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WEAK CONVERGENCE OF THE SEQUENTIAL EMPIRICAL
PROCESSES OF RESIDUALS IN NONSTATIONARY
AUTOREGRESSIVE MODELS

By SHIQING LING

University of Hong Kong and University of Western Australia

This paper establishes the weak convergence of the sequential empiri-
cal process K ,, of the estimated residuals in nonstationary autoregressive
models. Under some regular conditions, it is shown that If'n converges
weakly to a Kiefer process when the characteristic polynomial does not
include the unit root 1; otherwise ):¢ ,, converges weakly to a Kiefer process
plus a functional of stochastic integrals in terms of the standard Brownian
motion. The latter differs not only from that given by Koul and Levental
for an explosive AR(1) model but also from that given by Bai for a
stationary ARMA model.

1. Introduction and main results. Empirical processes based on the
estimated residuals in a variety of models have been studied for a long time.
In the field of time series, Boldin (1982) and Kreiss (1991) examined their
weak convergence for some stationary ARMA(p, q) models and Koul and
Levental (1989) investigated their weak convergence for an explosive AR(1)
model. Bai (1994) extended Boldin’s results to stationary ARMA models by
considering the sequential empirical process based on estimated residuals.
Under some conditions, these authors proved that the estimated residual
empirical processes have identical weak convergence properties to those of
the residual empirical processes. Many important applications can be found
in the cited literature and Koul (1991). In this paper, my interest is to
investigate the weak convergence of the sequential empirical processes when
the estimated residuals come from nonstationary autoregressive models.

Consider the autoregressive model

(1.1) Ve =Byt By, oEp,

where {¢,} are independent and identically distributed (i.i.d.) random distur-
bances, y, is the observation with starting value (yq, y_1,..., ¥1- p) indepen-
dent of {s} and the characteristic polynomial ¢(z) =1— g,z — -+ —8,2"
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has the decomposition,
$(2) = ¥(2)(1-2)"(1 +2)°

(1.2) l 4

X k]_[l [(1 —zexp(if;))(1 —zexp(—i6,))]™",

where a, b,1,d,,k = 1,...,1 are nonnegative intergers, 0 < 0, < 7 and ¢(z)
is a polynomial of degree ¢ =p —[a + b + 2(d; + -+ +d;)] with all roots
outside the unit circle. The model (1.1) is a general nonstationary autoregres-
sive time series. In the last ten years, a huge amount of statistical literature
has been devoted to the study of nonstationary time series. Some general
results on the estimation theory can be found in Chan and Wei (1988) and
Jeganathan (1991).

Given n + p observations, y,_,,..., ¥, ¥1,---, ¥, Let @ be any estimator
of the parameter a = (84,..., ,BP)T. The estimated residual &, is defined by
(1.3) &=y —a'X, ,,
where ¢ = 1,..., n, the superscript T' of AT denotes the transpose of a vector
or matrix A and X, = (y,...,¥_, .1)T. Define the sequential empirical
processes based on estimated residuals as

. 1 [ns]
(1.4) K, (s,x)=— Y [I(5<x)—F(x)], 0<s<1,

5

where I(-) is the indicator function. Similarly, define the sequential empirical
processes K, (s, x) with 2, replaced by ¢,. When s = 1, K, (s, x) reduces to
the empirical process G,(x) = (1/Vn)Lr_,[I(s, < x) — F(x)]. My result can
be stated by the following theorem.

THEOREM. Suppose that the following conditions are satisfied:

() The &, are i.i.d. with Es, =0, Ee? = 1, and a common distribution
F(x);
(i) F(x) admits a uniformly continuous density function f(x), f(x) > 0
a.e.;
(i) 8,'(a — a) = O,(1).

Then

(1.5) sup | K,(s,%) — K,(5,%) = R,(s,%)| =0,(1),
s€[0,1], xR

where Op(l) [or op(l)] stands for a series of random variables that is bounded
(or converges to zero) in probability, 6, is defined in Lemma 2.1 and

Ry(s, ) = (&= @) S X, f)/ V.

REMARK. Assumptions (i) and (ii) are identical as those given in Koul
(1991) and Bai (1994). Assumption (ii1) is satisfied by the usual least squares



RESIDUALS IN NONSTATIONARY AR MODELS 743

estimator as in Chan and Wei (1988). The asymptotic behavior of R, (s, x)
depends on the locations of the unit roots of ¢(z) and hence it also affects the
weak convergence of K, (s, x). Further discussion is divided into the following
two cases.

