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ROBUST BAYESIAN ANALYSIS OF SELECTION MODELS1

BY M. J. BAYARRI AND JAMES BERGER

Universitat de Valencia and Duke University

Selection models arise when the data are selected to enter the sample
only if they occur in a certain region of the sample space. When this
selection occurs according to some probability distribution, the resulting
model is often instead called a weighted distribution model. In either case

Ž .the ‘‘original’’ density becomes multiplied by a ‘‘weight function’’ w x .
Often there is considerable uncertainty concerning this weight function;
for instance, it may be known only that w lies between two specified
weight functions. We consider robust Bayesian analysis for this situation,
finding the range of posterior quantities of interest, such as the posterior
mean or posterior probability of a set, as w ranges over the class of weight
functions. The variational analysis utilizes concepts from variation dimin-
ishing transformations.

1. Introduction. Assume that the random variable X � �1 is dis-
Žtributed over some population of interest according to the density with

. Ž � . Žrespect to Lebesgue measure f x � , � � � � some interval possibly infi-
. 1 Žnite in � , but that, when X � x, the probability of recording x or the

. Ž .probability that x is selected to enter the sample is w x . Then the true
density of an actual observation is

�w x f x �Ž . Ž .
�1.1 f x � � ,Ž . Ž .w � �Ž .w

Ž . � Ž .� Ž .where � � � E w X . There is, actually, no reason to require w x to be aw �

probability; all we henceforth require is that w be nonnegative and that
� Ž .�0 � E w X � � for all � . Then w can be interpreted as a weight function�

Ž . Ž � .that distorts multiplies the density f x � that observation x gets selected.
� Ž .Selection models occur very often in practice Patil and Rao 1977 ; Rao

Ž . Ž .�1985 ; Bayarri and DeGroot 1992 .
Ž .Often the specification of w � is highly uncertain. It is thus of particular

interest to study the robustness of the analysis to choice of w. We do so here
using the global Bayesian robustness approach of considering a class, WW , of
possible weight functions, and computing the range of posterior functionals of
interest as w ranges over WW .

Previous efforts in this direction for selection models have been informal
and mainly confined to the study of parametric classes of weight functions,
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Ž . � Ž .such as w x � x when X � 0 . There is rarely scientific justification for
such specific parametric models; we will thus consider nonparametric classes
of weight functions, such as

WW � w : w x � w x � w x ,� 4Ž . Ž . Ž .1 1 2

WW � nondecreasing w : w x � w x � w x ,� 4Ž . Ž . Ž .2 1 2

Ž . Ž .where w � and w � are nondecreasing. The upper and lower limits, w and1 2 1
w , are to be chosen subjectively, representing the extremes of beliefs con-2
cerning w.

Ž .EXAMPLE 1. Studies are reported in a journal only if i the result is
Ž . Ž .significant at the 0.05 level of significance one-sided or ii it is significant at

the 0.1 level and is deemed to be exceptionally ‘‘important’’ by the editors. In
terms of, say, a standardized normal test statistic, X, we might conclude that

Ž . Ž . Ž . Ž . Ž .w � WW or WW with w x � 1 x and w x � 1 x , where ‘‘1’’1 2 1 Ž1.645, �. 2 Ž1.282, �.
stands for the indicator function on the given set. The multiobservational
version of this example can arise in meta-analysis.

Ž .From 1.1 , note that multiplying w by a constant has no effect on the
� �density. Hence, for i � 1 or 2, WW could be replaced with WW � kw: k � 0i i

4 �and w � WW without affecting the conclusions. Interestingly, WW can bei 1
rewritten as

WW
� � w : w x �w y � w x �w y ,� 4Ž . Ž . Ž . Ž .1 2 1

Ž . �which is the class considered in DeRobertis and Hartigan 1981 ; WW can be2
similarly rewritten. Some may find it more natural to elicit w and w by1 2
considering WW

� or WW
�, but, again, the answers will not change once w and1 2 1

w have been elicited.2
The robust Bayesian problem becomes particularly interesting in the

multiobservational setting, because the effect of the weight function can then
be extremely dramatic. Suppose X , X , . . . , X are i.i.d. from the density1 2 n
Ž .1.1 , so that the likelihood function for � is

�n
1.2 L � � l � � � ,Ž . Ž . Ž . Ž .w w

Ž . n Ž � .where l � � Ł f x � would be the likelihood function for the un-i�1 i
Ž . Žweighted base density. If � � is the prior density for � assumed to be w.r.t.

