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SMOOTHED COX REGRESSION1

By Dorota M. Dabrowska
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Nonparametric regression was shown by Beran and McKeague and
Utikal to provide a flexible method for analysis of censored failure times
and more general counting processes models in the presence of covari-
ates. We discuss application of kernel smoothing towards estimation in a
generalized Cox regression model with baseline intensity dependent on a
covariate. Under regularity conditions we show that estimates of the re-
gression parameters are asymptotically normal at rate root-n, and we also
discuss estimation of the baseline cumulative hazard function and related
parameters.

1. Introduction. Nonparametric regression was introduced in survival
analysis by Beran (1981) as an alternative to the popular Cox proportional
hazard model. In its simplest formulation, the approach aims to recover the
conditional survival function

F�t�z� = P�T > t�Z = z�;(1.1)

where T is a possibly censored failure time and Z is a vector of covariates.
Under the assumption that the failure time T and censoring time T̃ are condi-
tionally independent givenZ, (1.1) is estimated by the sample product integral
(Gill and Johansen, 1990)

F�t�z� =π�0; t��1−A�du�z��
in which the unknown conditional cumulative hazard function

A�t�z� = −
∫
�0; t�

F�du�z�
F�u− �z�

is replaced by Beran’s conditional Aalen–Nelson estimate:

Â�t�z� =
∫
�0; t�

∑n
i=1Wi�z�Ni�ds�∑n
i=1Wi�z�Yi�s�

:

Here �Ni;Yi� are counting and risk processes,

Ni�t� = I�Ti ≤ t ∧ T̃i�; Yi�t� = I�Ti ∧ T̃i ≥ t�;(1.2)

associated with a sample of n individuals under study and Wi�z� are weights
dependent only on their covariates Z1; : : : ;Zn. In particular, kernel estimates
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correspond to the choice

Wi�z� =
1
a
K

(
z−Zi

a

)
=Ka�z−Zi�;

where K is a density, Ka�·� = a−1K�·/a� and a = a�n�, a�n� → 0 is a sequence
of bandwidths. The known drawback of Beran’s estimate is that it can handle
only a small number of covariates. One method to alleviate this problem is to
consider models incorporating both parametric and nonparametric constraints
on the covariates.

In this paper we discuss parameter estimation in a generalized Cox propor-
tional hazard model. Throughout, ��;F ;P� is a complete probability space
and �Ftx t ∈ �0;1��; Ft ⊆ F is a filtration satisfying the “usual conditions,”
that is, Ft is a family of right-continuous increasing σ-algebras and F0 con-
tains the P-null sets of F . We assume that �Ntx t ∈ �0;1�� is an adapted
counting process with intensity

3�dt� = EN�dt��Ft− = Y�t�α�t;Xt� exp�βTZt�dt;(1.3)

where Y�t� is a 0–1 predictable process indicating times at which the process
N is under observation, andXt andZt are predictable covariates. For the sake
of simplicity, Xt is a scalar process whereas Zt is a p-variate vector. Corre-
spondingly, α�t; x� is an unknown nonnegative deterministic function, and β
is a vector of unknown regression coefficients. In the absence of the covariate
Xt, (1.3) reduces to the usual Cox proportional hazard model whereas in the
absence of the covariate Zt, it corresponds to the nonlinear counting process
regression model in McKeague and Utikal (1990a). In the general case, (1.3) is
an extension of the stratified Cox regression model in which, givenXt = x, the
covariates Zt follow the proportional hazard assumption, but this assumption
may be violated by the Xt covariate.

In the standard survival analysis setting with �N;Y� processes given by
(1.2) and time independent �X;Z� covariates, a special case of (1.3) corre-
sponds to the partial linear transformation model in which the underlying
failure time T satisfies

h�T� = f�X� − βTZ+ ε;

where ε is an extreme value error term, and f�x� and h�t� = log
∫ t

0 α0�u�du
are unknown functions [Thomas (1983), O’Sullivan (1993)]. This model arises
frequently in regression diagnostics. A common approach is to fit Cox regres-
sion with the covariate X omitted, and next smooth martingale residuals to
recover the shape of the function f [Therneau, Grambsch and Fleming (1990)].
Properties of this procedure are unknown. An alternative approach is to fit
the larger model (1.3) and estimate the shape of the function f based on the
identity f′�x� = A′�1�x�/A�1�x� where A′�·�x� is the derivative of the baseline
cumulative hazard A�·�x� with respect to x. The proportional hazard or para-
metric regression models can be tested by comparing the doubly cumulative
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hazard

Ad�t; x� =
∫
�0; t�×�0; x�

α�u;w�dudw;(1.4)

derived under (1.3), with its counterpart appropriate for a specific submodel
[McKeague and Utikal (1991)].

Time dependent Xt covariates may arise when the occurrence of one event
is recorded on several time scales, or else in analyses of multistate models.
For example, let us consider an individual who can be in three states: healthy,
sick or dead. Denote these states by 0, 1 and 2, respectively. The clock time t
is the age of the individual. He starts in state 0 at time t=0 and subsequently
makes transitions 0→1→2 or 0→2. The disease incidence α01�t� exp�β01Zt�
and the mortality rate for the healthy α02�t� exp�β02Zt� depend on the age and
some covariate Zt. The mortality rate for the diseased α12�t;Xt� exp�β12Zt�
depends also on Xt, the age of onset of the disease or duration of the disease.
This type of a non-Markovian illness process goes back to Fix and Neyman
(1951) and was studied in the absence of theZt covariate by Andersen, Borgan,
Gill and Keiding [(1993), Chapter III] and McKeague and Utikal (1990a).

The model (1.3) was considered by Sasieni (1992) who derived the informa-
tion bound for estimation of the regression parameters and further proposed
to estimate β based on a smoothed profile likelihood. Here we make the as-
sumption that the covariate Xt; t ∈ �0;1� has a density f�t; v� with respect
to Lebesgue measure on the line. To estimate the regression parameters, we
shall use a rectangle in the (time) × (covariate) space, say R = �0;1� × �0;1�,
such that R is contained in the support of f�u; v�. Similarly to the usual Cox
regression model, Jacod’s (1975) formula for the likelihood of counting pro-
cesses implies that given a sequence �Ni;Yi;Xi;Zi�, i = 1; : : : ; n of n iid
replica of the �N;Y;X;Z� processes, the log-likelihood of the data is of the
form

L�β;A� = 1
n

n∑
i=1

∫
βTZi�u�Ni�du� +

1
n

n∑
i=1

∫
log�α�u;Xi�u���Ni�du�

− 1
n

n∑
i=1

∫
Yi�u� exp�βTZi�u��α�u;Xi�u��du:

To alleviate tail problems in smoothing, we shall use observations with covari-
ates 0 ≤ Xi�·� ≤ 1 to estimate the regression parameters. Their contribution
to the log-likelihood is

LR�β;A� =
1
n

n∑
i=1

∫
βTZi�u�I�0 ≤Xi�u� ≤ 1�Ni�du�

+ 1
n

n∑
i=1

∫
log�α�u;Xi�u���I�0 ≤Xi�u� ≤ 1�Ni�du�

− 1
n

n∑
i=1

∫
Yi�u� exp�βTZi�u��I�0 ≤Xi�u� ≤ 1�α�u;Xi�u��du:
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Under regularity conditions discussed in Section 2, the right-hand side is up
to a term of order oP�n−1/2�, equal to

SMLR�β;A� =
1
n

n∑
i=1

∫
R
βTZi�u�Ñi�duyx�dx

+ 1
n

n∑
i=1

∫
R

log�α�u;x��Ñi�duyx�dx

− 1
n

∫
R
S�0��u;x;β�α�u;x�dudx;

where

S�0��t;w;β� =
n∑
i=1

Yi�t� exp�βTZi�t��Ka�w−Xi�t��

and

Ñi�tyw� =
∫ t

0
Ka�w−Xi�u��Ni�du�

are the smoothed risk and counting processes. Analogously to Andersen, Bor-
gan, Gill and Keiding [(1993), Chapter VII], substitution of Beran’s estimator

Âβ�duyx� =
∑n
i=1 Ñi�duyx�
S�0��u;x;β�

in place of α�t; x�dt yields after some arithmetic SMLR�β; Âβ� = C̃�β� + Rem,
where Rem is a remainder term independent of β and

C̃R�β� =
1
n

n∑
i=1

∫
R

[
βTZi�u� − logS�0��u;x;β�

]
Ñi�duyx�dx:(1.5)

As an estimator of the regression parameters we choose the solution β̃ to
the score equation Ũ�β� = 0 where Ũ�β� = ∇C̃�β� is the gradient of C̃�β�.
Under regularity conditions, we show β̃ is a consistent estimate of the true
parameter value β0 and

√
n�β̃−β0� is asymptotically normal with mean zero

and covariance matrix that can be estimated consistently by Ĩ �β̃� where
Ĩ �β� = −∇2C̃�β� is the Hessian of C̃�β�. Since evaluation of the smoothed
profile likelihood can be quite time consuming in practice, we further give
a simpler form of this log-likelihood and verify that under regularity condi-
tions it leads to regression estimates asymptotically equivalent to β̃. We also
indicate an extension towards higher-dimensional Xt covariates. Finally, we
discuss asymptotic normality of Beran’s estimate

Â�tyw� =
n∑
i=1

∫
�0; t�

Ka�w−Xi�u��
S�0��u;w; β̂�

Ni�du�(1.6)
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of the baseline cumulative hazard function

A�tyw� =
∫ t

0
α�u;w�du

and estimates of related parameters such as the baseline hazard function
α�t;w� and the doubly cumulative hazard (1.4).