CasE 1. When ¢(z) does not include the unit root 1, by assumption (iii)
and Lemma 2.1(b) in the next section, R,(s,x) =o0,(1) uniformly for all
s €[0,1] and all x € R. From Bickel and Wichura (1971), K (s, F~ (7)) con-
verges weakly in D, to a Kiefer process K(s,7), a two-parameter Gauss-
ian process with zero mean and covariance function

cov(K(s1,71), K(89,73)) = (81 A 8p) (71 A Ty — T173),

where D, denotes the space of functions f(s,7) on [0,1]%, which is defined
and equipped with the Skorokhod topology in Straf (19702 and Bickel and
Wichura (1971). Thus the theorem actually implies that K, (s, F~!(7)) con-
verges weakly to a Kiefer process K(s, 1) in D,. These results are the same
as those already known in stationary cases and hence some statistics based
on K,(s, x) can be reconstructed by employing If'n(s, x) to replace K, (s, x).
All applications as in Boldin (1982), Koul and Levental (1989) and Bai (1994),
and other references can be carried over to these nonstationary cases.

CastE 2. When ¢(z) includes the unit root 1 with multiplicities a, if we
further assume that §,'(& — «) converges in distribution to a random vari-
able £ and ([5;'(& — a)]%, X" X |8, /Vn) converges weakly in R? X D?,
then by the continuous mapping theorem [Billingsley (1968), Theorem 5.1]
and Lemma 2.1(a), R, (s, F~ (7)) converges weakly to (¢7(s), 0)éf(F~(7)) in
D,, where £(s) is defined in Lemma 2.1 and D" = D X D X --- X D denotes
the product space of n-D spaces. In particular, if & is the least squares
estimator of «, thatis, 4 =", X, ;X" )"'X" X, ,y,, by Theorem 2.2
and Theorem 3.5.1 of Chan and Wei (1988) and Lemma 2.1(a), ([§,'(& —
)T, X)X 8 /Vn) converges weakly in R? X D? and (£7(s),0)é =
£T(s)Q¢, where Q = (0,)), 0, = /s gi(mg;_(1)dr, for i,j=1,...,a, { =
(Jogo(T) dW(7),..., [§ 84— 1(1)dW(r))", and g,(7) and W(r) are defined in
Lemma 2.1. In this case the theorem implies that K ,(-,-) converges weakly to
a Kiefer process plus a functional of stochastic integrals in terms of the
standard Brownian motion. This is different from those given by Koul and
Levental (1989) and Bai (1994). Since the limiting distribution of K ,(-,-) is no
longer distribution free, the prototypical Kolmogorov—Smirnov tests based on
the estimated residuals cannot be used. Statistical inferences related to
innovations of these nonstationary time series will become more difficult.

The proof of the theorem will be shown in the next section and the
following notation will be used: = denotes convergence in distribution and
|| - || denotes the Euclidean norm.

2. Proof of the theorem. Before giving the proof of the theorem, we
first present several lemmas.
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LEmMA 2.1. Suppose that {y,} is generated by the nonstationary AR(p)
model (1.1) and assumption (i) in the theorem is satisfied. Then we have the
following.

(a) Ifa # 0,
1 [ns] 1 [ns] T T T
ﬁ Z §rzTXt—1= T Z (Nl_lUt—l) ’Op(l) ='(§T(S),O) inD?;
t=1 =
(b) Ifa =0,
1 [ns] r
ﬁ tzzl 5nXt—1 = Op(l);
(c) S 187X, 4[| = 0,(1);
(d) sup E|s!X, ,[*=0(n™Y);
1o
(e) T Zl l87x, .| = 0,(1);
t=
6) Y 8%, ,[” = 0,(1);
t=1
(8) Y E[s'x, | = 0(v),
t=1

where 8, = G'J, ', Ny, U,, J, and G are defined below; the 0,(1) in (a) and
(b) holds uniformly in s € [O 1]; €)= (f§ g(r)dr, i =0, 1 ,a — 1T
go(7)=W(r), g{r) = [5g,_«(7)dr, j=1,...,a; and W(T) is the standard
Brownian motion.