.Lebesgue measure , the posterior density is then
�n

l � � � � �Ž . Ž . Ž .w�1.3 � � �Ž . Ž . �n
Hl � � � � � d�Ž . Ž . Ž .w

Ž .assuming � is such that the denominator is finite. Expression 1.3 suggests
that, at least for large n, the weight function w can have a considerably

� Ž .greater effect on � than might the prior � . Hence we will treat � � as
given here; for instance, it might be chosen to be a noninformative prior for

Ž � .the base model f x � . Section 2 in this paper generalizes trivially to thei
scenario in which � is also specified only up to a class 	, but Section 3 is
more difficult to generalize.
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We are interested in posterior functionals of the form
�n

H
 � l � � � � � d�Ž . Ž . Ž . Ž .w�1.4 H � � 
 � � � d� � .Ž . Ž . Ž . Ž .H �n
 w Hl � � � � � d�Ž . Ž . Ž .w

ŽWe assume that these integrals exist for all w, guaranteed if they exist for
. Ž . Ž .w . Typical 
 of interest include 
 � � � yielding the posterior mean, � ,1

Ž . Ž .2 Ž .
 � � � � � yielding the posterior variance corresponding to � and
Ž . Ž . Ž .
 � � 1 � yielding the posterior probability of the set C . The sensitivityC

Ž .of H � to w will be determined by finding, for i � 1, 2,
 w

Ž i. Ž i.1.5 H � inf H � and H � sup H � .Ž . Ž . Ž .
 
 w 
 
 w
w�WWi w�WWi

Ž i. Ž i.Ž .As usual in Bayesian robustness, if H , H is a small enough interval,
 


then the effect of uncertainty in w is minor, but if the interval is large, one
cannot be assured of a robust conclusion and must either collect more data or

Ž .refine subjective opinion about w or � . For general discussion and refer-
Ž .ences concerning this type of Bayesian robustness, see Berger 1990, 1994

Ž .and Wasserman 1992 . Note that virtually the entire literature considers
� Ž .robustness w.r.t. the prior�not the likelihood, as here. Lavine 1991 and

Ž . �Shyamalkumar 1996 are exceptions.

Section 2 exploits rather trivial inequalities to obtain a simple lower bound
Ž i. Ž i.on H and upper bound on H , using the technique of DeRobertis and
 


Ž .Hartigan 1981 . Unfortunately, these simple bounds yield too broad a range
Ž .to be of much use unless n is quite small . Hence, in Section 3 we tackle the

Ž i. Ž i.variational problem of finding H and H directly. Rather simple charac-
 


terizations of the ‘‘extreme points’’ for these optimizations are possible when
Ž .
 � is monotonic, unimodal or bowl-shaped. The theory of variation dimin-

� Ž .�ishing transformations cf. Brown, Johnstone and MacGibbon 1981 is used
in this analysis.

2. Employing DeRobertis and Hartigan bounds. If w � WW , then1
clearly

� � � 	 � � � : � � � � � � � � .Ž . Ž . Ž . Ž . Ž .� 4w 1 w w1 2

Ž � .Also, if w � WW and f x � has decreasing monotone likelihood ratio in �2
� Ž � . Ž � . �i.e., � � � � f x � �f x � is nonincreasing , then1 2 1 2

� � � 	 � nondecreasing � : � � � � � � � � .Ž . Ž . Ž . Ž .� 4w 2 w w1 2

� Ž .This follows from the monotone likelihood ratio MLR property; since w � WW2
Ž . �is nondecreasing, so is � � . Define, for i � 1, 2,w

Ž i. ˜ Ž i.H � inf H � , H � sup H � .Ž . Ž .
 
 
 

��	i˜ ��	i
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Ž i. Ž i. Ž i. Ž i.˜Since w � WW � � � 	 , it is clear that H � H and H � H . Thusi w i 
 
 
 
˜the bounds obtained by employing the 	 are conservative, in that theyi
contain the desired WW bounds. The reason for considering the 	 bounds isi i
that they can be obtained from a relatively simple DeRobertis and Hartigan
Ž .1981 type of analysis.