2. Main results. Throughout we denote by B a compact neighborhood of
the true parameter value β0. We shall write

ξ0i�t; β� = Yi�t� exp�βTZi�t��
for short, and correspondingly, we let

ξ1i�t; β� = Zi�t�ξ0i�t; β�; ξ2i�t; β� = Z⊗2
i �t�ξ0i�t; β�:

Moreover, if Zi`�t�, ` = 1; : : : ; p is the `th component of the vector Zi�t�, then

ξ1`i�t; β� = Zi`�t�ξ0i�t; β�; ξ2`i�t; β� = Z2
i`�t�ξ0i�t; β�:

We make the assumption that for some small δ, δ > 0, the support of the
density f�u; v� ofX�u�; u ∈ �0;1� contains the δ-neighborhood of the rectangle
R = �0;1� × �0;1� of the form

Rδ = �0;1� × �−δ;1+ δ� :
Further, we let F1�u; v� and g2`�u; v;β� be functions on Rδ and Rδ × B,
respectively, such that

EYi�u��Xi�u� = F1�u;Xi�u�� a.s.,

Eξ2
1`i�u;β0��Xi�u� = g2`�u;Xi�u�� a.s.

Under condition I.2 below, these conditional expectations are finite. Finally,
for q = 0;1;2, we set

S�q��u; v;β� =
n∑
i=1

ξqi�u;β�Ka�v−Xi�u��

and we let s�q��u; v;β� be scalar-, vector- and matrix-valued functions on Rδ×
B such that

Eξqi�u;β��Xi�u� =
s�q��u;Xi�u�; β�
f�u;Xi�u��

a.s.

We also let S�q��t; x;β�, q = 1;2 be the vector and matrix of first and sec-
ond derivatives of S�0��t; x;β� with respect to β. To show consistency and
asymptotic normality of the regression estimates, we shall use the following
assumptions:

I.1. The density f�u; v� and the function F1�u; v� are bounded away from 0
on Rδ.

I.2. max`E sup�ξ2
2`i�u;β�x u ∈ �0;1�; β ∈ B� <∞.
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I.3. For u ∈ �0;1�, the functions g�u; v� = f�u; v� and α�u; v� have a con-
tinuous second derivative with respect to v, v ∈ �−δ;1 + δ�. Moreover,
the functions g�u; v� and their derivatives with respect to v are bounded
uniformly on Rδ.

I.4. The functions g2`�u; v;β� are bounded on Rδ × B. For q = 0;1;2, the
functions s�q��u; v;β� have continuous second derivatives with respect to
v ∈ �−δ;1 + δ� and the derivatives are bounded uniformly on Rδ × B.
Moreover, the matrix

6�β0� =
∫ 1

0

∫ 1

0

[
s�2��u;w;β0�
s�0��u;w;β0�

− e�u;w;β0�⊗2
]

× s�0��u;w;β0�α�u;w�dudw;
(2.1)

where

e�u; v;β0� = s�1��u;w;β0�/s�0��u;w;β0�;
is positive semidefinite.

I.5 The kernel function K is a mean zero left-continuous density of bounded
variation on �−1;1�.

I.6 For some sequence a = a�n� → 0; na�n� → ∞,

1
n
S�q��t; x;β� →P s

�q��t; x;β�(2.2)

uniformly in �t; x;β� ∈R ×B.

Note that if F�z;dyv;u� = P�Z�u� ≤ z; Y�u� = d�X�u� = v�; d = 0;1
then

g2`�u; v;β� = f�u; v�
∫
z2
` exp�2βTz�F�dz;1yv;u�; z = �z1; : : : ; zp�T

and conditions I.2–I.4 imply that the functions s�p��u; v;β� are bounded on
Rδ ×B and continuous in β for �u; v� ∈ Rδ. Condition I.1 implies also that
s�0��u; v;β0� is bounded away from zero.

We consider now in more detail the special case corresponding to observa-
tion of an iid sample of random variables �T ∧ T̃; I�T ≤ T̃�;Z;X� where T
and T̃ are failure and censoring times, respectively. In this case the smoothed
risk process reduces to

S�0��t; x;β� =
n∑
i=1

I�Ti ∧ T̃i ≥ t�Ka�x−Xi� exp�βTZi�:

If the density of the covariate X satisfies condition I.1. and log n/na → 0,
na→∞, then

1
n

n∑
i=1

I�Zi ≤ z; Ti ∧ T̃i ≥ t�Ka�x−Xi�

is a (strongly) uniformly consistent estimate of ϕ�t; z; x� = P�Zi ≤ z; Ti ∧
T̃i ≥ t�Xi = x�f�x� where f�x� is the density of X [Dabrowska (1989)]. If
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the covariate Z is bounded, then using integration by parts, it is easy to
verify that condition I.6 is satisfied. In the general case, under the regularity
conditions I.2–I.4, we have n−1ES�q��u; v;β� = s�q��u; v;β�+O�a2� uniformly
on R×B. Moreover, condition I.6 is satisfied pointwise in �u; v;β� ∈R×B. By
eventually assuming existence of higher moments of the random variables ξ2i`,
condition I.6 can be verified using Bickel and Wichura’s (1971) bound on the
supremum of the process n−1�S�q� −ES�q���u; v;β� in terms of its oscillation
modulus. See Nielsen and Linton (1995) for a similar argument.

Proposition 2.1. Suppose that conditions I.1–I.6 hold.

(i) With probability tending to 1, the smoothed profile likelihood

C̃R�β� =
1
n

n∑
i=1

∫
R

[
βTZi�u� − logS�0��u;w;β�

]
Ñi�duyw�dw(2.3)

has a unique maximizer β̃, and β̃→P β0.

(ii) If in addition na4 → 0 then
√
n�β̃ − β0� is asymptotically multivariate

normal N �0; 6�β0�−1�. Moreover, the covariance matrix 6�β0� can be estimated

consistently by Ĩ �β̃� where Ĩ �β� = −∇2C̃R�β� is the Hessian of C̃R�β�.

The proof in Section 3 will rest on a modification of Andersen and Gill’s
(1982) derivation of the asymptotic properties of regression estimates in the
standard Cox regression model. Note that evaluation of the profile likelihood,
score equation and the matrix Ĩ �β� can be time consuming in practice since
determining the contribution of logS�0��t; x;β� and its derivatives requires
numerical integration. The following proposition allows reducing this integra-
tion to a sum taken over the jump points of the counting processes Ni�t�.

Proposition 2.2. Suppose that conditions I.1–I.6 hold.

(i) With probability tending to 1, the profile likelihood

CR�β� =
1
n

n∑
i=1

∫ 1

0

[
βTZi�u� − logS�0��u;Xi�u�; β�

]

× I�0 < Xi�u� ≤ 1�Ni�du�
(2.4)

has a unique maximizer β̂ and β̂→P β0.
(ii) Suppose that n−1S�q��u; v;β0�, q = 0;1, are processes on �0;1�2 with

sample paths of bounded total variation. If na4 → 0 and

ψ̂�u;w� = 1√
n

n∑
i=1

ξ0i�u;β0�
[
I�0 < Xi�u� ≤ w�

−
∫ w

0
Ka�x−Xi�u��dx

]
→P 0

(2.5)

uniformly in �t;w� ∈ �0;1�2, then β̂ = β̃0 + oP�1/
√
n�. We also have I�β̂� →P

6�β0� where I�β� = −∇2CR�β� is the Hessian of CR�β�.
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If na4 → 0 then under the assumed regularity conditions, (2.5) holds point-
wise in �u;w� ∈ �0;1�2. If ψ̂ is a tight sequence in D��0;1�2�, then we also
have uniform convergence. In particular in the survival analysis setting with
time independent �X;Z� covariates and Yi�u� processes given by Yi�u� =
I�Ti ∧ T̃i ≥ u� where �Ti; T̃i� are the failure and censoring times, the pro-
cess ψ̂ is tight if the Z covariates are bounded or, for example, if for p = 2;4
the functions hp�u; v�; �u; v� ∈Rδ, hp�u;Xi� = E�Yi�u� exp�pβT0Zi��Xi� a.s.,
satisfy the Lipschitz condition �hp�u; v� − hp�u′; v�� ≤ C�u − u′� uniformly in
v ∈ �−δ;1 + δ�. In the latter case, tightness of ψ̂ is a consequence of Bickel
and Wichura’s (1971) moment criteria and some elementary algebra.

