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ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES
UNDER POSSIBLY INCORRECT MODELS1

BY OLAF BUNKE AND XAVIER MILHAUD

Humboldt University and Universite Paul Sabatier´
We prove that the posterior distribution in a possibly incorrect para-

metric model a.s. concentrates in a strong sense on the set of pseudotrue
parameters determined by the true distribution. As a consequence, we
obtain in the case of a unique pseudotrue parameter the strong consis-
tency of pseudo-Bayes estimators w.r.t. general loss functions.

Further, we present a simple example based on normal distributions
and having two different pseudotrue parameters, where pseudo-Bayes
estimators have an essentially different asymptotic behavior than the
pseudomaximum likelihood estimator. While the MLE is strongly consis-
tent, the sequence of posterior means is strongly inconsistent and a.s.
almost all its accumulation points are not pseudotrue. Finally, we give
conditions under which a pseudo-Bayes estimator for a unique pseudotrue
parameter has an asymptotic normal distribution.

1. Introduction. The frequentist asymptotic properties of Bayes estima-
tors and of posterior distributions are well known and have been investigated
under the assumption of a correct parametric model; see, for example, Bickel

Ž . Ž . Ž .and Yahav 1969 , Ibragimov and Has’minskii 1981 , Strasser 1991 or
Ž .Lehmann 1983 . The properties are analogous to those of the MLE and it is

also known that there is a higher order asymptotical equivalence between
� Ž .�Bayes estimators and MLE see Strasser 1981 .

The asymptotic behavior of MLE in the case of a possibly incorrect para-
Ž .metric model given by densities p � � � has also been investigated in�

� Ž . Ž .several papers see Huber 1967 , Pfanzagl 1969 or Gourieroux and Mont-
Ž .�fort 1993 . In particular it is shown that the MLE converges a.s. to the

subset � of the parameter set � on which the Kullback�Leibler divergenceG
Ž .K�L divergence of the true distribution G against the distributions given by
p is minimal. The points of � are so-called pseudotrue parameters.� G

Ž .There are a few papers on Bayes estimators in this case. Berk 1966, 1970
showed that under regularity conditions, a.s. the posterior distribution con-
centrates weakly on � for increasing sample sizes n. Hanousek and Jurec-G

Ž .kova 1996 derived sufficient conditions for the consistency and asymptotic
normality of the Bayes estimators of a one-dimensional parameter when
there is a unique pseudotrue value. On the other hand, Diaconis and Freed-
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Ž .man 1986a,b provide an example where � consists of two points, BayesG
estimators are inconsistent and posterior distributions asymptotically a.s.
weakly concentrate on � .G

In our paper we investigate problems for which there is yet no satisfactory
treatment.

1. Prove a stronger convergence of the posterior distribution than the a.s.
weak concentration on � .G

2. Obtain in the case of a k-dimensional unique pseudotrue parameter a
strong consistency of Bayes estimators w.r.t. general loss functions.

3. Have a deeper insight into the possibly fluctuating behavior of Bayes
estimates and of the posterior distribution in the case of inconsistency, at
least for some special case, for example, determining the accumulation
points of the sequence of posterior distributions or of Bayes estimators.

4. Provide sufficient general conditions for the asymptotic normality of Bayes
estimators and convenient pivotal statistics needed for confidence regions.

In Theorem 2.1, under regularity conditions, we show that the posterior
distribution a.s. concentrates on � in a strong sense. This leads to TheoremG
2.2, which states the consistency of the Bayes estimators derived from a
general loss function, when the pseudotrue value is unique. As an illustration
of these results we treat, by our method, the example of a location-scale

Ž . Ž .Cauchy model left open by Berk 1970 . Berk 1966 and Diaconis and
Ž .Freedman 1986a,b were the first to provide examples of inconsistent asymp-

totical behavior of the posterior distribution. Section 3 presents a simpler
example with normal distributions in which � consist of two points, whereG
we can see that the MLE tends a.s. to the set � , while Bayes estimatorsG
fluctuate around the convex hull of � . The points in the interior of this hullG
are not pseudotrue but they are a.s. accumulation points of sequences of
Bayes estimates. In Section 4, we state sufficient conditions for the asymp-
totic normality of Bayes estimators in a possibly incorrect model. In particu-
lar, the pseudotrue parameter is assumed to be unique. A corresponding
asymptotically normal pivot statistic is presented.