For use in the following theorems, define
 � � : 
 � 	 a ,� 4Ž .a

�n �n
L � � l � � � � � , U � � l � � � � � ,Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .w w2 1

L � , if � � a,Ž .
g � �Ž .a ½ U � , if � � a,Ž .


U � , if � � a,Ž .
��U a , if a � � � a ,Ž .h � �Ž .a

��L � , if a � � ,Ž .
� � Ž . � Ž . Ž .4where a � a a � inf y 	 a: U a � L y . Note that h is defined only fora

those values of a for which a� is well defined.

THEOREM 1. If 	 is considered, then1

H 
 � L � d�  H c 
 � U � d�Ž . Ž . Ž . Ž . a aŽ1.H � inf ,

cH L � d �  H U � d�a Ž . Ž . Ž .˜  a a

H 
 � U � d�  H c 
 � L � d�Ž . Ž . Ž . Ž . a aŽ1.H � sup .

cH U � d�  H L � d�Ž . Ž .˜ a  a a

The proof is essentially just Theorem 4.1 of DeRobertis and Hartigan
Ž .1981 .

Ž .THEOREM 2. If 
 � is nondecreasing and 	 is considered, then2

Ž2.H � inf 
 � h � d��Hh � d� ,Ž . Ž . Ž .H
 a a
a˜

Ž2.H̃ � sup 
 � g � d��Hg � d� .Ž . Ž . Ž .H
 a a
a

Ž .If 
 � is nonincreasing, these expressions hold with h and g reversed.a a

Ž .The proof is essentially Theorem 2.3.1 of Bose 1990 .
Ž .An analogous result could be given for unimodal or bowl-shaped 
 � , but

we defer such a result until Section 3 and determination of the more accurate
Ž i. Ž i.H and H .
 


Ž � . �1 � 4EXAMPLE 2. Suppose f x � � � exp �x �� , where x � 0 and � � 0.i i i
�nŽ . � 4Then l � � � exp �nx�� . We will employ the usual noninformative prior,

Ž . Ž . Ž .� � � 1�� . Consider w x � 1 x , � � � , as in Example 1. Theni Ž� , �. 2 1i

Ž . � 4� � � exp �� �� , so that 	 and 	 are quite simple.w i 1 2i
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Ž . Ž .Let 
 � � � , so that H � is the posterior mean of � . We then have that
 w
� . � a, � , anda

�Ž n�1. �Žn�1.L � � � exp �n x � � �� , U � � � exp �n x � � �� .Ž . Ž .Ž . Ž .Ž . Ž .2 1

Ž1. ˜ Ž1.Theorem 1 can thus be used to numerically compute H and H , the
 
˜minimum and maximum of the posterior mean as � ranges over 	 .w 1
Ž2. ˜ Ž2.Similarly, for 	 we can numerically compute H and H using Theo-2 
 
˜rem 2. Note that the range of a for which h is defined can be shown to bea

Ž .0, a , where a is the solution to0 0

L a exp n � � � �a � L n x � � � n  1 .� 4Ž . Ž . Ž .Ž .0 1 2 0 2

˜ Ž i.Ž .Since 
 � � � is increasing, it is easy to see that H is the same for 	 and
 1
	 , but that the lower bounds, H Ž i., differ. These bounds are all given in2 
˜Figure 1, as a function of d, for the case � � 1  d, � � 1 � d and n � 50.1 2
The dashed lines are the upper and lower bounds corresponding to 	 , and1
the dotted line is the lower bound corresponding to 	 . Since the upper bound2
is unchanged for 	 , it is clear that imposing monotonicity on w in 	2 2
provides only a slight improvement over the 	 bounds.1

It is of considerable interest to study the effect of the sample size, n. This
is done in Table 1, for the case � � 0.8 and � � 1.2. The startling feature of1 2