Both propositions can be extended to include higher-dimensional covariates.
We discuss now this point in some more detail by assuming one more time
standard censoring model with time independent covariates �X;Z�. In this
case, the smoothed counting and risk processes are

Ñi�tyx� =
1

a1 · · ·ad
K

(
x1 −Xi1

a1
; : : : ;

xd −Xid

ad

)
Ni�t�(2.6)

and

S�0��t; x;β�= 1
a1 · · ·ad

n∑
i=1

Yi�t� exp�βTZi�K
(
x1−Xi1

a1
; : : : ;

xd−Xid

ad

)
:(2.7)

Here x = �x1; : : : ; xd� is a d-variate covariate and K is a mean zero den-
sity of bounded variation on �−1;1�d. Moreover, Ni�t� = I�Ti ≤ t ∧ T̃i� and
Yi�t� = I�Ti∧ T̃i ≥ t� where Ti and T̃i are failure and censoring times condi-
tionally independent given Zi. If the covariates Zi are bounded then similarly
to the scalar case, a sufficient condition for (strong) uniform consistency of
n−1S�q��t; x;β�, q = 0;1;2 is

max ai→ 0; na1 · · ·ad→∞;
log n

na1 · · ·ad
→ 0:(2.8)

If d ≤ 3, then, under the smoothness conditions of assumption I, the estimates
β̃ and β̂ are asymptotically normal at rate

√
n, provided nmax a4

i → 0 and
(2.8) holds. These conditions are satisfied, for instance, if ai ∼ n−r and 1/4 <
r < 1/d. For higher-dimensional covariates, d > 3, the regression estimates
β̃ and β̂ remain consistent and the Hessian Ĩ �β� of the profile likelihood
satisfies Ĩ �β∗� →P 6�β0� for any β∗ →P β0. The regression estimates β̃ are,
however, no longer asymptotically normal at rate

√
n. One possible approach

to retain the
√
n rate of convergence is to consider a one-step MLE estimate

˜̃
β = β∗ + �nĨ �β∗��−1 ˜̃U�β∗�;

where β∗ is an initial
√
n-consistent estimate of β0, Ĩ �β� is the Hessian of the

profile likelihood C̃�β� in Proposition 2.1 while ˜̃U�β� is a score process based
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on higher order kernels. Specifically, let K1 be a function on �−1;1� such that
∫
K1�u1; : : : ; ud�du1 : : : ud = 1;

∫
u
p1
1 : : : u

pd
d K1�u1; : : : ; ud�du1 : : : ud = 0 if

∑
pi ≤ 2p− 1;

6= 0 if
∑
pi = 2p;

and denote by Ñ1i and S
�0�
1 the analogues of the processes (2.6) and (2.7)

obtained by replacing the kernel K with K1. Then, assuming that the dif-
ferentiability conditions I.2 and I.3 hold for derivatives of order 2p, a minor
modification of arguments in Section 3 can be used to show that the score
process

˜̃
U�β� = 1

n

n∑
i=1

∫
R

[
Zi −

S
�1�
1 �t; x;β�

S
�0�
1 �t; x;β�

]
Ñ1i�dtyx�dx

satisfies
√
n
˜̃
U�β0� ⇒ N �0; 6�β0�� provided nmax a4p

i → 0 and (2.8) holds. If
ai ∼ n−r, then these conditions are satisfied if 1/4p < r < 1/d. We also have
˜̃
I�β∗∗� →P 6�β0� for any β∗∗→P β0, where ˜̃I�β� = ∇ ˜̃U�β�. By Taylor expansion

and
√
n-consistency of the initial estimate β∗,

√
n�˜̃β− β0� is then asymptoti-

cally N �0; 6�β0�−1�. Under suitable smoothness assumptions, an initial
√
n-

consistent estimate of β0 can be based on averaged derivative estimation.
We return now to the case of univariate Xt covariates and discuss estima-

tion of the doubly cumulative hazard Ad and the hazard function α. First, the
baseline cumulative hazard function A�tyx� =

∫ t
0 α�u;x�du can be recovered

using Beran’s estimate

Â�tyx� =
n∑
i=1

∫ t
0

Ñi�duyx�
S�0��u;x; β̂�

;

where now β̂ denotes either of the two estimators of the regression parameters
β0. Further, the baseline doubly cumulative hazard Ad�t; x� =

∫ x
0 A�tyw�dw

is estimated by its sample analogue Âd�t; x� obtained by substituting Beran’s
estimate. Finally, we follow Ramlau–Hansen (1983) and McKeague and Utikal
(1990a) and smooth Â�tyx� in the time direction to get

α̂�t; x� =
∫ τ

0
K̃b�t− u�Â�duyx�

as an estimate of the hazard function α. Here K̃ is a kernel function on �−1;1�
and K̃b�·� = b−1K̃�·/b� for some sequence of bandwidths b = b�n� → 0. In the
absence of the covariate Z, Keiding (1990) and Nielsen and Linton (1995) pro-
posed alternative hazard function estimators involving smoothing both count-
ing and risk processes in the (time) × (covariate) direction. Under regularity
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conditions, their estimates are asymptotically equivalent to α̂; therefore, we
do not consider them in more detail.

Proposition 2.3. Suppose that the assumptions of Propositions 2.1(ii) or
2.2(ii) hold and set c�K� =

∫
K2�r�dr, and

ϕ�t; x;β0� =
α�t; x�

s�0��t; x;β0�
:

(i) For almost all x ∈ �0;1�, the process V̂�tyx� = √na�Â�tyx� −A0�tyx��
converges weakly in D�0;1� to a time-transformed Brownian motion V�tyx�
with variance function

VarV�tyx� = c�K�
∫
�0; t�

ϕ�u;x;β0�du

and V̂ is asymptotically independent of the standardized regression coeffi-

cients β̂.
(ii) If n−1S�0��u;w;β0�, is a process on �0;1�2 with sample paths of bounded

total variation, then V̂d�t; x� =
√
n�Âd − Ad��t; x�, �t; x� ∈ �0;1�2 converges

weakly in D��0;1�2� to a mean zero Gaussian process Vd�t;w� with covariance
function

cov�Vd�t; x�;Vd�t′; x′�� =
∫ t∧t′

0

∫ x∧x′

0
ϕ�u;w;β0�dudw

+ η�t; x;β0�T6�β0�−1η�t′; x′; β0�;
(2.9)

where

η�t; x;β0� =
∫ t

0

∫ x
0
e�u;w;β0�Ad�du;dw�:(2.10)

The asymptotic covariance of
√
n�β̂ − β0� and V̂d�t; x� is equal to

−6�β0�−1η�t; x�.
(iii) Suppose that K̃ is a kernel function satisfying condition I.5 and α�t; x�

is continuously twice differentiable in �t; x�; �t; x� ∈ Rδ. If nab → ∞ and

nab5 → 0, then for almost all �t; x� ∈ �δ;1 − δ� × �0;1�,
√
nab�α̂ − α��t; x� is

asymptotically mean zero normal with variance σ2
α�t; x�= c�K�c�K̃�ϕ�t; x;β0�

and asymptotically independent of
√
n�β̂− β0�.

Note that the asymptotic covariance of Âd�t; x� has the same structure as
the Aalen–Nelson estimate in the usual Cox regression model; that is, (2.9)
represents the asymptotic covariance of the doubly cumulative hazard func-
tion estimate appropriate when β0 is known plus a correction term accounting
for estimation of the β0. In the remaining two cases, the limiting distributions
are not affected by estimation of the regression parameters. Further, the co-
variances in part (i) and (ii) can be estimated using the substitution method,
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whereas Lemma 3.2(iv) implies that

σ̂2
α�t; x� = c�K�c�K̃�

n∑
i=1

∫ t+b
t−b

K̃b�t− u�
nÑi�duyx�
S�0��u;x; β̂�2

(2.11)

is a consistent estimate of the asymptotic variance of α̂�t; x� provided the
sequence of bandwidths satisfies a4b−1 → 0.

Proposition 2.3 can be used to construct goodness-of-fit tests for specific hy-
potheses on the form of the baseline hazard function α�t; x�. If α�t; x� belongs
to some parametric family of hazards, G = �αθ�t; x�x θ ∈ 2� then estimation
of the �θ;β� parameters can be based for instance on the maximum likelihood
method. Under regularity conditions derived by Borgan (1984), such estimates
are typically asymptotically normal at rate

√
n. If α̂MLE denotes the corre-

sponding maximum likelihood estimate of α, then a conservative test for the
hypothesis H0x α ∈ G can be obtained by checking if α̂MLE falls into the Bonfer-
roni simultaneous confidence bands of the form α̂�t; x�± z�p�σ̂�t; x��nab�−1/2,
where α̂�t; x� is the estimate of Proposition 2.3, σ̂�t; x� is given by (2.11) and
z�p� is a percentile of the standard normal distribution.

McKeague and Utikal (1991) proposed chi-squared goodness-of-fit tests ob-
tained by comparing the doubly cumulative hazard function estimate valid
under the general model [in our case (1.3)] with its counterpart derived un-
der a specific submodel. Here we consider briefly the test for the hypothe-
sis H0x α�t; x� = α0�t� where α0 is an unknown function. In the standard
survival analysis setting with time independent �X;Z� covariates, H0 corre-
sponds to the hypothesis of conditional independence of the failure time T
and covariate X given Z, and proportional hazard model assumption on the
pair �T;Z�. Under the null hypothesis the doubly cumulative hazard function
reduces to Ad�t; x� = xA0�t� where A0�t� =

∫ t
0 α0�u�du. We can estimate it

by Âd0�t; x� = xÂ0�t�,

Â0�t� =
n∑
i=1

∫ t
0

∫ 1

0

Ñi�duyw�dw
S
�0�
c �u; β̂c�

;

where

S
�0�
c �u;β� =

∫ 1

0
S�0��u;w;β�dw

is the integrated risk process and β̂c is either the estimate of Propositions 2.1
and 2.2 or else it is the solution of the score equation

0 = Ũc�β� =
1
n

n∑
i=1

∫
R

[
Zi�t� − ∇ logS�0�c �u;β�

]
Ñi�duyw�dw:(2.12)

Letting S�q�c �u;β� = ∇qS�0�c �u;β�, q = 1;2, under condition I.6, we have

1
n
S
�q�
c �u;β� →P s

�q�
c �u;β� =

∫ 1

0
s�q��u;w;β�dw
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uniformly in �u;β� ∈ �0;1�×B. Moreover, by repeating some of the arguments
of Section 3, under the null hypothesis, the processes V̂d�t; x� =