REMARK. The proof of this lemma mainly uses the idea and some results
of Chan and Wei (1988), abbreviated henceforth as CW. The results of CW
are obtained under the assumption that {&,} is a series of martingale differ-
ences and sup,, Elstl2+ “ < o, where « is a positive constant. Since {&,} here is
a sequence of ii.d. random variables, assumption (i) is sufficient for their
results [cf. Jeganathan (1991)].

ProoF. For simplicity, in the following we will assume that the starting

values y,=y_, = -+ =y, , = 0. Denote N1 = diag(n, n%...,n%, N, =
diag(n, n%,...,n%), N,,, = dlag(nlz,.. n®l,), k= ,1 and J, =
diag(Nl,Nz,.. NHz,\/_I ), where I, is the £ X & 1dent1ty matrlx

Let u, = ¢7(B)(1 - B) %y, a,=(u,..., Uy WiV v, = ¢(BX1 + B) by,

0, =y, 0,_p. )7, 2, = qﬁ(B)l,lf_l(B)yt, z, = (zt,.. zt_qﬂ) x, (k) =
¢(BX1 — 2Bcos 0, + B)" %y, and x/(k) = (x,(k),..., xt_dkﬂ(k))T, ‘where
B is a backshift operator and 2 =1,...,.. As shown in (3.2) of CW, there
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exists a nonsingular matrix @ such that
T
(2.1) QX, = (af,of, & (1),..., &/ (1), &) .

Further let U,(j) = (1 — B)* Ju, for j=0,1,...,a, U, = (UQ),..., U(a)?,
V.(j)=Qa+ B)b‘fvt for j=0,1,...,b,V, = (V,(1),...,V(B)T, Y,(k,j) =1 —
2Bcos 0, + BH)%x (k) for j=0,1,...,d,, k=1,...,1, and Y,(k) =
(Y(k,1),Y, (k,1),...,Y,(k,d,),Y, (k,d,))7, where k = 1,..., . Then there
exist nonsingular matrices M, M,C,,k = 1,...,[ such that

Mi, = U, Mo, =V,, C,%(k)=Y/(k), k=1,...,1
Denote G = diag(M, M,Cy,...,C,, I,)Q. We have
(22) GX, = (UL, VI Y/ (1),.. YA (1), 20
For (a), note that
t

U = TUO) = Lo UG+ = T TG,

where j = 0,...,a — 1. By Therorem 2.2 and Theorem 2.3 of CW,
nP0, (j) = g;_y(r) inDforj=1,...,a.
Again by Theorem 2.3 of CW, we obtain
_ T 3 a
(2.3) VN7 U,y = (80(7),..., 8,_1(7)) in D°.

By (2.3) and the continuous mapping theorem [Billingsley (1968), Theorem
5.1],

t

1 [ns] 1 [ns]
(2.4) I Y N, = - Y (yaN;{'U,_,) = &(s) in D“.
t=1 t=1

Similarly to (2.3) (see Theorem 3.2.1 of CW), we can obtain
(25) VN (=)W, = —(8o(7),..., 8 1(7))" in D,

where g/(7), j=0,...,b — 1, are defined as in Theorem 3.5.1 of CW. By
Proposition 8 of Jeganathan (1991),

(2.6) 1 o
max ||— NV, _
l<j<n \/; E’l 2 -1
1 J . 1 t—1
= 1mjax - Y exp((¢t — 1)im)Vn Ny '(-1)" 'V, | = 0,(1).
<j<n =1
Let

t t

S,(k,j) =) Y(k,j)sin6, and T,(k,j)= ) Y.(k,j)cos¥,,

i=1 i=1
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where £k =1,...,1, j=0,...,d,. By a direct verification or Lemma 3.3.1 of
CW, we have

(2.7) Y, (k,j)sin 6, =S,(k,j— V)sin(¢ + 1)6, — T,(k,j — 1)cos(t + 1)0,,
where j =1,...,d,. By Lemma 3.3.7 of CW,
(28) ‘/gn’_j_l/z(s[nr](k’j)’T[ns](k’j)) = (fkj(7)7gkj(s)) in Dz,

where k=1,...,1, j=0,...,d, -1, f,(r) and g,/(s) are defined in
Theorem 3.5.1 of CW. Again by Proposition 8 of Jeganathan (1991), we
obtain

1 2 .
(2.9) max |— ), n VUTVV2S, (K, j - 1)sint6, | = 0,(1),
l<i<n (N ,_4
1 2 A
(2.10) max |— ), n VUTVTV2T, (k,j — 1)costh, | =o0,(1),
l<i<n (N ,_4

where j = 1,...,d,. By (2.7), (2.9) and (2.10), we have

(2.11) max

1<i<n

o5

Since z, is generated by model ¢(B)z, = &,, {£} is a stationary and ergodic
process. Similarly to the proof of Theorem 1 in Bai (1993), we can show

1 i
— Y NkaYtl(k)H —o,(1) k=1,...,1

1 J
w

(2.12) max =0,(1).