Ž . Ž .FIG. 1. Ranges of the posterior mean over 	 dashed lines , 	 upper dashed and dotted lines1 2
Ž .and WW solid lines in the exponential example, when � � 1  d, � � 1 � d and n � 50.2 1 2
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TABLE 1
Ranges of the posterior mean over 	 , 	 and WW in the exponential example with sample size n1 2 2

n � 5 n � 10 n � 50

Ž1. Ž1.˜Ž . Ž . Ž . Ž .H , H 0.813, 1.711 0.610, 1.681 0.421, 1.976
 
˜ Ž2. Ž2.˜Ž . Ž . Ž . Ž .H , H 1.117, 1.711 0.864, 1.681 0.582, 1.976
 

Ž2. Ž2.Ž . Ž . Ž . Ž .H , H 1.0, 1.5 0.889, 1.333 0.816, 1.224
 


the results is that the range of the posterior mean increases with n; thus
larger sample sizes result in less robustness. This is a clear indication that
replacing WW by 	 or 	 and using the DeRobertis and Hartigan theory is too1 2
crude; it appears to be necessary to work directly with the original WW .

For this type of situation, it will be shown in the next section that the
Ž2. Ž2.exact bounds, H and H , corresponding to WW , are the minimum and
 
 2
Ž . Ž . Ž .maximum of H � , where w x � 1 x . It is straightforward to show,
 w � Ž� , �.� �1Ž � Ž .� .for such w , that the posterior distribution is inverse gamma n, n x � � ,�

Ž . Ž . Ž .so that the posterior mean is H � � n x � � � n � 1 . It is then obvious
 w�

Ž2. Ž2.Ž . Ž . Ž . Ž .that H � n x � � � n � 1 and H � n x � � � n � 1 .
 1 
 2
Besides being available in closed form, these exact bounds are considerably

Ž i. ˜ Ž i.tighter than the H and H . In Figure 1, the solid lines are the exact
 
˜bounds, and in Table 1, one sees that the range of the exact bounds decreases
with n, as intuition would suggest. However, note that this range decreases

Ž .to the constant � � � , so that, even for an arbitrarily large sample size,1 2
the uncertainty in the posterior mean is not completely resolved. This is the
nature of selection models and indicates why robustness studies are particu-
larly important for their analysis.

3. Determining the posterior bounds. Example 2 in Section 2 demon-
Ž i. Ž i. Ž .strated the need for exact calculation of H and H in 1.4 . In this section,
 


we indicate how this can be done.
The following assumptions will be used in the optimization proof. The first

�assumption utilizes the concept of variation diminishing transformations see
Ž .Brown, Johnstone and MacGibbon 1981 , for precise definitions and discus-

� Ž � . Žsion . We will require that f x � be SVR or SVR strictly variation re-2 3
.ducing of order 2 or 3, respectively . Note that being SVR is equivalent to2

Ž .having strict monotone likelihood ratio decreasing, by convention . SVR3
Ž . Ž .means that, if g x has at most two sign changes ignoring zeros , then

Ž . � Ž .� Ž . Ž .h � � E g X has no more sign changes counting zeros than g x does�

Ž .ignoring zeros ; furthermore, if these numbers of sign changes of g and h
are equal, then the changes occur in the same order. Any distribution in the

Ž .exponential family is SVR indeed, is SVR ; so is the noncentral t, noncen-3 �
2 � Ž . �tral � , noncentral F and many others see Karlin 1968 , Section 3.4 .
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Ž . Ž � .ASSUMPTION 1. 
 � and f x � satisfy either of the following conditions:

Ž . Ž . Ž . Ž .i 
 � is nondecreasing to be denoted � or nonincreasing � , and
Ž � .f x � has strictly decreasing monotone likelihood ratio;
Ž . Ž . Ž .ii 
 � is nondecreasing for � � � and nonincreasing for � 	 � �� , or0 0
Ž . Ž .
 � is nonincreasing for � � � and nondecreasing for � 	 � �� , and0 0
Ž � .f x � is SVR .3

Ž � .ASSUMPTION 2. Let f x � be a density with respect to Lebesgue measure
Ž .on the interval r, s , where r and s could be infinite. For all r � x � s and

some small � � 0, assume that

Ž .� n1
� � �3.1 1  
 � l � � � � � f x � d� � �,Ž . Ž . Ž . Ž . Ž . Ž .Ž .H w1

Ž . Ž .� n1� 1�
� �3.2 1  
 � l � � � � � � � d� � �.Ž . Ž . Ž . Ž . Ž . Ž .Ž .H w w1 2

Ž . Ž .Note that 3.1 and 3.2 then hold with w and w replaced by any w � WW .1 2 i

Ž i. Ž i.It will be seen that H and H are achieved at a w which has one of the
 


Ž . � Ž . 4 Ž . �four following forms. Define h c � inf x: w x 	 c and h c � sup x:1 1 2
Ž . 4 Ž . �1Ž .w x � c . Note that, at points of continuity of w , h c � w c . Also, let2 i i i

a�b and a�b denote the minimum and maximum, respectively, of a and b.