√
n�Âd −

Ad��t; x� and V̂d0�t; x� =
√
nx�Â0�t�−A0��t� are asymptotically equivalent to

mean zero Gaussian processes �Vd;Vd0� where Vd is defined in Proposition
2.3 and

cov�V0d�t; x�;V0d�t′; x′�� = cov�V0d�t; x�;Vd�t′; x′��

= xx′
∫ t∧t′

0

α0�u�du
sc�u;β0�

+ηc�t; x;β0�T6c�β0�−1ηc�t′; x′�:

Here ηc�t; x� = x
∫ t

0 ec�u;β0�α0�u�du, ec�u;β0� = s
�1�
c �u;β0�/s

�0�
c �u;β0�. More-

over, 6c�β0� = 6�β0� if β̂c is the estimate of Propositions 2.1 and 2.2 and
6c�β0� is the stochastic limit of −∇Ũc�β�, if β̂c is the solution of the score
equation (2.12). If D = �Dijx i = 1; : : : ; p; j = 1; : : : ; q�, a partition of the
parameter set �0;1�2 into disjoint rectangles of the form Dij = D1i × D2j
where D1i = �ti−1; ti�; D2j = �xj−1; xj�, 0 = t0 < t1 < · · · < tp = 1,
0 = x0 < x1 < · · · < xq = 1, then setting R̂ij =

√
n�Âd − Âd0��Dij�, under

the null hypothesis the vector R̂ = �R̂ijx i ≤ p;j ≤ q� is approximately mean
zero normal with covariance matrix C determined by As: cov�R̂ij; R̂i′j′� =
cov�Vd�Dij�;Vd�Di′j′�� − cov�V0d�Dij�;V0d�Di′j′��. Denoting by Ĉ the sam-
ple analogue of this matrix, and assuming that its rank is pq, under the null
hypothesis the statistic R̂TĈ−R̂ has approximately a chi-squared distribution
with pq degrees of freedom.

Under the additional assumption that s�q��u;w;β0� ≡ s
�q�
c �u;β0�, �u;w� ∈

�0;1�2, the process
√
n�Âd�t; x�−xÂ0�t�� is under the null hypothesis asymp-

totically equivalent to a stochastic integral of the form
∫ t

0

∫ x
0

√
hdB− x

∫ t
0

∫ 1

0

√
hdB;(2.13)

where B is a Brownian sheet on �0;1�2 and h�u;w� = α0�u�/sc�u;β0�. Under
this additional constraint on the expected risk functions s�q�, the test for the
hypothesis H0x α�t; x� = α0�t� can be based on McKeague, Nikabadze and
Sun’s (1995) transformation of (2.13) to its innovation Brownian sheet. The
resulting test applies in particular to the standard censoring model if, under
the null hypothesis, the covariate X is independent of �T; T̃;Z� and T and T̃
are failure and censoring times, conditionally independent of Z.

3. Proofs. We denote by � · �∞ the supremum norm on R = �0;1�2. From
Section 2 recall that

ξ0i�t; β� = Yi�t� exp�βTZi�t��
and

ξ1i�t; β� = Zi�t�ξi0�t; β�; ξ2i�t; β� = Z⊗2
i �t�ξ0i�t; β�:
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We shall also write

Mi�t� =Ni�t� −
∫ t

0
ξ0i�u;β0�α�u;Xi�u��du

for the fundamental martingale associated with the counting process Ni�t�,
t ∈ �0;1� and set

Ñi�tyx� =
∫ t

0
Ka�x−Xi�u��Ni�du�;

M̃i�tyx� =
∫ t

0
Ka�x−Xi�u��Mi�du�:

We denote by K the cdf associated with the density K and similarly, Ka�·� =
K�·/a� is the cdf corresponding to the density Ka�·� = a−1K�·/a�.

In Section 3.1 we give a sequence of lemmas which are next used to mod-
ify asymptotic normality results of Andersen and Gill (1982) to the present
setting. We shall frequently rely on the fact that the sequence Ka, a→ 0 con-
verges weakly to a cdf assigning point mass to r = 0. Thus for any bounded
continuous functions ϕ1�x� and ϕ2�x1; x2�, we have

∫
ϕ1�r�Ka�dr� → ϕ1�0�;

∫
ϕ2�r1; r2�Ka�dr1�Ka�dr2� → ϕ2�0;0�:(3.1)

More generally, if ϕ is a function integrable with respect to Lebesgue measure,
then

∫
ϕ�u�Ka�x− u�du =

∫
ϕ�x− r�Ka�dr� → ϕ�x�(3.2)

for almost all x [Stein (1970)]. Finally, we shall often use boundedness of the
kernelsK and K̃ implied by the assumption I.5. Thus aKa�x−·� and bK̃b�t−·�
are also bounded functions.

3.1. Some auxiliary results. In this section we denote by ĥ�u;x�; �u;x� ∈R

a sequence of processes such that for any x ∈ �0;1�, ĥ�·; x� and
∫ x

0 ĥ�·;w�K�w−
Xi�·�dw are Ft–predictable. In Section 3.2, ĥ�u;x� will be either a determin-
istic function or

ĥ�u;x� = S
�1��u;x;β0�

S�0��u;x;β0�
;

ĥ�u;x� = log
S�0��u;x;β�
S�0��u;x;β0�

or ĥ�u;x� = S�0��u;x;β0�−1. In these cases the predictability assumption is
satisfied.

The first lemma will be used to verify consistency of the estimate β̃ of
Proposition 2.1 and asymptotic unbiasedness of the doubly cumulative hazard
estimate Âd�t; x� and the score process Ũ�β0� = ∇C̃R�β��β=β0

.
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Lemma 3.1. For p = 0;1 let

Bpn�t; x� =
1
n

∫ t
0

∫ x
0
ĥ�u;w�

n∑
i=1

ξpi�u;β0�Ka�w−Xi�u��

× �α�u;Xi�u�� − α�u;w��dudw;

Dpn�t; x� =
1
n

n∑
i=1

∫ t
0

∫ x
0
ĥ�u;w�Zp

i �u�Ñi�duyw�dw:

(i) Suppose that �ĥ�∞ = OP�1� and na → ∞. Then �Bpn�∞→P 0. If in
addition na4 → 0, then �√nBpn�∞→P 0.

(ii) Let h be a bounded function such that �ĥ− h�∞→P 0. Then �Dpn −
Dp�∞→P 0 where

Dp�t; x� =
∫ t

0

∫ x
0
h�u;w�s�p��u;w;β0�α�u;w�dudw:

(iii) If �ĥ�∞→P 0, then for any fixed x ∈ �0;1� we have

1√
n

∫
�0;t�×�0;x�

n∑
i=1

ĥ�u;w�M̃i�duyw�dw→P 0(3.3)

uniformly in t ∈ �0;1�.

Proof. We shall verify part (i) for the process B0n; each component of the
vector B1n can be handled analogously. Define

θi�u;w;β0� = ξ0i�u;β0�Ka�w−Xi�u���α�u;Xi�u�� − α�u;w��:(3.4)

We have �B2
0n�∞ = OP�n−1� In, where

In =
1
n

∫ 1

0

∫ 1

0

[ n∑
i=1

θi�u;w;β0�
]2

dudw

= 1
n

n∑
i=1

∫ 1

0

∫ 1

0
θ2
i �u;w;β0�dudw+

1
n

∑
i1 6=i2

∫ 1

0

∫ 1

0

2∏
j=1

θij�u;w;β0�dudw

= I1n + I2n:

Therefore it is enough to verify that EI1n = O�a� and EI2n = O�na4�. Using

0 ≤
∫ 1

0
Ka�w−Xi�u��dw ≤ 1

and boundedness of aKa�·� =K�·/a�, we have

EI1n = E
∫ 1

0

∫ 1

0

[
ξ0i�u;β0�Ka�w−Xi�u���α�u;Xi�u�� − α�u;w��

]2

= O�a2�E
∫ 1

0

∫ 1

0
ξ2

0i�u;β0�Ka�w−Xi�u��2 dudw

= O�a�E sup
u∈�0;1�

ξ2
0i�u;β0� = O�a�:
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Moreover,

EI2n = �n− 1�E
∫ 1

0

∫ 1

0

2∏
j=1

[
g1�u;Xj�u��Ka�w−Xj�u��

×
[
α�u;Xj�u�� − α�u;w�

]]
dudw;

where g1�u;Xi�u�� = Eξ0i�u;β0��Xi�u� a.s. Under assumption I.4, g1�u;w�
is a bounded function on Rδ with a bounded second derivative with respect
to w. The latter coupled with a two-term Taylor expansion shows that EI2n =
O�na4�.

