fuuTK(u) du} (/up“uK(u) du) = [ur* 'K (u) du.
Using this, one can easily verify that
b,(x <
So(x500)( (7] = 8.0,
and so (6.14) holds. Combining (6.13) and (6.14), we obtain Theorem 2. O

6.3. Proof of Theorem 4. We first state a simple lemma that will be used
throughout this section.

LEMMA 1. Suppose that K is bounded and compactly supported. If g(-) is
continuous at the point x and P(t|-) is equicontinuous at the point x, then

sup |c,(t) —c(t)| —=p O,

Oo<t<r
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provided that h — 0, nh/logn — », 0 < 7 < 4+, where

() =1 L V(08X KX, - x)
and

o(t) = f(x)g(x)P(tlx) [ K(u) du,
with Y,(t) = I{Z; > t}.
Upon conditioning on X;,..., X, one can apply Theorem 37 in Chapter 2
of Pollard (1984) to get the result.

Recall the notations of Section 3.3. Denote by a* = H*( f* — p°*) and
U* = (H*) 'X%. Then, by (3.11), &* maximizes

N
L(a)=n"" Y KX — x}
j=1

T o 0% *T
X5HB™ + Uja

—1og{ Y exp(X:BO + U)K, ( X, — x)}]
i€,
with respect to a. We will prove a somewhat more general result. Let &
maximize

N
L(a,7) =n"" Y KX, - «}[{Z < }

Jj=1

X

XD B + Ukla — log{ Y. exp(XiBY + Utla ) K\ (X, —x)”-
ieﬁ?j

Then our case corresponds to that of 7= o,

Let
Ni(t)=KZ, <t, 5 =1} and Y,(t)=HZ, >t}.
Put
S, o(a,u) =n"13] Yi(u)exp(X’l!‘TBO’k + Ui*Ta)Kh(Xi —x).
i=1
Then

(e, m) = [n70 YKy (X, - 2) (X8 + UrTa) dN(u)
0 i=1

— [Tlog(ns$, o(a,u)}n"" ¥ K,(X; - x) dNj(u).
0 i=1
The proof of Theorem 4 consists of the following main steps.

STEP 1. Consistency:
(6.15) a* -, 0.
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STEP 2. Asymptotic normality of Z/,(0, 7):

(6.16) Vnh {1,(0,7) — b,(7)} »p N{0,3(7, x)},
where 1,0, 7) = (91, (e, 7)/da)l 4= 0, and
¢,(p+1)(x)

by(7) = f(x)¥(x) A(7, x)bhP*!

with A(r, x) defined by (3.10) and
3(7,x) =f(x)¥(x)A(T, x)B.
SteEP 3. For any a** —, 0,
(6.17) U(a**,7) »p = f(x)V(x)A(7,x)A =3 (7, x).

Once Steps 1-3 are established, we proceed as follows. Since @* maxi-
mizes [,(a, 7), it follows from a Taylor expansion around 0 that

0=10,(a*,7)=0,0,7) +1)(a ", 1)a*,
where a** lies between 0 and &*, and hence a** —, 0. Thus, by (6.17),
&+ 3y(7, %) b, (1) = ~1 (&5, ) {0, 7) = by(7)} + 0p(RPTY).
By (6.16), (6.17) and Slutsky’s theorem, we conclude that
Vnh {&* + 3,(7,x) 'b,(7)}

—p N{0,3y(7, %) " S(7, 2)3y(7, x) ).
From (6.18), we obtain (3.12). Thus it remains to prove (6.15), (6.16) and
(6.17).

(p+1)!

(6.18)

ProoF oOF (6.15). Let the filtration %,, be the statistical information
accruing during the time [0, ], namely,

Gy = 0{X;,N;(u),Y,(u),i=1,...,n,0 <u <t}

nt

Then, under the independent censoring scheme,

¢
(6.19) M(£) = N(t) = [ Yi(w)exp{s(X)}ho(u) du
is an ., ,-martingale. Let

Sto(u) =1 ¥ Ky(X, - )Y, (wyexp{#(X,))

i=1
and
Sy (w) =n"' Y Ku(X; — x)Y(w)exp{y(X,)}U*.
i=1
Then, by (6.19), we can write
(6.20) l(a,t) —1,(0,¢t) =A,(a,t) +X,(a,t),
where

S, o(a,u)
. t T _ t n,0
A (a,t) = ]03;1 u) ary(u) du folog{—sn’o(o,u) }S;“yo(u)/\o(u) du,
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and
. n r S, o(a,u
X, (a,t) = fon_l '721Kh(Xi — x)[Ul* a — log{WH dM;(u).

By Lemma 1, we have
A(a,t) =f(x)V(x)A(t, x)
(6.21) X | vTa — log{fexp(u*Ta)K(u) du}] + 0p(1)
=A(a,t) +op(1).