Solution forms.

w x , if r � x � a,Ž .13.3i w x � for some a,Ž . Ž . ½ w x , if a � x � s,Ž .2


w x , if r � x � h c ,Ž . Ž .2 2�c, if h c � x � h c ,Ž . Ž .3.3ii w x � for some c,Ž . Ž . 2 1�w x , if h c � x � s,Ž . Ž .1 1


w x , if r � x � a,Ž .1

w x , if a � x � a � h c ,Ž . Ž .2 2�3.3iii w x � for some a, c,Ž . Ž .
c, if a � h c � x � h c ,Ž . Ž .2 1�w x , if h c � x � s,Ž . Ž .1 1


w x , if r � x � h c ,Ž . Ž .2 2

c, if h c � x � a � h c ,Ž . Ž .2 1�3.3iv w x � for some a, c.Ž . Ž .
w x , if a � h c � x � a,Ž . Ž .1 1�w x , if a � x � s.Ž .2

Ž . Ž . Ž .It can be seen that 3.3i and 3.3ii are both limiting cases of 3.3iii and
Ž .3.3iv . This might be missed by an optimization program, however, so it is

Ž . Ž .wise, when optimizing over classes 3.3iii or 3.3iv , to also check classes
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Ž . Ž . Ž .� Ž .�3.3i and 3.3ii . We also define three limiting cases, 3.3ii , 3.3iii and
Ž .� Ž . Ž . Ž . Ž . Ž . Ž3.3iv , as the versions of 3.3ii , 3.3iii and 3.3iv with h c � h c i.e.,1 2

.the ‘‘uniform at c’’ piece is absent .

Ž .NOTE. When w and w are nondecreasing indicator functions, as in1 2
Ž .Examples 1 and 2, it is easy to see that the solution forms 3.3 are

Ž .themselves simply nondecreasing indicator functions.

Ž i. Ž i.THEOREM 3. H and H exist and are attained, respectively, at some w
 


and w in WW . If Assumptions 1 and 2 hold and WW � WW , then w and w can bei 2
chosen to be of the form indicated in Table 2. If, instead WW � WW , the solution1

Ž . Ž . Ž . Ž . �forms are as in Table 2 but with 3.3ii , 3.3iii and 3.3iv replaced by 3.3ii ,
Ž .� Ž .�3.3iii and 3.3iv .

For the proof, see the appendix, which also contains more general results.
In the following two examples, we illustrate application of Theorem 3 as

Ž .well as the nature of solution forms 3.3 .

EXAMPLE 3. Consider the exponential scenario of Example 2, but now
Ž . �suppose that ‘‘size-biased’’ weights of the form w x � x are under consider-

ation. In particular, � � 0.8 and � � 1.2 are considered to be ‘‘extreme’’1 2
weights, and it is decided to consider any nondecreasing weight function that
lies between these extremes. The resulting class is clearly WW , with2

x1 .2 , if x � 1, x 0 .8 , if x � 1,w x � w x �Ž . Ž .1 2½ ½0 .8 1 .2x , if x � 1, x , if x � 1.

Ž .If we are again interested in the posterior mean, so that 
 � � � which is
Ž2. Ž .increasing, Theorem 3 states that H is achieved at w of form 3.3i , while


Ž2. Ž .H is achieved at w of form 3.3ii . Numerical computation for the situation


Ž .x � 2 and n � 10 shows that w is of form 3.3i with a � 2.097, while w is of
Ž . Ž . Ž . Ž .1.2�0.8 Ž .1.2form 3.3ii with h c � 1.826, h c � 1.826 and c � 1.826 . These2 1

are graphed as the dark lines in Figure 2; the lighter lines are w and w ,1 2
Ž .and the dashed vertical lines mark a and h c , respectively. The correspond-2

Ž2. Ž2.Ž . Ž .ing bounds H , H are 0.943, 1.189 .
 