In part (ii) we consider again the case of p = 0 only. We have D̂0n −D0 =∑n
j=1Jin where

J1n�t; x�=
1
n

n∑
i=1

∫ t
0

∫ x
0
ĥ�u;w�M̃i�duyw�dw;

J2n�t; x�=
1
n

n∑
i=1

∫ t
0

∫ x
0
ĥ�u;w�θi�u;w;β0�dudw;

J3n�t; x�=
∫ t

0

∫ x
0

[
ĥ�u;w�S�0��u;w�−h�u;w�s�0��u;w�

]
α�u;w�dudw:

(3.5)

By part (i) and uniform consistency of n−1S�0�, �Jpn�∞ →P 0 for p = 2;3.
Further, by application of Lenglart’s inequality, for any fixed x ∈ �0;1�, we
have

P
(
sup
t≤1
�J1n�t; x�� > η

)
≤ η

2

δ2
+P��J1n��1; x� > δ�;(3.6)

where �J1n��·; x� is the predictable variation of the process J1n�·; x�; t ∈ �0;1�.
But

�J1n��t; x�=
1
n2

n∑
i=1

∫ t
0

[∫ x
0
ĥ�u;w�Ka�w−Xi�u��dw

]2

ξ0i�u;β0�α�u;Xi�u��du

≤ 1
n2

(
�ĥ�∞

)2
O�1�

n∑
i=1

∫ 1

0

[∫ 1

0
Ka�w−Xi�u��dw

]2

ξ0i�u;β0�du:

The term in brackets is bounded by one. Therefore the law of large numbers
implies that the right-hand side is of order OP�1/n�.

We have shown that for any fixed x ∈ �0;1�, we have D̂0n�t; x� →P D0�t; x�
uniformly in t ∈ �0;1�. If ĥ and h are nonnegative then both D̂0n and D0 have
nondecreasing paths. By application of the Pólya–Cantelli theorem, we have
�D0n −D0�∞ →P 0. In the general case, the Pólya–Cantelli theorem can be
applied to ĥ± and h± where ĥ+ = max�ĥ;0�, ĥ− = min�−ĥ;0� and h± defined
analogously. This completes the proof of part (ii).

Finally, under the assumptions of part (iii), the predictable variation of the
sum on the left-hand side of (3.4) is equal to n�J1n�1; x�� = �ĥ�∞OP�1� =
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oP�1� where J1n is given by (3.6). Therefore, Lenglart’s inequality (3.6) com-
pletes the proof. 2

Using uniform consistency of n−1S�q��t; x;β�, q = 0;1 and the strong law
of large numbers, it is also easy to verify that if h is a bounded function on R

such that �ĥ− h�∞→P 0 then

1
n

n∑
i=1

∫ t
0
ĥ�u;Xi�u��Zp

i �u�I�0 < Xi�u� ≤ 1�Ni�du� →P Dp�t; x�(3.7)

uniformly in �t; x� ∈ �0;1�2 where Dp�t; x� is defined by (3.3). Moreover, if

�ĥ�∞→P 0, then for any fixed x ∈ �0;1� we have

1√
n

∫
�0;t�

n∑
i=1

ĥ�u;Xi�u��I�0 < Xi�u� ≤ x�Mi�du� →P 0(3.8)

uniformly in t ∈ �0;1�.
The next lemma gives two “local” analogues of Lemma 3.1 used in the

proof of asymptotic normality of Beran’s estimate Â�tyx� and hazard function
estimate α̂�t; x�.

Lemma 3.2. For x ∈ �0;1� set

B̂0n�tyx� =
1
n

∫
�0; t�

ĥ�u;x�
n∑
i=1

θi�u;x;β0�du;

D̂0n�tyx� =
1
n

n∑
i=1

∫ t
0
ĥ�u;x�Ñi�duyx�:

where θi�u;x;β0� is given by (3.4). Moreover, for �t; x� ∈ �δ;1− δ� × �0;1� set

B̃0n�tyx�=
∫ t+b
t−b

K̃b�t−u�B̂0n�du;x�; D̃0n�tyx�=
∫ t+b
t−b

K̃b�t−u�D̂0n�du;x�:

Finally, for any function h�u;x�, let �h�x = supu∈�0;1� �h�u;x��.

(i) Suppose that �ĥ�x = OP�1�, and na → ∞. Then (a) �B̂�x →P 0 and√
a�D̂n�x→P 0; (b) If in addition na5 → 0, then

√
na�B̂n�x→P 0.

(ii) If �ĥ− h�x→P 0 and �h�x <∞, then �D̂n −D�x→P 0 where

D�tyx� =
∫ t

0
h�u;x�s�p��u;x;β0�α�u;x�du:

(iii) Suppose that ĥ�u;x�; u ∈ �t − δ; t + δ� is bounded in probability and

nab → ∞. Then (a)
√
ab D̃n�tyx� →P O. Moreover, (b) if a4b−1 → 0 then

B̃n�tyx� →P 0 and (c) if na5 → 0, then
√
nabB̃�tyx� →P 0.

(iv) If ĥ�u;x� →P h�u;x� uniformly in u ∈ �t − δ; t + δ� and nab → ∞,

a4b−1 → 0, then D̃n�tyx� →P d�tyx� where d�tyx� = h�t; x�s�0��t; x;β0�α�t; x�.
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In parts (i) and (ii), the assumptions on the ĥ process and the “in probability”
limits are meant to hold for almost all x, x ∈ �0;1�; in parts (iii) and (iv) for
almost all �t; x�, �t; x� ∈ �δ;1− δ� × �0;1�.

Proof. The argument is similar to the proof of Lemma 3.1. We indicate
merely changes that apply to the terms B̃n and D̃n. For almost all �t; x�, we
have B̃n�tyx� = OP��nab�−1�In�t; x�, where

In�tyx� =
ab

n

∫ t+b
t−b

[ n∑
i=1

K̃b�t− u�θi�u;x;β0�
]2

du = I1n�tyx� + I2n�tyx�

and

I1n�tyx� =
ab

n

n∑
i=1

∫ t+b
t−b

K̃2
b�t− u�θ2

i �u;x;β0�du;

I2n�tyx� =
ab

n

∑
i1 6=i2

∫ t+b
t−b

2∏
j=1

K̃b�t− u�θij�u;x;β0�du:

By boundedness of aKa�x− ·� and bK̃b�t− ·�, we have

EI1n�tyx� = O�a3b�E
∫ t+b
t−b

ξ2
0i�u;β0�K̃2

b�t− u�K2
a�w−Xi�u��2 du

= O�a�E sup ξ2
0i�u;β0�

∫ t+b
t−b

K̃b�t− u�du = O�a�

and by a two-term Taylor expansion,

EI2n = O��n− 1�a5b�
∫ t+b
t−b

K2
b�t− u�du = O�na5�:

This implies parts (b) and (c) of (iii). Further, D̃n�t; x� = D̃1n�tyx� + D̃2n�tyx�,
�t; x�-a.e. where

D̃1n�tyx�=
1
n

n∑
i=1

∫ t+b
t−b

ĥ�u;x�K̃b�t− u�M̃i�duyx�;

D̃2n�tyx�=
1
n

n∑
i=1

∫ t+b
t−b

ĥ�u;x�K̃b�t−u�Ka�x−Xi�u��ξ0i�u;β0�α�u;Xi�u��du:

Using boundedness of α and ĥ, for almost all �t; x�, we have

D̃2n�tyx� = OP�1� sup
u∈�t−b; t+b�

S�0��u;x;β0�
n

∫ t+b
t−b

K̃b�t− u�du

= OP�1�; �t; x�-a.e.

Moreover, the predictable variation of the process

W̃�syx� = 1
n

n∑
i=1

∫ s
t−b
ĥ�u;x�K̃b�t− u�M̃i�duyx�; s ∈ �t− b; t+ b�;
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satisfies, for almost all �t; x�,

�W̃��s; x� = 1
n2

n∑
i=1

∫ s
t−b
ĥ2�u;x�K̃2

b�t− u�ξ0i�u;β0�

×K2
a�x−Xi�u��α�u;Xi�u��du

= OP��nab�−1� 1
n

n∑
i=1

∫ t+b
t−b

K̃b�t− u�Ka�x−Xi�u��ξ0i�u;β0�du

= OP��nab�−1� sup
u∈�t−b; t+b�

S�0��u;x;β0�
n

∫ t+b
t−b

K̃b�t− u�du

= OP��nab�−1�:

Hence by Lenglart’s inequality, D̃1n�tyx� = oP�1� and
√
aD̃n�tyx� = oP�1�,

�t; x�-a.e. Using Stein’s result (3.2) and consistency of n−1S�0� and ĥ, for almost
all �t; x�, we also have D̃n�tyx� − d�tyx� = D̃1n�tyx� + B̃n�tyx� + o�1� so that
by (iii)(b), the condition a4b−1 → 0 implies part (iv). 2

The next lemma will be used to prove weak convergence of the regression
estimate of Proposition 2.1 and weak convergence of the finite-dimensional
distributions of the doubly cumulative hazard function estimate.

Lemma 3.3. Let h�t; x� = �h1�t; x�; : : : ; hd�t; x��T be a bounded continuous
function on Rδ. Set

W̃�0��t; x� = 1√
n

n∑
i=1

∫
�0; t�

∫
�0; x�

h�u;w�M̃i�duyw�dw;

W̃�1��t; x� = 1√
n

n∑
i=1

∫
�0; t�

∫
�0; x�

Zi�u�M̃i�duyw�dw:

Then the finite-dimensional distributions of W̃ = �W̃�0�; W̃�1�� are asymptoti-
cally normal with mean zero and covariance

cov�W�0��t; x�;W�0��t′; x′��

=
∫ t∧t′

0

∫ x∧x′

0
h⊗2�u;w�s�0��u;w;β0�α�u;w�dudw;

cov�W�0��t; x�;W�1��t′; x′��

=
∫ t∧t′

0

∫ x∧x′

0
h�u;w� ⊗ s�1��u;w;β0�α�u;w�dudw;

cov�W�1��t; x�;W�1��t′; x′��

=
∫ t∧t′

0

∫ x∧x′

0
s�2��u;w;β0�α�u;w�dudw:

(3.9)
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Proof. For p = 0;1 we have

W̃�p��t; x� = 1√
n

n∑
i=1

∫ t
0
H
�p�
in �u;x�Mi�du�;(3.10)

where

H
�0�
in �u;x� =

∫ x
0
h�u;w�Ka�w−Xi�u��dw;

H
�1�
in �u;x� = Zi�u�

∫ x
0
Ka�w−Xi�u��dw:

For any fixed x ∈ �0;1�, H�p�in �·; x� are predictable processes. Moreover, un-
der condition I.2 W̃ is a vector of square integrable martingales. Therefore
asymptotic normality of its finite-dimensional distributions will follow from
Rebolledo’s central limit theorem.