When a # 0, by (2.2), (2.4), (2.6), (2.11) and (2.12), we obtain

1 [ns] 1 [ns] T T T
ﬁ Z 6nTXt—1= (_ Z[‘/;Nl_lUt—l] ’Op(l)) :(gT(s)7O) in D?,
t=1

t=1

where 0,(1) holds uniformly in s € [0, 1]. That is, (a) holds. By (2.2), (2.6),
(2.11) and (2.12), we know that (b) holds.
For (¢), by (2.3) and the continuous mapping theorem,

a—1 1/2
max |[Vn Ny 'U,|l convergesto max [ Y g?(f)}
i=0

1<t<n O0<7t<1
in distribution and thus

(2.13) max | NG| = 0,(1).

1<t<n
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Similarly we have

(2.14) max |N;'V,| =o0,(1),
1<t<n
max |n~/S,(k,j—1)| =0,(1) and
(215) 1<t<n A .
max [[n Tk, j = 1) = 0,(1)
fork=1,...,0and j=1,...,d,. By (2.7) and (2.15), we obtain
(2.16) max [NV, (k) [ = o0,(1).

Since [|Z,|| has identical distribution with finite variance,

max [[n"1/2%%,| = 0,(1)
1<t<n

[See Chung (1968), page 93 or the proof of Lemma 1(b) in Bai (1994)]. Further
by (2.13), (2.14) and (2.16), (¢) holds.
For (d), we first show that, by induction on j,

(2.17) E(U(j))=0@*"P*Y,  j=1,...,a.
As j =1, (2.17) holds. Assume that (2.17) holds as j = k. Then

EUA(j+1) = E( )y U,-(J')) <t ) EUZ())

=t i O(tz(j—1)+1) — 0(t2j+1).

i—1
So (2.17) holds for j = 1,..., a. Thus

(2.18)

(2.19) sup E[N;'U[" = 0o(n ).

1<t<n
Similarly we can show

(2.20) sup E[N; W[ = 0(n ).

1<t<n
By Lemma 3.3.5 of CW,for £ =1,...,land j=0,...,d, — 1,
ES?(k,j) = O(t**') and ET?2(k,j) =O0(t¥"1)
and further by (2.7), we can obtain
2
(2.21) sup E|N; LY, (k)| =0(n™Y).

1<t<n
Since z, is strictly stationary and has a finite variance,

(2.22) sup E|n=125," = 0(n ).

1<t<n
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By (2.19)—(2.22), it is easy to know that (d) holds. Then (e)—(g) come directly
from (d). This completes the proof. O

Denote
(2.23) gi(u, A) =u'sTX, |+ All87X, |,

where u € R? and A € R.

LEMMA 2.2. Suppose that {y,} is generated by the nonstationary AR(p)
model (1.1) and assumptions in the theorem hold. Then for any d € (0,1/2),
everyu € D, and A € R,

(2) s o ¥ F(y ) = Flx a0 )] = o,(1),
(x’y)EBn,d

where B, ; = {(x,y) € R X R,|F(x) — F(y) < n~ /"% and D, = [-A, A]”

C R”.

ProoF. By Lemma 2.1(c) and (e), max,;_,_, lg(u, Ml = 0,(1) and

Y lgu, V/Vn = O,(1). The remaining proof is similar to the arguments
of Lemma 2.1 in Koul (1991) and hence is omitted. This completes the
proof. O

Define
. 1 Ins]
(2.25) Zu(%, 8,u,0) = 7= EI[I(% <x+g(u,A) - F(x +g/(u,))
—I(g, <x) + F(x)]
and
(226) B, (5,00 = g B[P+ 7%, 3) = Px) =57 (),

where g,(u, A) is defined by (2.23), u € R? and A € R.

LeEmMA 2.3. Under the assumptions of the theorem, for any u € D, and
AER,

(a) sup IZn(x,s,u,A)|=op(1);
s€[0,1], xR
(b) sup  |H,(x,s,u)l=0,(1),
s€l0,1], xR

where A is any fixed positive number and D, is defined as in Lemma 2.2.