EXAMPLE 4. Consider the exponential scenario of previous examples, but
Ž .now suppose that ‘‘length-biased’’ weights of the form w x � � x are consid-

TABLE 2
Extreme points for optimization

Shape of 
 � � �� ��
Ž . Ž . Ž . Ž .Form of w 3.3ii 3.3i 3.3iv 3.3iii
Ž . Ž . Ž . Ž .Form of w 3.3i 3.3ii 3.3iii 3.3iv
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Ž . Ž . � Ž . Ž . � Ž .FIG. 2. Graphs of w x and w x dark lines in a and b , respectively , together with w x1
Ž .and w x for Example 3.2

Ž . Ž . Ž . Ž .ered. The ‘‘extremes’’ are thought to be w x � 0.8 x and w x � 1.2 x,1 2
which we directly use to define WW .2

Ž .If the ‘‘standard’’ length bias w x � x were used, then the posterior
�1Ž Ž . .distribution for � would be inverse gamma 2n, nx . For n � 10 and

x � 2, the posterior mean plus or minus one posterior standard deviation
Ž . Ž � .would be the interval I � 0.805, 1.301 and Pr � � I data � 0.714. We wish

to study the robustness of this posterior coverage as w varies over WW . To do2
Ž . Ž . Ž .so, we set 
 � � 1 � and apply Theorem 3. Note that 
 � is ��, so thatI

Ž . Ž .Theorem 3 asserts that w is of form 3.3iii and w is of form 3.3iv .
Ž .Numerical computation reveals that w is of form 3.3iii , but with a � 0 and

Ž .c � 2.458; thus the solution is actually of form 3.3ii , illustrating the need to
Ž .consider limiting cases. The maximizer, w, is of form 3.3iv with a � 4.150

Ž .and c � 0.768. Figure 3a and b graphs w and w, respectively the dark lines :
Ž .the lighter lines are w and w , and the dashed lines mark c Figure 3a and1 2

Ž2. Ž2.Ž . Ž . Ž .c and a Figure 3b . The corresponding bounds H , H are 0.647, 0.755 .
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Ž . Ž . � Ž . Ž . � Ž .FIG. 3. Graphs of w x and w x dark lines in a and b , respectively , together with w x1
Ž .and w x for Example 4.2

APPENDIX

Existence and forms of w and w. Because the numerator and denomi-
Ž .nator in 1.4 are bounded above and below by w and w , it is straightfor-1 2

Ž i. Ž i.ward to show that H and H exist. To show that w and w exist, note first
 


that WW is compact in the topology of pointwise convergence. Hence to provei
Ž .existence of w and w we need only show that H � is a continuous function
 w

Ž .of w under pointwise convergence , that is, that

A1 lim H � � H � � if lim w x � w� x .Ž . Ž . Ž . Ž .Ž .
 w 
 w Ž i.Ž i.i�� i��

Ž . Ž .Since we require � � � � and w � 	 0, the Lebesgue dominated conver-w 2

gence theorem yields

lim � � � � � � if lim w x � w� x ,Ž . Ž . Ž . Ž .w w Ž i.Ž i .i�� i��
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from which it is clear that

�n �n
�lim � � � � �Ž . Ž .w wŽ i.i��

� Ž . � � Ž .��n � Ž .��n Ž .using also � � � 0 . Since � � � � � and the integrals in 1.4w w w1 Ž i. 1

are assumed to exist for w , the dominated convergence theorem can again be1
Ž .applied to establish A1 .

We begin the determination of the extreme points with some needed
definitions. Much of the following applies to quite general classes, WW , so

Ž . �define H and H as in 1.5 but for arbitrary WW . Next define existence
 


Ž .�guaranteed by 3.1

Ž .� n1 �A2 � x � 
 � � H l � � � � � f x � d� ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Hž /
 w

 �A3 A � x : � x � 0 and A � x : � x � 0 .Ž . Ž . Ž .� 4 � 4
 �Ž .Similarly, define � x , A and A by replacing H and w with H and w in
 


Ž .A2 . We will use the notation

g x  � lim g x  � , g x � � lim g x � � .Ž . Ž . Ž . Ž .
��0 ��0

Finally, we need the following definition.