Ž . Ž .To be more specific, we assume the observations X � , . . . , X � to be1 n
Ž . Ž k k .realizations of i.i.d. random vectors X : �, AA � R , BB , each having thei

distribution G. We assume G and P , for all � � �, to be probability�

Ž . kdistributions p.d.’s on BB having densities g and p w.r.t. a nonnegative�

�-finite measure � on BBk. Corresponding to the possibly incorrect model

1.1 X � P , � � � , i � 1, . . . , n ,Ž . i �

we define a pseudotrue parameter � as a value minimizing the divergenceG

1.2 K � � E log g X �p X ,Ž . Ž . Ž . Ž .i � i

over �. The expectation E is w.r.t. the true distribution G.

EXAMPLE 1. The location model is given by

1.3 g x � h x � � , p x � f x � � , � � R1,Ž . Ž . Ž . Ž . Ž .0 �
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where h, f are positive symmetric functions on R1 and � is the true location0
parameter. We see that, with obvious integrability conditions on h and f ,

Ž . Žassuming log p x to be a strictly concave function of � for all fixed�
1. Ž .x � R , the divergence 1.2 has a unique minimum at � � � so that the0

pseudotrue parameter is just the location parameter. The example of Diaco-
Ž .nis and Freedman 1986 with two pseudotrue parameters different from �0

Ž .is a model 1.3 with a special bimodal density g and a Cauchy density p .�

EXAMPLE 2. The exponential model is given by

� dp x � exp � t x � a � , � � � � R ,Ž . Ž . Ž .�

where � is the natural parameter space. It is easy to see that the divergence
Ž .1.2 is minimized by the uniquely determined value � withG

t x p x d� x � Et X � t x dG xŽ . Ž . Ž . Ž . Ž . Ž .H H�G

so that the pseudotrue parameter is just the true observation mean if the
� Ž .�mean-value parametrization see Lehman 1983 is used.

We assume � to be a Borel set in Rd and denote by BB the class of Borel�

sets in �. A nonnegative measure 	 on BB is called a prior distribution,�

which is called improper if it is not finite. We denote by E the integral	

Ž .expectation w.r.t. 	 and by E the integral w.r.t. to the posterior distri-n, 	 , �

Ž .bution P under 1.1 , which is defined byn, 	 , �

�1n n

1.4 dP � � p X � d	 
 p X � d	 � ,Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ł ŁHn , 	 , � 
 i � i
i�1 i�1

assuming that a.s. the above integral is finite for some n � n � N. An0
ˆestimator � is called a pseudo-Bayes estimator w.r.t a loss function L:n

ˆ ˆ� . Ž . Ž Ž . Ž ..� � � � 0, � if for almost all � � � and � � � � X � , . . . , X � ,n n 1 n

ˆ1.5 E L � � , � � min E L t , � .Ž . Ž . Ž .Ž .n , 	 , � n n , 	 , �
t��

2. Consistency. In the following we state some relatively weak regular-
ity conditions which will be needed for proving convergence properties of the
posterior distribution:

Ž . dA1: � is a closed possibly unbounded convex set in R with a nonempty
Ž . kinterior, the density p x is bounded over � � R and its carrier�

� k � Ž . 4x � R p x � 0 is the same for all � � �.�

� �A2: For all � � � there is a sphere S � , � of center � and radius � �
Ž .� � � 0 with

� �2.1 E sup log g X �p X ; t � S � , � � �.Ž . Ž . Ž .� 4t
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k Ž . � Ž .A3: For all fixed x � R , the density p x has a continuous derivative p x� �

w.r.t. � and there are positive constants c, b with0

Ž .4 d	1�1 b� 0� �2.2 p x p x p x � dx � c 1 	 �Ž . Ž . Ž . Ž . Ž . Ž .H � � �

� � dfor all � � �, where  denotes a norm in R .
A4: For some positive constant b the affinity1

1�22.3 	 � � p x g x � dxŽ . Ž . Ž . Ž . Ž .H �

has the behavior

� ��b 12.4 	 � � c � , � � �.Ž . Ž .
A5: There are positive constants b , b so that for all � � � and r � 0 it2 3

holds that
bb 32 � �� �2.5 	 S � , r 
 cr 1 	 � 	 r .Ž . Ž .Ž . Ž .

Ž � �.Moreover, 	 S � , r � 0 for all r � 0 and � � �.
	 Ž .A6: Let L: � � � � R be a measurable loss function with L � , � � 0

Ž .� � � , c , c , c , b , b be positive constants with1 2 3 4 5

� � b4 � � b52.6 c t � � � c 
 L t , � 
 c t � �Ž . Ž .Ž .1 2 3

for all t, � � �.

REMARK 1. Assumptions A1�A4 are fulfilled by most of the standard
parametric models, provided that the true distribution G has some regularity
properties. For instance, if G has a positive density w.r.t. the Lebesgue
measure and has a finite second-order moment and the distributions P ��

Ž 2 .N �, � are normal, the assumptions are fulfilled, as can be checked easily
Ž 2 . 2using the parameter � � �, log � � � � R .