Proor. (a) Following the ideas of Boldin (1982) and Bai (1994), let
N(n) = [nY2%9] + 1, where d € (0,1/2) and partition the real line into N(n)
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parts by the points
-0 =x,<x; < - <xy(n) =% where F(x;,) =i/N(n).

Since I(g, < x) and F(x) are nondecreasing, for any x € (x,, x,,,], we
have

Z(x,s,u,)) <Z,

—

J
Xrt1s ;’ u, )‘)
s]

S

[F(xr+1 +8) —F(x +gt)]

S

[I(gt er+1) _F(xr+1) _I(st S.’)C) +F(.’)C)]

~
I
e

=+

- -

I
—

t

and a reverse inequality with x, ; replaced by x,, where g, denotes g,(u, A)
and j = [ns]. Therefore

(2.27) sup |Zn(x, s, u, /\)|
s€[0,1], xR
. J
(2.28) < max max Zn(xr, —,u, )\)‘
r Jj n
1 [ns]
(2.29) +max sup sup — ), |F(x,.;+g)—F(x+g,)|
T xe(x,,x,,. s \/; t=1

[ns]

Y [I(st <F ()

t=1

1
+ sup —
s, lt;—tol< N~ Xn) ‘/;

(2.30)
—t; —I(g, < F7U(ty)) + t,]|.

By the tightness of the sequential empirical processes based on i.i.d.
random variables [see Bickel and Wichura (1971)] and N~ '(n) = o(1), we
know that (2.30) converges to zero in probability. By Lemma 2.2, (2.29) also
converges to zero in probability. In the following, we will show that (2.28)
converges to zero.

First note that

P(max max Zn(xr,i,u,A) > e
r j n
(2.31) ! .
sN(n)maxP(max Zn(x,,i,u,A > e|.
r J n
Define

a,, =1(e,<x+g,) —F(x+g,) —I(eg <x)+F(x), 1<t<n.
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Then S, ,, = X}, a,, is a martingale array with respect to .7, = o{e,,t < m}
and

- J 1
2.32 VA — Al=—S8, ;.
( ) n(x’n7u7 ) ‘/; n,j

By the Doob inequality, for any small £ > 0,

(2.33) P(max >e| <& *n?E(S;,).

J

- J
Zn(x,—,u,)\
n

By the Rosenthall inequality [Hall and Heyde (1980), page 23],

2 n
+c ) E(ay,),

t=1

n

(2.34) E(S;,) < cE[ Y E(al, 19_1)

for some constant c. By the assumptions of model (1.1), X,_; is measureable
with respect to .%,_; and hence

(2.35) E(ant |=/t—1) S|F(95 +8,) — F(x)l <|g,| sup |f(x)|

By (2.35), we have

E[é E(a2, IZ_l)r < (sgp If(x)l)2 E[ _i Igtl}

2

s 0 £ 2]

(2.36)

< n(sup | 7)) (el + 1) X B o, %,
x t=1

= 0(n),

where the last equation holds by lemma 2.1(g). Next, since |a,,| < 2, we have
"_, E(a?,) < 16n. Further by (2.33), (2.34) and (2.36), we obtain

N(n)P(max >¢e| <N(n)e *n"20(n)

. J
Zn(x,—,u,A
n

n'/2*%=4p"20(n) = o(1)
for d € (0,1/2), where o(1) does not depend on x. By (2.31), (2.28) converges
to zero in probability. Summarizing the discussion for (2.27)-(2.30), we
complete the proof of Lemma 2.3(a).
(b) By Taylor’s expansion,

ns

L L) = [0 (wo/ X)),

1
| H(5,0)] =

where ¢, is between x and x + uTSnTXt,l. By Lemma 2.1(c), sup; _, ., & —
x| < llullsup, -, ., 187X, Il = 0,(1) uniformly in x. By assumption (i),
sup; ., ., /(&) — f(x)| = 0,(1) uniformly in x. Further by Lemma 2.1(e), we
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have
sup |H,(x,s,u)|
s€[0,1], xR

<sup sup |f(&) —f(x)|lul

x€R 1<t<n

1 n
I 21 187X, | = 0,(1).
t=

This completes the proof of Lemma 2.3. O

PROOF OF THE THEOREM. Note that
N N T 1, A T
‘9t=‘9t_(a_a) Xt,1=8t—[3nl(01—01)] (6nTXt—1)~
Denote & = §, (& — a). Then