We consider first the process W̃�1� and verify the Lindeberg condition of Re-
bolledo’s central limit theorem. Let Zi`�u� be the `th component of the covari-
ate Zi�u�. Correspondingly, let Hi`�u;x� be the `th component of H�1�i �u;x�;
that is,

H`i�u;x� = Z`i�u�
∫ x

0
Ka�w−Xi�u��dw:

We have �Hi`�u;x�� ≤ Zi`�u� since

0 ≤
∫ x

0
Ka�w−Xi�u��dw ≤ 1:(3.11)

Therefore for any ε > 0,

1
n

n∑
i=1

∫ t
0
H2
i`�u;x�I��Hi`�u;x�� > ε��Mi��du�

≤ 1
n

n∑
i=1

∫ t
0
Z2
i`�u�I��Zi`�u�� > ε��Mi��du�

= 1
n

n∑
i=1

∫ t
0
ξ2`i�u;β0�I��Zi`�u�� > ε�α�u;Xi�u��du:

By the boundedness of the hazard function α, the moment condition I.2 and
a similar argument as in Andersen and Gill (1982), the right-hand side tends
in probability to 0.

Further, let V̂�tyx1; x2� be the predictable covariation matrix of W̃�1��·; x1�
and W̃�1��·; x2�; that is,

V̂�tyx1; x2� =
1
n

n∑
i=1

∫ t
0
ξ2i�u;β0�α�u;Xi�u��

2∏
j=1

∫ xj
0
Ka�w−Xi�u��dwdu:
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We show that

V̂�tyx1; x2� →P

∫ t
0

∫ x1∧x2

0
α�u; v�s�2��u; v;β0�dudv:(3.12)

If V̂ll�tyx; x� be the �l; l� entry of the matrix V̂�tyx1; x2� then, by Chebyshev’s
inequality,

Var V̂ll�tyx; x� ≤
1
n
E
∫ t

0
ξ2

2i`�u;β0�α2�u;Xi�u��
[∫ x

0
Ka�w−Xi�u��dw

]4

du;

where ξ2il�u;β0� = Yi�u�Z2
i`�u� exp�βT0Zi�u��. Using boundedness of α, as-

sumption I.2 and (3.11), Var V̂ll�tyx; x� = O�n−1�. Moreover, by Fubini’s the-
orem,

V̂�tyx1; x2� =
1
n

n∑
i=1

∫ ∫ [∫ t
0
ξ2i�u;β0�α�u;Xi�u��

× I�−rj < Xi�u� ≤ xj − rj; j = 1;2�
]

×Ka�dr1�Ka�dr2�:
Hence

EV̂�tyx1; x2�

= 1
n

n∑
i=1

E
∫ ∫ [∫ t

0
I�−rj < Xi�u� ≤ xj − rj; j = 1;2�

×E
[
ξ2i�u;β0��Xi�u�

]
α�u;Xi�u��

]
Ka�dr1�Ka�dr2�

=
∫ ∫ [∫ t

0

∫
I�−rj < v ≤ xj − rj; j = 1;2�g�u; v�dudv

]

×Ka�dr1�Ka�dr2�;

where g�u; v� = α�u; v�s�2��u; v;β0�. Under the regularity conditions I.1, I.3
and I.4, the term in brackets is a matrix of bounded continuous functions in
�r1; r2�. Therefore (3.1) implies

EV̂�tyx1; x2� →
∫ t

0

∫ x1∧x2

0
g�u; v�dudv:

Since Var V̂ll�tyx; x� → 0, (3.12) holds as well.
Rebolledo’s central limit theorem implies now that for any 0 < x1 <

· · · < xq ≤ 1 the vector �W̃�1��·; xj�; j = 1; : : : ; q� converges weakly in
D��0;1��p×q to a mean zero Gaussian process with covariance (3.1). Hence
the finite-dimensional distributions of W̃�1��·; ·� are asymptotically normal.
A similar argument can also be used to verify asymptotic normality of the
finite-dimensional distributions of W̃�0�. The joint asymptotic normality of
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the finite dimensional distributions of W̃ = �W̃�0�; W̃�1�� follows from the
Cramér–Wald device. 2

We shall apply now the tightness criteria of Bickel and Wichura (1971) to
verify that the process W̃�0� is C-tight. For this purpose we note that if �Ntx t ∈
�0;1�� is a counting process whose compensator �3tx t ∈ �0;1��, with respect to
a filtration �Ftx t ∈ �0;1��, is absolutely continuous with respect to Lebesgue
measure, 3t =

∫ t
0 λu du, then for any Ft-predictable process �Htx t ∈ �0;1��,

the martingale

Rt =
∫
�0;t�

HdM;

Mt =Nt − 3t, satisfies

ER4
t ≤ CE

∫ t
0
H4�u��1+ λ�u��3�du�(3.13)

where C is some universal constant. This can be verified using integration by
parts and the Burkholder–Davis–Gundy inequality [Dellacherie and Meyer
(1978)]. A slightly different version of this bound is given in McKeague and
Utikal (1990b) and McKeague, Nikabadze and Sun (1995).

Lemma 3.4. The process �W̃�0��t; x�x �t; x� ∈ �0;1�� of Lemma 3.3 is C-
tight.

Proof. By the tightness conditions of Bickel and Wichura (1971) it is
enough to show

lim sup
n

E
[
W̃
�0�
` ��t1; t2� × �x1; x2��

]4 = O�1��t2 − t1�2�x2 − x1�2

for any 0 < t1 < t2 ≤ 1, 0 < x1 < x2 ≤ 1. Here W̃�0�` is the `th component of
the process W̃�0� and W̃�0�` �J� is its increment on the rectangle J.

From (3.10), W̃�0�` �J� = n−1/2∑n
i=1Rin�t2� where

Rin�t� =
∫
�t1; t�

Hin�u�Mi�du�;

Hin�u� =
∫ x2

x1

h`�u;w�Ka�w−Xi�u��dw:

Using the iid structure of the process W̃�0�, we have

EW̃�0���t1; t2� × �x1; x2��4 =
n− 1
n

[
ER2

in�t2�
]2 + 1

n

[
ER4

in�t2�
]
:

By (3.13) it is sufficient to verify

lim sup
n

E
∫ t2
t1

H
p
in�u��Mi��du� = O�1��t2 − t1��x2 − x1�:
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for p = 2;4 and

lim supE
∫ t2
t1

H4
in�u�ξ0i�u;β0�2α2�u;Xi�u��du = O�1��t2 − t1��x2 − x1�:

We shall show this last identity only. Boundedness of the functions α, h` and

0 ≤
∫ x2

x1

Ka�w−Xi�u��dw ≤ 1

imply that for some constants C1 and C2 we have

H4
in�u� ≤ C1

∫ x2

x1

Ka�w−Xi�u��dw

and

E
∫ t2
t1

H4
in�u�ξ0i�u;β0�α2�u;Xi�u��du

≤ C2E
∫ t2
t1

∫ x2

x1

ξ2
0i�u;β0�Ka�w−Xi�u��dwdu

= C2

∫ t2
t1

∫ x2

x1

g�u; v�Ka�u− v�f�u; v�dudv

= C2

∫ [∫ t2
t1

∫ x2−r

x1−r
g�u; v�f�u; v�

]
Ka�dr�:

Here g�u; v� is a function on Rδ such that Eξ2
0i�u;β0��Xi�u� = g�u;Xi�u��

a.s. Under conditions I.3. and I.4 f�u; v� and g�u; v� are bounded so that the
right-hand side is equal to C3�t2 − t1��x2 − x1� for some constant C3. 2

Our final lemma gives “local” asymptotic normality results which we use in
the proof of Proposition 2.3.

Lemma 3.5. Suppose that for almost all x ∈ �0;1�, ĥ�t; x� →P h�t; x� uni-
formly in t ∈ �0;1� where h�·; x� is the bounded function on �0;1�. If na→∞
then for almost all x ∈ �0;1�,

Ŵh�tyx� =
√
a

n

n∑
i=1

∫ t
0
ĥ�u;x�M̃i�duyx�

converges weakly in D��0;1�� to a time-transformed Brownian motion Wh�tyx�
with variance function

VarWh�tyx� = c�K�
∫ t

0
h2�u;x�s�0��u;x;β0�α�u;x�du;

where c�K� =
∫
K2�r�dr. Moreover, if nab → ∞ then, for almost all �t; x� ∈

�δ;1− δ� × �0;1�,

W̃h�tyx� =
√
b
∫ t+b
t−b

K̃b�t− u�Ŵh�duyx�
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is asymptotically a mean zero normal variable with variance c�K�c�K̃� ×
h2�t; x�s�0��t; x;β0�α�t; x�.