REMARK 2. Assumptions A2 and A3 imply that for all � � � and � � 0
Ž .there is a � � � � , � with

� � �2.7 E sup log g X �p X t � S � , � 
 E log g X �p X 	 � ,� 4Ž . Ž . Ž . Ž . Ž .t �

� � �2.8 E inf log g X �p X t � S � , � � E log g X �p X � � .� 4Ž . Ž . Ž . Ž . Ž .t �

The following theorem shows that the posterior a.s. concentrates on the set
� of all pseudotrue parameters in a relatively strong sense.G

Ž .THEOREM 2.1. Under assumptions A1�A5 the K�L divergence K � reaches
its global minimum over � on a compact set � . It holds for all p � 0 thatG

2.9 lim E d p � � 0 a.s.Ž . Ž .n , 	 , � G
n��

where
� � �d � � min � � t t � � .� 4Ž .G G
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PROOF. By A2 and A3, K is finite and continuous on �. Assumption A4,
the well-known inequality between the affinity and the divergence, entails

2.10 lim K � � lim � 2 log � � � 	�.Ž . Ž . Ž .
� � � �� �� � ��

Therefore K reaches its global minimum on a bounded set � . As � is closedG
and K is continuous, the set � is compact.G

Without loss of generality we suppose 0 � � .G
We introduce the notation

1, � � A ,2.11 I � � A � I � �Ž . Ž . Ž .A ½ 0, � � A ,
n

2.12 Z � � p X �g X ,Ž . Ž . Ž . Ž .Łn � i i
i�1

2.13 K � K 0 .Ž . Ž .0

Given � , � , � � 0 we consider three parts of �

� � � �� � � � � d � � � , � 
 � ,� 4Ž .� G

c � � �� 4S � � � � � � � ,�

� � �� 4S � � � � � 
 � ,�

Ž . � � Ž .where � is chosen large enough to have � � small enough on � see A.11�

�in Appendix A.1 . The following inequality obviously holds:
p pE d � � E d � Z � �E Z �Ž . Ž . Ž . Ž .Ž .n , 	 , � G 	 G n 	 n

p
 � 	 A 	 B �C ,Ž .n n n

2.14Ž .

where
p �� �2.15 A � E � I � � � Z � ,Ž . Ž .Ž .n 	 � n

p� � � �2.16 B � E � I � � � Z � ,Ž . Ž . Ž .n 	 n

� �2.17 C � E I � � � Z � .Ž . Ž .Ž .n 	 n

Ž .Using S we assure that the denominator of the posterior distribution 1.6 is�

not too small, proving for some � � 0,

� �2.18 lim exp n K 	 ��2 C � � a.s. Lemma A.2 .Ž . Ž .Ž .Ž .0 n
n��

On �� the tools of our proof are developed in analogy to a proof of Pfanzagl�

Ž .1969 for the consistency of minimum contrast estimators under a compact
parameter space and we show for conveniently chosen � ,

2.19 lim exp n K 	 2� A � 0 a.s. Lemma A.3 .Ž . Ž . Ž .Ž .0 n
n��

c �Ž .On S we adapt the method of Ibragimov and Has’minskii 1981 pages�

�42�45, referred to henceforth as I�H , and get

2.20 lim exp n K 	 � B � 0 a.s. Lemma A.8 .Ž . Ž . Ž .Ž .0 n
n��
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Ž .Indeed for 2.20 , up to now, we do not know a proof relying directly on K�L
divergence.

Ž . Ž .These convergences together with 2.14 lead to proposition 2.9 . �

Ž .REMARK 3. An obvious consequence of 2.9 is on one hand the a.s. weak
concentration of the posterior on � ,G

2.21 lim P U � 1Ž . Ž .n , 	 , �
n��

for all open sets U containing � . Such a result has been obtained by BerkG
Ž .1966 under a different set of somewhat weaker, more implicit assumptions.

Ž .On the other hand a.s. the accumulation points P w.r.t. weak convergence of
� 4the sequence P of posterior distributions are p.d.’s P with carriern, 	 , � n� N

� . When the pseudotrue parameter � is unique, we obviously have theG G
weak convergence

P � � ,n , 	 , � � G

where � is the Dirac measure at point t.t

REMARK 4. It is easy to see from the reasoning in the proof of Theorem 2.1
˜ Ž .that a posterior mode � at which the posterior density is maximal over � isn

strongly consistent in the sense

˜2.22 lim d � � 0 a.s.Ž . Ž .G n
n��

For the special case of the Lebesgue measure 	 on � � Rd as the prior, a
Ž .posterior mode is a pseudo-MLE. We obtain the strong consistency 2.22 of a

˜MLE � for possibly nonunique pseudotrue parameters. The posterior moden
may be interpreted as minimum contrast or M-estimator and the rich litera-
ture for such estimators gives conditions for its strong consistency. For

Ž .example, the results of Huber 1967 hold for possibly nonunique pseudotrue
parameters under weaker assumptions than those of Theorem 2.1.