Ž .DEFINITION. For every open set A � r, s and w � WW , define the weight0
functions

� � cw x w , A � sup w x : w � WW and w x � w x � x � A ,� 4Ž . Ž . Ž .Ž .0 0A4Ž .
� cw� x w , A � inf w x : w � WW and w x � w x � x � A .� 4Ž . Ž . Ž .Ž .0 0

The family WW will be said to be closed under conditional supremum and
� Ž � . Ž � .infimum operations if w x w , A � WW and w� x w , A � WW for any w0 0 0

and A.

NOTE. It is easy to see that WW and WW are closed under conditional1 2
supremum and infimum operations.

Linearization. The first step in establishing the form of w and w is to
�apply the usual linearization argument cf. Lavine, Wasserman and Wolpert

Ž .�1993 rewriting, for w say,

H � sup H w � H wŽ . Ž .
 
 

w�WW

as

A5 0 � sup G w � G w ,Ž . Ž . Ž .
 

w�WW
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where

�n
A6 G w � 
 � � H l � � � � � d� .Ž . Ž . Ž . Ž . Ž . Ž .Hž /
 
 w

For w, the analogous expressions hold with H , sup and w replaced by H ,
 


Ž . Ž .inf and w; we denote the resulting variant of A6 by G w . In dealing with


Ž .A5 , the following lemma will be needed.

Ž . Ž .LEMMA 1. Suppose that WW is convex and w � WW satisfies w x � w x �1
Ž .w x , where w and w satisfy Assumption 2. Then2 1 2

�1A7 n � x w x � w x dx � lim t G 1 � t w  tw � 0.Ž . Ž . Ž . Ž . Ž .Ž .H 

t�0

Ž . Ž .An analogous expression holds for � x , w x and G , but with the inequality


reversed.

Ž .PROOF. Note that 1 � t w  tw � WW by convexity. The inequality in
Ž . Ž . Ž .A7 follows directly from A5 . To prove the first equality in A7 , let w �˜t
Ž . Ž .1 � t w  tw and note that G w � 0 implies that


n
� �Ž .�n w

G w � 
 � � H l � � � � 1 � � d� .Ž . Ž . Ž . Ž .Ž .˜ Hž /
 t 
 w � �ž /Ž .w̃ t

Break this integral up into integrals over

�Ž1 �� �2. � � : � � �� � � tŽ . Ž .� 4t w w

and c, where � is from Assumption 2.t
Dealing first with the integral over c, a Chebyshev argument yieldst

�n �n�1t 
 � � H l � � � � � � � � d�Ž . Ž . Ž . Ž . Ž .H ž /
 w w˜ tc t

�n �n�1 Ž1�� �2.Ž1� .� t t 
 � � H l � � �  � �Ž . Ž . Ž . Ž .H ž /
 w w˜ t

1�
� � � �� � � � d� .Ž . Ž . Ž .Ž .w w

Ž . ŽThis last integral is clearly bounded by a multiple of the finite 3.2 and since
.� is small the leading factor goes to zero as t � 0.

For � �  , note thatt

n �n
� � �� � � 1 � 1 � t 1 � � � �� � � 1Ž . Ž . Ž . Ž .Ž .w w w w˜ t

2� Ž1�� �2.2� nt 1 � � � �� �  O t ,Ž . Ž . Ž .Ž .w w
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Ž . Ž .where O � is uniform in � . Thus, using also 3.2 and the dominated
convergence theorem,

n
� �Ž .�n w�1lim t 
 � � H l � � � � 1 � � d�Ž . Ž . Ž . Ž .H ž /
 w � �ž /t�0 Ž . wt ˜ t

�n� lim n 
 � � H l � � �Ž . Ž . Ž .H ž /
 w
t�0  t

� �Ž . 2w Ž1��� �4.� 1 �  O t � � d�Ž .Ž .ž /� �Ž .w

Ž .� n1� n 
 � � H l � � � � � � � � � � d� .Ž . Ž . Ž . Ž . Ž . Ž .Ž .Hž /
 w w w

Ž . Ž . Ž .Recalling the definitions of � � and � � and using 3.2 and the domi-w w
nated convergence theorem to reverse orders of integration, the result fol-
lows. The proof of the analogous result for w is similar. �

We are now ready to prove two theorems, which can be considered to be
generalizations of Theorem 3. Because these theorems are considerably harder
to apply than Theorem 3, we have left them for the Appendix.