Proof. We shall only verify the first part of the lemma; the proof of the
second part is analogous. For any ε > 0, let

Ŵhε�tyx� =
√
a

n

n∑
i=1

∫ t
0
ĥ�u;x�I

[√
a

n
Ka�x−Xi�u���̂h�u;x�� > ε

]
M̃i�duyx�:

The predictable variation of Ŵhε�·yx� is

�Ŵhε��tyx� =
a

n

n∑
i=1

∫ t
0
ĥ2�u;x�ξ0i�u;β0�K2

a�x−Xi�u��α�u;Xi�u��

× I
[
aKa�x−Xi�u���̂h�u;x�� > ε

√
na
]
du:

Now, aKa�x−Xi�u�� ≤ C1 for some constantC1. Therefore, using boundedness
of the hazard function α and n−1S0, for almost all x, we have

�Ŵhε��tyx� = O�1�
1
n

∫ t
0
ĥ2�u;x�S�0��u;x;β0�I

[
C1 �̂h�u;x�� > ε

√
na
]
du

= OP�1�
∫ t

0
ĥ2�u;x�I

[
C1 �̂h�u;x�� > ε

√
na
]
du→P 0

since ĥ�·; x� is bounded in probability, x-a.e.
Further, the predictable variation of the process Ŵh�·yx� is given by

�Ŵh��tyx� = �Ŵh�1�tyx� + �Ŵh�2�tyx�, where

�Ŵh�1�tyx� =
a

n

∫ t
0

[
ĥ2�u;x� − h2�u;x�

] n∑
i=1

ξ0i�u;β0�

×K2
a�x−Xi�u��α�u;Xi�u��du;

�Ŵh�2�tyx� =
a

n

∫ t
0
h2�u;x�

n∑
i=1

ξ0i�u;β0�K2
a�x−Xi�u��α�u;Xi�u��du:

For almost all x, we have

sup
t∈�0;1�

�Ŵh�1�tyx� ≤ sup
u∈�0;1�

�̂h2�u;x� − h2�u;x��O�1� sup
t∈�0;1�

1
n
S�0��t; x;β0� →P 0;

and by Stein’s result (3.2),

E�Ŵh�2�tyx� = aE
∫ t

0
h2�u;x�E�ξ0i�u;β0��Xi�u��

× α�u;Xi�u��K2
a�x−Xi�u��du

=
∫ 1

−1

∫ t
0
h2�u;x�s�0��u;x− ar�α�u;x− ar�K2�r�dudr

→ VarWh�tyx�:
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By Chebyshev’s inequality,

Var�Ŵh�2�tyx� ≤
a2

n
E

[∫ t
0
h2�u;x�ξ0i�u;β0�K2

a�x−Xi�u��α�u;Xi�u��du
]2

≤ a
2

n
E
∫ t

0
h4�u;x�ξ2

0i�u;β0�K4
a�x−Xi�u��α2�u;Xi�u��du:

Let g�u; v� be a bounded measurable function on Rδ such that
Eξ2

0i�u;β0��Xi�u� = g�u;Xi�u�� a.s. Then

E
∫ t

0
ξ2

0i�u;β0�Ka�x−Xi�u��du =
∫ t

0

∫
g�u; v�f�u; v�Ka�x− v�dudv = O�1�

as n→∞. Using boundedness of α, aKa�x−·�, and h, for almost all x, we also
have Var�Ŵh�2�tyx� = O��na�−1� → 0 and hence �Ŵh�2�tyx� →P VarWh�tyx�.
Rebolledo’s central limit theorem completes the proof. 2

3.2. Proof of Propositions 2:1 and 2:2. By the monotonicity of the sample
paths of the process

∫ t
0
I�0 ≤Xi�u� ≤ x�Ni�du�(3.14)

and uniform consistency of n−1S�0��u;w;β�, the profile log-likelihood (2.4) sat-
isfies

CR�β� −CR�β0� =
1
n

n∑
i=1

∫ 1

0

[
�β− β0�TZi�u� − log

s�0��u;Xi�u�; β�
s�0��u;Xi�u�; β0�

]

× I�0 < Xi�u� ≤ 1�Ni�du� + oP�1�:

By the weak law of large numbers, we have CR�β�−CR�β0� →P C0�β�, where

C0�β� =
∫ 1

0

∫ 1

0

[
�β− β0�Te�u;w;β0� − log

s�0��u;w;β�
s�0��u;w;β0�

]

× s�0��u;w;β0�α�u;w�dudw:

For the smoothed profile log-likelihood (2.3), Lemma 3.1(ii) implies
[
C̃R�β� − C̃R�β0�

]

= 1
n

n∑
i=1

∫ 1

0

∫ 1

0

[
�β− β0�TZi�u� − log

S�0��u;w;β�
S�0��u;w;β0�

]
Ñi�duyw�dw

→P C0�β�:

Both C̃R�β� and CR�β� are concave functions and the limit C0�β0� is a con-
cave function with maximum attained at β = β0. Therefore Theorem III.1 in
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Andersen and Gill (1982) implies uniqueness and consistency of the regression
estimates.

We next show that the Hessians Ĩ �β� = −∇2C̃R�β� and I �β� = −∇2CR�β�
satisfy

Ĩ �β∗� →P 6�β0�; I �β∗� →P 6�β0�(3.15)

for any sequence β∗→P β0. Define

V�u;w;β� = S
�2��u;w;β�

S�0��u;w;β� −E
⊗2�u;w;β�;

where

E�u;w;β� = S
�1��u;w;β�

S�0��u;w;β�
and let

v�u;w;β� = s
�2��u;w;β�
s�0��u;w;β� −

[
s�1��u;w;β�
s�0��u;w;β�

]⊗2

:

Then

Ĩ�β∗� =
∫ 1

0

∫ 1

0
V�u;w;β∗� 1

n

n∑
i=1

Ñi�duyw�dw

=
∫ 1

0

∫ 1

0
�V�u;w;β∗� − v�u;w;β0��

1
n

n∑
i=1

Ñi�duyw�dw

+
∫ 1

0

∫ 1

0
v�u;w;β0�

1
n

n∑
i=1

Ñi�duyw�dw:

Lemma 3.1(ii) applied to the deterministic function h�u;w� = v�u;w;β0� im-
plies that the second-term converges in probability to 6�β0�. The first term is
bounded by

�V�u;w;β∗� − v�u;w;β0��∞
1
n

n∑
i=1

∫ 1

0

∫ 1

0
Ñi�duyw�dw:

By the consistency of n−1S�p��u;w;β�, we have �V�u;w;β∗� − v�u;w;β0��∞,
whereas by Lemma 3.1(ii), n−16ni=1

∫ 1
0

∫ 1
0 Ñi�duyw�dw = OP�1�. This com-

pletes the proof of (3.15) for the matrix Ĩ�β∗�. The matrix I�β∗� can be handled
analogously.

Further, the estimate β̃ of Proposition 2.1 is the solution of the score equa-
tion Ũ�β� = ∇C̃�β� = 0. We have

√
nŨ�β0� =

√
n�β̃− β0�Ĩ �β∗� where β∗ lies

on the line segment between β̃ and β0. Using (3.15) and the assumption I.4,
it is enough to show that

√
nŨ�β0� is asymptotically mean zero normal with
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covariance 6�β0�. Analogously, to show asymptotic normality of the estimate
β̂ of Proposition 2.2, it is enough to verify that the gradient U�β� = ∇C�β�
satisfies

√
nU�β0� =

√
nŨ�β0� + oP�1�.

We first deal with the score function Ũ�β�,

Ũ�β� = 1
n

n∑
i=1

∫ 1

0

∫ 1

0
�Zi�u� −E�u;w;β��Ñi�duyw�dw:

For β = β0, the score process can be be written as Ũ�β0� =
∑2
j=1 Ũj�β0� where

Ũ1�β0� =
1
n

n∑
i=1

∫ 1

0

∫ 1

0
�Zi�u� −E�u;w;β0��M̃i�duyw�dw;

Ũ2�β0� =
1
n

∫
�0;1�×�0;1�

�Zi�u� −E�u;w;β0��

×Ka�w−Xi�u��ξ0i�u;β0�α�u;Xi�u��dudw:

(3.16)

By Lemmas 3.1 (iii) and 3.3,

√
nŨ1�β0� =

1√
n

n∑
i=1

∫ 1

0

∫ 1

0
�Zi�u� − e�u;w;β0��M̃i�duyw�dw+ oP�1�

⇒ N �0; 6�β0��:

By adding and subtracting terms, we have

Ũ2�β0� =
1
n

n∑
i=1

∫ 1

0

∫ 1

0
ξ1i�u;β0�Ka�w−Xi�u���α�u;Xi�u�� − α�u;w��dudw

− 1
n

n∑
i=1

∫ 1

0

∫ 1

0
ξ0i�s; β0�E�u;w;β0�Ka�w−Xi�u��

× �α�u;Xi�u�� − α�u;w��dudw:

Since E�·; ·; β0� is bounded in probability, Lemma 3.1(i) implies n1/2Ũ3�β0�
→P 0.