REMARK 5. In the one-dimensional case and for a unique pseudotrue
� Ž .�parameter � a further consequence of Theorem 2.1 or of 2.21 is the strongG

ˆconsistency of the posterior median � , which is pseudo-Bayes w.r.t. the lossn
� �t � � .

In Theorem 2.2 we show that pseudo-Bayes estimators are strongly consis-
tent under assumptions A1 to A6.

THEOREM 2.2. If the pseudotrue parameter � is unique, it holds underG
ˆthe assumptions A1 to A6 that for all pseudo-Bayes estimators � w.r.t. a lossn

function L,

ˆ2.23 lim � � � a.s.Ž . n G
n��



ASYMPTOTICS FOR BAYES ESTIMATORS 623

Ž .PROOF. Because of A.6 and 1.5 we have a.s.

ˆE L � � , � 
 E L � , �Ž . Ž .Ž .n , 	 , � n n , 	 , � G

� � b5
 c E � � � .3 n , 	 , � G

2.24Ž .

Ž .With 2.9 we then obtain for almost all � � �,

ˆ2.25 lim E L � � , � � lim E L � , � � L � , � � 0.Ž . Ž . Ž . Ž .Ž .n , 	 , � n n , 	 , � G G G
n�� n��

Ž .Now assume that for such an � there were an � � 0, c where
1�b4�12.26 c � c cŽ . 1 2

� 4and a subsequence n so thati

ˆ� �2.27 � � � � � � , i � 1, 2 . . . .Ž . Ž .n Gi

Ž . Ž .This would lead to a contradiction to 2.25 using 2.9 :

ˆlim sup E L � � , �Ž .ž /n , 	 , � ni i
i��

ˆ b4� �� lim sup E c � � � � � cŽ .½ 5ž /n , 	 , � 1 n 2i i
i��

b4� �� lim sup E c � � � � � � c½ 5ž /n , 	 , � 1 G 2i
i��

2.28Ž .
b4� �� c lim sup E � � � � �1 n , 	 , � Gi

i��

b41�b4b b4 4� �� c lim sup � � E � � � � c � � 0.ž /1 n , 	 , � G 1i
i��

ˆ� Ž . �Consequently, lim � � � � � 0 must hold for almost all � � �. �n�� n G

Ž .EXAMPLE 3. Berk 1970 ends his paper by leaving as an open problem the
behavior of the posterior probability in a possibly incorrect location-scale
Cauchy model:

�12x � �Ž . 	2.29 p x � �� 1 	 , � � � , � � � � � .Ž . Ž . Ž .� 2ž /ž /�

We show below that our results work in this special case. Let us assume the
true distribution G of the sample to be absolutely continuous, with a positive,

Ž � � Ž . � 14 .bounded density g sup g x 
 x � � � � , such that for some positive
� � � 1�� Ž .constants 0 � � � 1, � � 0 the bound H x g x dx � � holds.

The following parametrization,

� � 1, � � 1,� 12.30 s �Ž .
1 � , � 
 1,�

�
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Ž . 2leads to the new parameter t � �, s and to the parameter space � .
Condition A1 is fulfilled. As g is bounded, some calculus with the Cauchy
density show that assumption A2 is fulfilled. A3 is obviously satisfied.

� Ž .For the proof of condition A4 we set � � inf ��4, ��16 and

� � �1�22� � �1�2� � � � '2.31 r � � � 	 � � � � 1 	 x � � �� g x dx .Ž . Ž . Ž . Ž . Ž .H
In Lemma A.9 we prove that

C��� �16 , for � � 1,r � �Ž . ½ 1�4C� , for � 
 1.

Here C is a positive constant not depending on � and � . Then it is easy to
prove that A4 holds.