THEOREM 4. If WW � WW and Assumption 2 holds, then w � w on A and1 1
�  �w � w on A . Also, w � w on A and w � w on A .2 2 1

PROOF. We only prove the result for w. Since WW is closed under condi-1
� �Ž � . Ž � .tional supremum and infimum operations, w� x w, A and w x w, A

Ž � . Ž .are in WW . Setting w � w� x w, A in A7 yields1

�A8 n � x w x � w� x w , A dx � 0.Ž . Ž . Ž . Ž .Ž .H
A

Ž � . Ž . Ž .From its definition, it is clear that w� x w, A � w x , so that, for A8 to
� Ž � .be true, w must equal w x w, A , except possibly on a set of measure zero.

� �Ž � .Likewise, w must equal w x w, A . Again recalling the definitions of w�
� and w , it is clear that w must thus take the smallest possible value in A

�and the largest possible value in A . The result is immediate. �

THEOREM 5. If WW � WW and Assumption 2 holds, then:2

 �Ž . Ž . Ž . Ž . � Ž .a for any interval a, b � A or A , w satisfies w x � max w x ,1
Ž .4 Ž � Ž . Ž .4.w a� or min w x , w b ;2
Ž . Ž .  Ž �. Ž . � Ž .b for any interval a, b � A or A , w satisfies w x � min w x ,2
Ž .4 Ž � Ž . Ž .4.w b or max w x , w a� .1

Ž .PROOF. We only prove the first part of a . The proof proceeds as in the
proof of Theorem 4, with the conclusions still being that w must take the
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 �smallest possible value in A and the largest possible value in A . In an
Ž . Ž .interval a, b � A , the smallest possible value would be w x , except that1

Ž .only nondecreasing w are allowed. To be nondecreasing, w x must be
Ž . Ž .smaller than w a � on a, b . The result is immediate. �

PROOF OF THEOREM 3. There are many different cases to check, but they
Ž .are all similar to the following two cases that we will verify: i finding w

Ž . Ž � . Ž .when WW � WW , 
 � � and f x � has MLR; ii finding w when WW � WW , 
 ��1 2
Ž � .and f x � is SVR .3

Ž .For case i , note that the number of sign changes of
Ž .� n1T � � 
 � � H l � � � � �Ž . Ž . Ž . Ž . Ž .ž /
 w

is zero or one and, in the latter situation, the sign changes from � to .
Hence the variation reducing property of an MLR density implies that the

Ž . Ž . Ž � .number of sign changes of � x � HT � f x � d� is zero or one and, in the
 �Ž .latter situation, the sign changes from � to . Thus A � r, a and A �

Ž . �a, s for some r � a � s note that the variation reducing property of strict
Ž . �MLR implies that � x � 0 only on a set of measure zero , and Theorem 4

Ž . Ž . Ž . Ž . Ž . Ž .implies that w x � w x for x � r, a and w x � w x for x � a, s , as1 2
was to be proved.

Ž . Ž .For case ii , note that the number of sign changes of T � is 0, 1 or 2 and,
in the latter situation, the sign changes from � to  to �. Hence the
variation reducing property of an SVR density implies that � has 0, 1 or 23
sign changes, and, in the latter situation, the sign changes from � to  to �.

Ž .When � has zero or one sign change, the proof proceeds exactly as in case i .
 Ž .Thus suppose � has two sign changes, from � to  to �. Then A � a, b

� Ž . Ž . �and A � r, a � b, s , where r � a � b � s. The SVR property implies3
Ž . �that � x � 0 only on a set of measure zero. Theorem 2 then yields that a

maximizing w must satisfy


min w x , w a  , r � x � a,� 4Ž . Ž .2�max w x , w a � , a � x � b ,� 4Ž . Ž .w � 1�min w x , w s  , b � x � s.� 4Ž . Ž .2

Ž .It follows directly that a maximizer must be of form 3.3iv , completing the
proof. �
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