[ns]

K,(s,x) —K,(s,x) - 7= 21 f(x)a"rX,
t=

1 [ns]
- = Yo [I(e, <x+0IX, 1) —I(e, < x) — f(x)2"87X, ]
t=1
To study the process K, (s, x) — K(s, x) — (1/ Vn)Zl») f(x)a"8TX, |, we
only need to study the process

(2.37)

1 [ns]
A (x,s,u)=—= Y. |I(e <x+u"8'X,_
(2.38) ( ) =T H[ (e 1)

—I(e, <x) — f(x)uT8TX, ]

for all u € R? and all x € R. By assumption (iii), 4 = 0,(1) and thus the
theorem is proved if

(2.39) sup sup  |A,(x,s,u)|=0,(1) foreveryA >0,
ueD, s€[0,1],x€R

where D, is defined as in Lemma 2.2. Denote

1 [nsl]
Z,(x,s,u) = — I(e, <x+uSTX,_
(2.40) ( )= El[ (e 1)
—F(x +u"8'X, ) —I(e, <x) + F(x)].
By the triangle inequality, |A,(x, s, vl < |Z,(x, s, w| + |H,(x, s, u)|, where

H, (x,s,u) is defined by (2.26). Therefore, to prove (2.39), it is sufficient to
show that, for every A > 0.

(2.41) sup sup  |Z,(x,s,u)|=0,(1)
ueD, s€[0,1],x€R
and

(2.42) sup sup  |H,(x,s,u)|=o0,(1).
ueD, s<€[0,1],x€R
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Since D, is a bounded and closed region of R?, for every « > 0, there is a
finite number of open subsets A,(k), i = 1,..., m, each with diameter «, such
that U™ ; A,(k) D D, and A, (K) N D, is not empty Let u, be any fixed point
in A (K) ﬂ D Then for any u € A = A (k) N D,, we have
(243)  |g.(u,)) —g, nTXt—1”5K”8nTXt—1”’
that is,

(2.44) g(u, A —«k)<g(u,)) <g(u,,rA+ k),
where g,(u, A) is defined by (2.33).

Note that Z,(x,s,u) = Z(x,s,u,0), where Z (x,s,u, ) is defined by

(2.25). By the monotonicity of the mdlcator functlon we obtam

Z,(x,s,u) <Z(x,s,u,,K)
(2.45) 1 [nsl
‘/— Z [F(x +8(u,, k) —F(x +g,(u, 0))]

and a reverse inequality Wlth k replaced by —«, for all u € A,. However
since assumption (ii) implies that sup, |f(x)| < o, by the mean value theo-
rem,

[ns]

% tzzl [F(x +g,(u,, +k)) — F(x + g,(u,0))]

[ns]

(2.46) =< SuP |f(x)| \/— Z |gt(ur’ tk) —8(u, 0)|

_ 2wsup, |f(2)|

- Vn
where the last equation holds by _ Lemma 2.1(e) and O,(1) uniformly holds for
all s €[0,1], all x € R, alluEA and all r € {1,. m}

Given any small £ > 0 and n > 0 by (2.46), there exists ak=~k(e,n>0
such that

Z [87X, -] = x0,(1),

[ns]

:ZI[F(x +gt(ur’i K))

1
—— max sup sup sup

P 7
n T uEAr s x

(2.47)
_F(x + gt(u70))]

&
> =) <
=73 m,

for all n. Next for the +«, by Lemma 2.3(a), we can find n, = n,(e, n) such
that, for n > n,,

~ &
P{max sup |Zn(x,s,u,,il<)| > —}
(2 48) r SE[O,l],xER 3

~ &
SmmaxP{ sup |Zn(x,s,u,,-l_-f<)|2—}<n
r s€[0,1], xR 3
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because k is fixed and the number m of open subsets is also fixed. So when
n > n,, by (2.45), (2.47) and (2.48), we have

P{ sup sup | Z,(x,s,u)| = s}
ueD, s€[0,1],x€R

~ &
sP{max sup |Zn(x,s,u,,r<)|z—}
r s€[0,1], xR 3

. e
+P{max sup |Zn(x,s,ur,— K)|Z§}

(249) r  sel0,1],x€R
1 [ns]
+ P Ny max sup sup sup | ). [F(x + g,(u,,+«))
n T uel, s X |t=1
&£
—F(x + g,(u,0))]| = 3
< 3n.