Summarizing, we have seen that all assumptions of Theorem 2.1 concern-
ing the parametric model are fulfilled, so that we have the asymptotic

Ž .behavior of the posterior given by 2.9 . Moreover, if the true density is
symmetric and strictly unimodal, the pseudoparameter � is uniquely deter-G
mined. Therefore the Bayes estimators w.r.t. convenient loss functions and a
prior satisfying assumptions A5 and A6 are strongly consistent for � �G
Ž .� , � .G G

3. Consistency of MLE versus inconsistency of Bayes estimators.
In this section we want to show by an example that pseudo-MLE and
pseudo-Bayes estimators are not always asymptotically equivalent, the MLE
being strongly consistent, while the Bayes estimator is not. In this example,
the Bayes estimates fluctuate a.s. around an interval; only the end points of it
are pseudotrue parameters, but a.s. the interval is the set of accumulation

ˆ� 4points of the sequence of Bayes estimates � .n n� N
We assume a normal model

3.1 P � N � , v � , v � � a 	 b� 2 ,Ž . Ž . Ž .Ž .�

in which the variance v depends on the mean � . We assume a true distribu-
Ž 2 .tion G � N 0, � and

3.2 0 � a � � 2 , b � a� � 2 � a .Ž . Ž .
The prior distribution 	 is assumed to fulfill A5. We obtain the K�L diver-
gence

1 13.3 K � 	 E log g X 	 log 2� 	 f � ,Ž . Ž . Ž . Ž . Ž .2 2

where

3.4 f � � log v � 	 � 2 	 � 2 �v � .Ž . Ž . Ž . Ž . Ž .
Simple calculus shows that f is minimal at � � � and � � �� , where

3.5 � � b�2 b� 2 � ba � a � 0.Ž . Ž .
� 4Therefore we have � � � , �� .G
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Because assumptions A1�A5 as in Theorem 2.1 are fulfilled for our exam-
ple, it holds that a.s for all p � 0,

p
� � � �3.6 lim E min � � � , � � �� � 0.� 4Ž . Ž .Ž .n , 	 , �

n��

Ž .Moreover we are able to prove see Appendix A.3 the following stronger
asymptotic properties for the posterior.

Ž1. For almost all � the set of accumulation points in the sense of weak
. � 4convergence of the sequence P of posterior distributions is then, 	 , � n� N

set of all the mixtures

� �3.7 � � �� 	 1 � � � , � � 0, 1 .Ž . Ž .� � ��

This is also true for the ‘‘strong’’ convergence P � P of probabilityn
measures defined by the simultaneous validity of weak convergence P � Pn
and the convergence of all absolute moments of order p � 0,

� � p � � p3.8 lim � dP � � � dP � .Ž . Ž . Ž .H Hn
n��

2. We introduce for all p � 0 the ‘‘distances’’

� � p3.9 d P , � � E � � �Ž . Ž .p n , 	 , � � n , 	 , �

Ž .between the posterior and the Dirac measure at � . Obviously 3.9 is the
� � p Ž .infimum of E � � 
 w.r.t. all joint distributions W of � , 
 with theW

marginal distributions P and � . This defines the Mallows distancesn, 	 , � �

Ž .of order p; see Bickel and Freedman 1981 . These distances and the
Ž .distances d P , � will be small, each approximately with proba-p n, 	 , � ��

1bility ; that is, for all sufficiently small � � 0 holds that2

� �lim P � d P , � � � � lim P � d P , � � �� 4 � 4Ž . Ž .ž / ž /p n , 	 , � � p n , 	 , � ��
n�� n��3.10Ž .

1� .2

ˆŽ .A consequence of 1 is the inconsistency of the posterior mean � �n
ˆŽ . � 4E � , because the sequence � will a.s. have all points in then, 	 , � n n� N

� �interval �� , �� as accumulation points. On the other hand, a consequence
ˆŽ . Ž .of 2 see also Appendix A.3 is also that the posterior mean � will ben

ˆ ˆŽ Ž . .weakly consistent p � lim d � � 0 and that the distribution of �n�� G n n
Ž .without standardization tends weakly to the mixture � .1�2

˜Ž .Furthermore, as discussed in Remark 4 Section 2 , the posterior mode �n
˜ ˆ Žand the maximum likelihood estimator � � � as its special case for then MLE

Ž . .uniform prior 	 � � const. are strongly consistent in the sense of

˜3.11 lim d � � 0 a.s.Ž . Ž .G n
n��

˜It is interesting that, as we show in Appendix A.3, the distribution of �n
converges weakly to the mixture � .1�2
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4. Asymptotic normality of pseudo-Bayes estimators.

4.1. Assumptions. In the following, we state further conditions for the
asymptotic normality of a pseudo-Bayes estimator, which complement the
conditions for consistency.

A7: The pseudotrue value � is unique and belongs to the interior � int of �.G
Ž . � Ž . Ž .� kA8: The function l x, � � log p x �g x has for fixed x � R continu-�

ous derivatives of second-order w.r.t. � in the interior � int of �,

� � 2
� �4.1 l x , � � l x , � , l x , � � l x , � .Ž . Ž . Ž . Ž . Ž .2�� ��

Moreover, there is a positive function C on Rk and a positive integer b6
Ž .with EC X � �,

b b� � 6 6� � � � � � � �4.2 l x , � � l x , t 
 C x 1 	 � 	 t � � t ,Ž . Ž . Ž . Ž .
b 	1� int6� � � �4.3 l x , � 
 C x 1 	 � , � , t�� .Ž . Ž . Ž .