The process X,(a,-) is a locally square integrable martingale with the
predictable variation process

B,(t) =(X,(a,"), X,(a,"))(t)

&Amwﬁ

R %T
= n*Ki/(X, —x)|U*a — lo
izzlj;) h( i )[ i g{ S,,,O(O,u)

XY, (w)exp{y(X;)}Ao(u) du.
By using Lemma 1, it can be calculated that
EX,(a,t)’=EB,(t)’=0(n"'h"') -0, 0<t<r.
This result, with (6.20) and (6.21), leads to
l,(a,7) = 1,(0,7) =A(a,7) +0p(1).
Clearly, A(a, ) is strictly concave, with a maximum at the point « = 0.

Since @* maximizes the concave function [,(«, 7) — [,(0, 7), by the concavity
lemma [see Andersen and Gill (1982)],

a* -, 0.
PROOF OF (6.16). Let

Spa(a,u) =n~" ¥ Yi(w)exp(XiB* + Ur'a) Ky(X; — x)UF.
i=1
Then, by Lemma 1, we have

Sn,l(o’ u)
(6:22 il CRRTR RS (e
By (6.19), we can express [/,(0, 7) as
(6.23) 1(0,7) = U,(7) + B,(7),
where

s T Slo,u
wm=wf§Lmem&ﬁ—ii—lﬁmw»

S,.0(0, u)
and
n T S 1 O,ZL
B,(7) = n~! AgljoKh(Xi - x){Ul* - %}K(u)exl){l/f(}(i)})‘o(u) du.
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Note that

i T S 1O,u
by § [ - 22021

S,.0(0,u)
XY;(u)[exp{w(X,)} — exp{u(x) + X5B%}| Ao(u) du.

By Taylor’s expansion we have

exp{y(X,)} — exp{u(x) + X;B)

(6.24) §7 ()
_ _ p+1 +1
Thus, by Lemma 1, (6.22) and (6.24), we obtain
(!,(PJrl)(x)

B,(7) = fC)W(x)

6.25 %
(6.25) ><A(1-,x)fJr K(u)(u* — v))uP* duh?P*t + op(hP*Y)

= b,() + 0p(h?*1).

We now treat the process U, (¢), using the martingale central limit theorem
[see Theorem 5.3.5 of Fleming and Harrington (1991)]. The predictable varia-
tion process U*(¢) = Vvnh U (%) is

Sn,l(o’u) o2
Sn,O(O’ u)

XY, (u)exp{y(X;)}Ao(u) du.

Wr U =0 h Y [KE(X, —x){Uﬁ -
i=1°0

By Lemma 1,
Uz U (t) = F(x) ¥ ()AL, x) [K2 () (w ~ ,)°* du + 0p(1)
=3(t, x) + op(1).
Write the /th element of the vector U7 (¢) as

vnh n t
— ¥ [Ku(X; ~ x)H, ,(u) dM;(w).
noj-170

Then H, ,(u) is a bounded random vector. To prove the asymptotic normality,
we need to check the Lindeberg condition:

._il fot”’lhK;?(Xi —x)H2 (w)I{yh/n|K, (X, - x)H, ,(u)| > &

X Y (w)exp{y(X;)}Ao(u) du »p 0 forall &> 0.

The last statement is valid since the random variable K{(X; — x)/h}H, ,(x)
is bounded and hence when n is large enough, the set indicator becomes
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empty. This establishes that
Vnh U,(t) »p N{0,3(t,x)}, O0<t<r.
This result, with (6.23) and (6.25), proves (6.16).

Proor or (6.17). Let
S, o(e,u) =n"' ¥ Y, (u)exp(XF B + U'a) K, (X, — x)U*UF".
i=1
Then

) 08, 5(a,u)8, o(a,u) =S, ((a,u)S, (a,u)"
Zn(a{’t) - _L Sn’o(a’u)Z

xn ' Y K,(X; —x)dN;(u).
i=1

For any consistent estimator &** —, 0, since the random vector U* and the
other involved random variables are bounded (by the continuity assumptions),
it can be easily shown that

(6.26) l;;(&**,r) = l;;(O, r) + oP(l).
By using Lemma 1,
S,.2(0,u)S, o(0,u) =S, 1(0,u)S, 1(0,u)"
S,.0(0,u)’

uniformly in 0 < u < 7, where A = [uw*w*"K(u)du — v,»! from (3.9). Thus,
by Lemma 1,

1:(0,7) = —Afofn’l ‘_ilKh(Xi — x) dN,(u) + 0p(1)

(6.27) = —Ap-! i K, (X, —x)N,(7) + o0p(1)

i=1

—Af(x)E{N(7)|X =x} + 0p(1),

with N(7) = [Z < 7, § = 1}, as in the proof of Proposition 1.
Recall that the compensator of N(¢) is V(X)/[! Y(u)Ay(v) du. Hence,

(6.28) E{N(r)|X = x) = ¥(2)A(r, x).
Combining (6.26)—(6.28), we conclude that
L(a*,7) = =f(x)V(x)A(7, x) A + 0p(1).

This proves (6.17) and completes the proof of Theorem 4. O
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