So (2.41) holds. ;
Since F(x) is a nondecreasing function, we obtain that, as u € A,

H,(x,s,u)
1 [ns]
= — [F(x—kuTSnTXt_l) - F(x) _f(x)uTBnTXt—l]
n ;-1
1 [ns]
= 7= [F(x +urd X, |+ K||53Xt—1”)
noy=1
—F(x) - f(x)u"8X, ]
2.50 1 [psl
0 b (w5 ¢ 3 [F(x+ 257X, + 37X, )
Vn /5
—F(x + uz'Sth,l) + f(x)uls’X,
—f(x)uTSnTXt,l]
2 n
<H,((x,s,u,) + 2w oup, ()| Y l8rx, |
Vn -1

=H,(x,s,u,) + «0,(1),

where the last equation holds by Lemma 2.1(e) and O,(1) uniformly holds for
all s €[0,1],all x e R,all u € A, and all r €{1,..., m}. A reverse inequal-
ity holds as « is replaced by —« in (2.50).

Given any small £> 0 and 7 > 0, similar to (2.49), using (2.50) and
Lemma 2.3(b), we can also show that there exists n, = n,(e,n) such that,
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when n > n,,

P{ sup sup |H,(x,s,u)| > e} <.
ueD, xeR,s<[0,1]

Thus (2.42) holds. This completes the proof of the theorem. O

Acknowledgments. I am very grateful to my supervisor Professor W. K.
Li for his encouragements and advice. I am also very grateful to Professor
dJ. Bai, two referees, an Associate Editor and the Editor for their very useful
comments, which led to a great improvement in this paper. The proof of
(2.47)-(2.49) is based on the suggestion of an Associate Editor.

Note. 1 was informed by a referee and an Associate Editor that the
results for the residual empirical processes for the unstable processes have
already appeared in the Ph.D. dissertation by Lee (1991).

REFERENCES

Bai, J. (1993). On the partial sums of residuals in autoregressive and moving average models.
J. Time. Ser. Anal. 14 247-260.

Bal, J. (1994). Weak convergence of the sequential empirical processes of residuals in ARMA
models. Ann. Statist. 22 2051-2061.

BICcKEL, P. J. and WICHURA, M. J. (1971). Convergence for multiparameter stochastic processes
and some applications. Ann. Math. Statist. 42 1656-1670.

BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.

BoLDIN, M. V. (1982). Estimation of the distribution of noise in an autoregressive scheme. Theory
Probab. Appl. 27 866-871.

CHaN, N. H. and WEI, C. Z. (1988). Limiting distributions of least squares estimates of unstable
autoregressive processes. Ann. Statist. 16 367-401.

CHUNG, K. L. (1968). A Course in Probability Theory. Harcourt Brace and World, New York.

HaLL, P. and HEYDE, C. C. (1980). Martingale Limit Theory and Its Applications. Academic
Press, San Diego.

JEGANATHAN, P. (1991). On the asymptotic behavior of least squares estimators in AR time series
with roots near the unit circle. Econometric Theory 7 269-306.

Kout, H. L. (1991). A weak convergence result useful in robust autoregression. «J. Statist. Plann.
Inference 29 1291-1308.

KouL, H. L. and LEVENTAL, S. (1989). Weak convergence of the residual empirical process in
explosive autoregression. Ann. Statist. 17 1784-1794.

KrE1ss, P. (1991). Estimation of the distribution of noise in stationary processes. Metrika 38
285-297.

LEE, S. (1991). Testing whether a time series is Gaussian. Ph.D. dissertation, Dept. Mathemat-
ics, Univ. Maryland.

SHORACK, G. R. and WELLNER, dJ. A. (1986). Empirial Processes with Applications to Statistics.
Wiley, New York.

STRAF, M. J. (1970). Weak convergence of stochastic processes with several parameters. Proc.
Fourth Berkeley Symp. Math. Statist. Probab. 187-221. Univ. California Press, Berke-

ley.
DEPARTMENT OF STATISTICS DEPARTMENT OF ECONOMICS
UNIVERSITY OF HONG KONG UNIVERSITY OF WESTERN AUSTRALIA
PokruLAM RoAD NEDLANDS, PERTH

Hong KoNGg WESTERN AUSTRALIA