� � dwhere  denotes the Euclidian norm on R , or the analogous norm on
the set of d � d matrices.

A9: We assume the integrals

T� �4.4 I � � El x , � l x , � ,Ž . Ž . Ž . Ž .

4.5 M � � �El� x , � � � l� x , � dG xŽ . Ž . Ž . Ž . Ž .H
to exist and to be positive definite matrices in a neighborhood of � � � .G

A10: The loss function L has in � int continuous partial derivatives

� i	 j
Ž i , j.4.6 L � , t � L � , t , i , j � 1, 2.Ž . Ž . Ž .i j�� � t

Moreover we assume with c, b � 0 and for i, j � 1, 2,7

� Ž i , j. � � � b7 � � b7 int4.7 L � , t 
 c 1 	 � 	 t , � , t � � .Ž . Ž . Ž .
A11: The prior measure 	 has a density f w.r.t. the Lebesgue measure on

Rd, which is continuous on Rd and fulfills for b � 0,8

� � b84.8 0 � f � � c 1 	 � , � � �.Ž . Ž . Ž .

4.2. Asymptotic normality.

ˆTHEOREM 4.1. Under assumptions A1�A11, a pseudo-Bayes estimator � is
asymptotically normal:

ˆ'4.9 LL n � � � � N 0, � as n � �,Ž . Ž .Ž .½ 5G
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where

T�1 �1 �1 �14.10 � � L L M I M L L ,Ž . Ž .2 1 G 2 1

4.11 I � I � , M � M � ,Ž . Ž . Ž .G G G

4.12 L � LŽ1, 1. � , � , L � LŽ2, 0. � , � .Ž . Ž . Ž .1 G G 2 G G

PROOF. In the following we give a sketch of the proof, which is presented
in detail in Appendix A.4. We assume w.l.o.g. that � � 0.G

� Ž .�The Bayes estimator minimizes the posterior loss see 1.7 . In Lemma
A.10, the expansion of the posterior loss gives us an asymptotic equivalent

�1 1�2 Ž . � Ž .�term L L n A Z 	 G of the Bayes estimator G is defined in A.59 .2 1 n n n
By a truncation and a dilatation argument applied on Z , we replace Z byn n

� � Ž .�the process Z see A.67 lying in the space CC of the continuous functionsn
on Rd with zero limit at infinity. In Lemma A.11 we show that we can

1�2 Ž . Ž � . Ž .replace n A Z by A Z up to residual o 1 . The sequence of processesn n P
Ž � .Z converges in distribution in CC to the exponential of a Gaussiann n� �

Ž .process Y Lemmas A.12, A.13, A.14 .
Ž Ž � .. Ž Ž ..Finally, we show that A Z , thus A Z , converges in distribu-n n� � n n� �

Ž .tion to A Y and that G vanishes in probability when n � �. The distri-n
�1 1�2 Ž . Ž .bution of L L n A Y is N 0, � . �n 1

REMARK 6. Extending Remark 1, we see that, for example, the normal
model fulfills the assumptions of Theorem 4.1 if the true distribution G has
the properties stated in Remark 1. Therefore we obtain the asymptotic

Ž .normality of a Bayes estimator e.g., a posterior mean even if the model is
Ž .incorrect. The results in the literature see, e.g., I�H state the asymptotic

normality under the assumption of a correct model. The asymptotic covari-
Ž .ance matrix � in 4.9 will in general be different from that under the

correctness assumption.

ˆIf asymptotically valid statements such as the accuracy of � or asymptoti-n
cal confidence regions for the pseudotrue parameter � are wanted, theG

ˆasymptotic covariance matrix for a pseudo-Bayes estimator � that is given inn
Ž .4.10 and depends on the unknown distribution G must be estimated consis-
tently.