Further, the score process U�β� is given by

U�β� = ∇C�β� = 1
n

n∑
i=1

∫ 1

0

[
Zi�u� −E�u;Xi�u�; β�

]
I�0 < Xi�u� ≤ 1�Ni�du�:

For β = β0, we have U�β0� =
∑2
j=1Uj�β0�, where

U1�β0� =
1
n

n∑
i=1

∫ 1

0
�Zi�u� −E�s;Xi�u�; β0��I�0 < Xi�u� ≤ 1�Mi�du�
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and U2�β0� = Ũ2�β0� +
∑2
j=1�U2j − Ũ2j��β0� with Ũ2�β0� given by (3.16) and

√
n�U21 − Ũ21��β0� =

1√
n

n∑
i=1

∫ 1

0
ξ1i�u;β0�

×
[
I�0 < Xi�u� ≤ 1� −

∫ 1

0
Ka�x−Xi�u��

]

× α�u;Xi�u��du;
√
n�U22 − Ũ22��β0� =

∫ 1

0

∫ 1

0
E�u;w;β0�α�u;w�ψ̂�u;dw�du;

where

ψ̂�u;w� = 1√
n

n∑
i=1

ξ0i�u;β0�
[
I�0 < Xi�u� ≤ w� −

∫ w
0
Ka�x−Xi�u��dx

]
:

Using (3.8),

√
nU1�β0� =

1√
n

n∑
i=1

∫ 1

0

[
Zi�u� − e�u;Xi�u�; β0�

]

× I�0 < Xi�u� ≤ 1�Mi�du� + oP�1�;

so that the standard central limit theorem for sums of iid random variables
implies that

√
nU1�β0� is asymptotically normal N �0; 6�β0��. To complete the

proof, it is enough to show that
√
n�U2�β0�− Ũ2�β0�� converges in probability

to 0. First, let �α�v�u; I� and �e�v�u; I;β0� denote the variation of α�u; ·� and
e�u; ·; β0� on an interval I ⊆ �0;1�. Under the assumed regularity conditions,
we have �α�v�u; I� <∞ and �e�v�u; I;β0� <∞ uniformly in u ∈ �0;1� and I ⊆
�0;1�. Further, by the assumption of Proposition 2.2(ii), the process E�u; ·; β0�
is of bounded variation uniformly in u ∈ �0;1�. Since �ψ̂�∞ → 0, integration
by parts or application of Gill’s (1989) Hadamard differentiability result for
integrals

∫
fdg implies

√
n�U22 − Ũ22��β0� →P 0.

It remains to consider the term
√
n�U21 − Ũ21��β0�. Its `th component is

a sum of iid random variables U21`�β0� − Ũ21`�β0� = n−1∑n
i=1�U21i`�β0� −

Ũ21i`�β0�� and, using a two-term Taylor expansion,

E�U21i` − Ũ21i`��β0�

=
∫ 1

−1

∫ 1

0

∫ 1

0

[
s
�0�
` �u;w;β0�α�u;w�

− s�0�` �u;w− ar;β0�α�u;w− ar�
]
dudwK�dr� = O�a2�:

Moreover,

nE�U21`�β0� − Ũ21`�β0��2 = E�U21i`�β0� − Ũ21i`�β0��2 + �n− 1�O�a4�:
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By the assumption na4 → 0, the second term tends to 0. By Chebyshev’s
inequality,

E�U21i`�β0� − Ũ21i`�β0��2

= E
[∫ 1

0
Zi`�u�ξ0i�u;β0�α�u;Xi�u��

×
[
I�0 < Xi�u� ≤ 1� −

∫ 1

0
Ka�w−Xi�u��dw

]
du

]2

≤ E
∫ 1

0
ξ2

1i`�u;β0�α2�u;Xi�u��

×
[
I�0 < Xi�u� ≤ 1� −

∫ 1

0
Ka�w−Xi�u��dw

]2

du

= Bi + B̃i − 2Di;

where

Bi = E
∫ 1

0
ξ2

1i`�u;β0�α2�u;Xi�u��I�0 < Xi�u� ≤ 1�du;

B̃i = E
∫ 1

0
ξ2

1i`�u;β0�α2�u;Xi�u��
[∫ 1

0
Ka�w−Xi�u��dw

]2

du;

Di = E
∫ 1

0
ξ2

1i`�u;β0�α2�u;Xi�u��I�0 < Xi�u� ≤ 1�

×
[∫ 1

0
Ka�w−Xi�u��dw

]
du:

Now, by assumption I.4, for some bounded function g�u;w� on Rδ, we have

Bi =
∫ 1

0

∫ 1

0
g�u;w�α2�u;w�f�u;w�dudw;

B̃i =
∫ 1

0

∫ 1

0
g�u; v�α2�u; v�f�u; v�

[∫ 1

0
Ka�w− v�dw

]2

dudv

=
∫ 1

−1

∫ 1

−1

[∫ 1

0

∫ 1−r1∨r2

−r1∧r2

g�u; v�α2�u; v�f�u; v�dudv
]
Ka�dr1�Ka�dr2�:

The inner integral is a bounded continuous function of �r1; r2� so that by (3.1)
we have B̃i→ Bi. Similarly,

Di =
∫ 1

0

∫ 1

0
g�u; v�α2�u; v�f�u; v�

[∫ 1

0
Ka�w− v�dw

]
dudv

=
∫ 1

−1

[∫ 1

0

∫ 1−r∨0

−r∧0
g�u; v�α2�u; v�f�u; v�dudv

]
Ka�dr� → Bi:

This implies nE�U31` − Ũ31`�2�β0� → 0 and
√
n�U31` − Ũ31`��β0� →P 0. 2
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3.3. Proof of Proposition 2:3. Similarly to Andersen and Gill (1982), a one-
term Taylor expansion implies that Â�tyw� −A�tyw� =∑4

j=1 Ij�tyw� where

I1�tyw� = −�β̂− β0�
n∑
i=1

∫ t
0

S�1��u;w;β∗�Ñi�duyw�
S�0��u;w;β0�S�0��u;w; β̂�

;

I2�tyw� =
n∑
i=1

∫ t
0

M̃i�duyw�
S�0��u;w;β0�

;

I3�tyw� =
n∑
i=1

∫ t
0

ξi0�u;β0�
S�0��u;w;β0�

�α�u;Xi�u�� − α�u;w��Ka�w−Xi�u��du;

I4�tyw� =
∫ t

0
I�S�0��u;w;β0� = 0�α�u;w�du:

Here β̂∗ lies on the line segment between β̂ and β0. For the doubly cumulative
hazards, we have Âd�t; x� −Ad�t; x� =

∑4
j=1 Idj�t; x�, where

Idj�t; x� =
∫ x

0
Ij�tyw�dw:

Finally, setting

α̃�t; x� =
∫ t+b
t−b

K̃b�t− u�A�duyx�du =
∫ t+b
t−b

K̃b�t− u�α�u;x�du;

a two-term Taylor expansion yields

α̃�t; x� − α�t; x� = b
2

2
∂2

∂t2
α�t; x�

∫ 1

0
K̃�r�r2 dr+O�b2�:

Therefore the condition nab5 → 0 implies
√
nab�α̃ − α��t; x� → 0. Moreover,

�α̂− α̃��t; x� =∑4
j=1 Ĩj�tyx�, where

Ĩj�tyx� =
∫ t+b
t−b

K̃b�t− u�Ij�duyx�:

Let c0 be the lower bound of f�u; v�F1�u; v� on Rδ, where recall that
F1�u;Xi�u�� = EYi�u��Xi�u� a.s. By assumption I.1, we have c0 > 0 and

√
naE sup

t∈�0;1�
I4�tyw� ≤

√
na

∫ 1

0
�1−P�Yi�u�=1; �Xi�u�−w� ≤a��nα�u;w�du

=O�1�√na exp�−c0na� → 0:

Similarly

√
nabEĨ4�tyx� ≤

√
nab

∫ t+b
t−b

K̃b�t− u� exp�−nac0�α�u;x�du

= O�1�
√
b�√na exp�−nac0�� → 0

and if na4 → 0, then E�Id4� = O�1�
√
n exp�−c0na� → 0.
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Further, by the uniform consistency of n−1S�p��u;w;β0� and Lemma 3.2,
for almost all x, we have

√
na�I3�tyw�� = oP�1� and

√
naI1�tyx� =

√
n�β̂ −

β0�oP�1� uniformly in t ∈ �0;1�. Since
√
n�β̂ − β0� is bounded in probability,

the second term is asymptotically negligible. Similarly, for almost all �t; x�,√
nab�Ĩ3�tyw�� = oP�1� and

√
nabĨ1�tyx� =

√
n�β̂ − β0�oP�1� = oP�1� and

parts (i) and (iii) of Proposition 2.3 follow from Lemma 3.5.
Using uniform consistency of n−1S�q�; q = 0;1, Lemma 3.1 yields√
nI3d�t; x� = oP�1� and

√
nI1d�t; x� =

√
n�β̃ − β0�Tη�t; x� + oP�1� =√

nŨ�β0�T6�β0�−1η�t; x� + oP�1� uniformly in �t; x� ∈ �0;1�2. By Lemmas 3.3
and 3.4 and (3.17),

√
nŨ�β0� and the process

W̃�0��t; x� = 1√
n

n∑
i=1

∫ t
0

∫ x
0

M̃i�duyw�dw
s�0��u;w;β0�

are asymptotically independent. Moreover, W̃�0��t; x� converges weakly in
D��0;1�2� to a two-parameter time-transformed Brownian motion with vari-
ance function

VarW�0��t; x� =
∫ t

0

∫ x
0

α�u;w�
s�0��u;w;β0�

dudw:

The proof of part (ii) of Proposition 2.3 can be completed using Young’s inte-
gration by parts formula [Young (1917), Hildebrandt (1963)] and Hadamard
differentiability results for weak net integrals

∫
f�u;w�dg�u;w� in Gill, van

der Laan and Wellner (1995). 2
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