ŽBecause of assumptions A8 and A10, the functions I, M and for fixed
.� � � ,

n1 T� �ˆ ˆI � � I � � l X � , � l X � , �Ž . Ž . Ž . Ž .Ž . Ž .Ýn n , � i in i�1

and

1
�ˆ ˆM � � M � � � l X � , �Ž . Ž . Ž .Ž .Ýn n , � in i�1
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are continuous on �. Moreover by A8 and A9 and the strong law of large
numbers, we have for some bounded neighborhood U of � ,G

ˆ� �4.13 lim sup I � � I � � 0 a.s.Ž . Ž . Ž .n
n�� ��U

ˆ ˆ ˆ ˆŽ .Theorem 2.2 gives lim � � � a.s. Then the estimator I � I � isn�� n G n n

ˆ ˆ ˆ ˆŽŽ .strongly convergent to I . Analogously the estimators M � M � , L �G n n 1
Ž1, 1. ˆ ˆ ˆ Ž2, 0 ˆ ˆŽ . Ž .L � , � and L � L � , � are strongly consistent for M, L and L ,n n 2 n n 1 2

respectively.
As a consequence of Theorem 4.1, we obtain a standard pivot T �n

�1�2ˆ ˆ' Ž .n � � � � , wheren

T�1 �1 �1 �1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ� � L L M IM L L .ž /2 1 2 1

From the pivot T we may derive asymptotic confidence regions and a test ofn
a simple hypothesis on � in the familiar way.G

THEOREM 4.2. Under assumptions A1�A11 follows

� 4LL T � N 0, I .Ž .n d
n��

APPENDIX

A.1. Proof of Theorem 2.1.

LEMMA A.1. For all � � 0 it holds that

�K � inf K � � � � , d � � � � K � K 0 .� 4Ž . Ž . Ž .� G 0

Ž .PROOF. The inequality 2.10 , the compactness of � and the continuity ofG
K entail Lemma A.1. �

Now we choose

A.1 � � K � K �4 for a fixed � � 0.Ž . Ž .� 0

LEMMA A.2. There is a � � 0 with

� �lim exp n K 	 ��2 C � � a.s.Ž .Ž .0 n
n��

Ž . Ž .PROOF. With the notations of assumption A8 and setting l � � l X , � ,i i
we have

n1
� � �� � inf l � � � �Ž .Ýn i½ 5n i�1

n1
� � �� � sup log g X �p X � � � .� 4Ž . Ž .Ý i � in i�1

A.2Ž .
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Ž . Ž .Taking � � 0 and � � � 0, ��4 in 2.8 and applying the strong law of large
Ž .numbers on the right-hand side of A.2 yields

A.3 lim inf � � �K � ��4 a.s.Ž . n 0
n��

Then Fatou’s lemma gives

� �lim inf exp n K 	 ��2 CŽ .Ž .0 n
n��

� � � �� E I � � � lim inf exp n K 	 ��2 	 � � � a.s. �Ž . Ž .Ž .	 0 n
n��

A.4Ž .

Ž . �� � � � � 4We set diam � � max � � � � , � � � .G G

Ž .LEMMA A.3. For each � � � 	 diam � it holds thatG

lim exp n K 	 2� A � 0 a.s.Ž .Ž .0 n
n��

� � � Ž . � � 4 Ž .PROOF. For each � � � � � � � d � � � , � 
 � , 2.8 provides a� G
Ž . Ž Ž ..sphere S � , � � � � � , � with

� � �A.5 E sup l t t � S � , � 
 �K � 	 � .� 4Ž . Ž . Ž .i

� Ž .The set � may be covered by a finite number of such spheres, say S � , �� j j
Ž .j � 1, . . . , l . With the notation

��A.6 � � sup l t t � S � , � � � ,Ž . Ž .� 4i j i j j �

Ž . Ž .the strong law of large numbers, A.5 and A.1 give for all j � 1, . . . , l,
n1

A.7 lim � 
 �K � 	 � � �K � 3� a.s.Ž . Ž .Ý i j j 0nn�� i�1

This and the inequality
n n1 1

��A.8 � � sup l � � � � 
 sup �Ž . Ž .Ý Ýn i � i j½ 5n n ji�1 i�1

lead to
A.9 lim sup � 
 �K � 3� a.s.Ž . n 0

n��

Therefore,

lim sup exp n K 	 2� AŽ .Ž .0 n
n��

� � q
 lim sup 	 S 0, � � exp n K 	 2� 	 � � 0 a.s. �Ž .Ž . Ž .0 n
n��

A.10Ž .

�1�2 'Ž Ž ..Let � � d � � 1; next we choose � such that � � � 	 diam � � 2 dG
and

�b 1� � �sup 	 � � � � : � � � 
 c �� 4Ž . Ž .
A.11Ž .


 2�b 1 exp �2d K 	 2� .Ž .Ž .1 0
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We introduce the notation d � d 	 1 and1

1�2 1� d1'A.12 V t � Z t� n , W � V ,Ž . Ž . Ž .n n n n

' � � �A.13 � � � n � � � , � � � .� 4Ž . n

Ž .The proof of 2.20 is now performed in successive steps and can be roughly
described as follows.

' ŽChanging variable � into t� n , we adapt the setting of I�H pages
.42�45 . Our goal is to control the trajectories of the likelihood on � . First wen

Ž . Ž .majorize the expectation of W t using the affinity lemma A.4 . The truen
distribution does not belong to the parametric family and therefore we have
to modify the method of I�H to majorize the continuity modulus of the

Ž . Ž .stochastic process W t Lemmas A.4 through A.6 . From Lemmas A.4 andn
A.6, we derive an upper bound for the likelihood trajectories on the pave-
ments of � . Then a reasoning based on the Borel�Cantelli lemma leadsn

Ž .finally to the desired convergence 2.20 .

LEMMA A.4. For each q � 0, there is an n � 0 such that, for n � n andq q
t � � , it holds thatn

d �q1 � �A.14 E V t � E W t 
 exp �2nd K 	 � t .Ž . Ž . Ž . Ž .Ž . Ž .n n 1 0

Ž .PROOF. Because of assumption A4 and A.11 , we have for t � � ,n

n �nbd 11 n' '� �A.15 E W t 
 	 t� n 
 c t � n .Ž . Ž . Ž .n

Taking logarithms, we see that for n large enough, say n � n , the right-handq
Ž . Ž .side of A.15 is smaller than that of A.14 if n � n . �q

Let us set

� � d1A.16 � t , h � E W t 	 h � W t .Ž . Ž . Ž . Ž .n n

LEMMA A.5. For each q � 0 there are constants r and m � n such thatq q'� �for n � m , h � d , t and t 	 h in � , it holds thatq n

� � d1 � ��q d1A.17 � t , h 
 r h exp �nd K 	 � t .Ž . Ž . Ž .Ž .1 0

PROOF. Let t, t 	 h � � and h be as in Lemma A.5 and fixed. We setn

n
��1�2 TA.18 S u � n h l t ,Ž . Ž . Ž .Ýn i n , u

i�1

where

'A.19 t � t 	 uh � n ,Ž . Ž .n , u

�
�A.20 l � � log p � �g X , l � � l � .Ž . Ž . Ž . Ž . Ž . Ž .Ž .i i i i i��
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Then we have

d11
A.21 � t , h � E S u W t 	 uh duŽ . Ž . Ž . Ž .H n n

0

and the by Holder inequality and the Fubini theorem,¨

1 d 1�2 1�21� �� t , h 
 E S u V t 	 uh V t 	 uh duŽ . Ž . Ž . Ž .� 4H n n n
0

1�21 1�22 d1� � � 4
 E S V EV du� 4H n n n
0

A.22Ž .

1�41 1�24 d 21� �
 E S u V t 	 uh EV t 	 uh du.� 4Ž . Ž . Ž .� 4H n n n
0

� �The first expectation may be written for fixed u � 0, 1 as the integral

� � 4 d1 2 � � 4 d1A.23 E S V � S u � dxŽ . Ž . Ž .Hn n n n

Ž k .nw.r.t. the probability distribution � over R given byn

n

A.24 � dx � p x � dx .Ž . Ž . Ž . Ž .Łn t i in , u
i�1

Ž .Then S u is a sum of n terms that are independent under the p.d. � .n n
Therefore the inequality

sn n
ss�1� � � �A.25 b 
 n b , s � 1,Ž . Ý Ýi iž /

i�1 i�1

� Ž . � Ž .the inequality of Burkholder see Hall and Heyde 1980 , page 23 and 2.2
give, with positive constants � ,

� � 4 d1 2E S u V t 	 uhŽ . Ž .n n

2 d1n
4 d 2��2 d1 1� � � �
 � h n l t d�Ž .ÝH i n , u nž /i�1A.26Ž .

� � 4 d1 � � � 4 d1
 � h l t p x � dxŽ . Ž . Ž .H 1 n , u t 1 1n , u

� � 4 d1 � � b0
 � h 1 	 t .Ž .n , u

Ž .For the second expectation EV t 	 uh , we apply Lemma A.4 replacing its qn
�1�2'Ž . � � � �by 2 qd 	 b 	 1 �2. Recall that we have h 
 d and n t � 1. If we1 0

Ž .choose n large enough say n � m such that the following inequalitiesq

Ž � � b0 . � � b0	1n � n , n � n and 1 	 t 
 t for all t � � hold, thenq 2Žd q	b 	1. n, u n1 0

we get the conclusion of the lemma. �
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From Lemma A.5 we derive an estimate of the continuity modulus of W .n
Let t� � Zd be a vector with integer components. We set

� � �
�� � � t 
 � 
 t 	 1, j � 1, . . . , d ,� 4t j j j

� � � �� �c � � min max � j � 1, . . . , d � � � .Ž . � 4� 4t j t

Ž . Ž .� �The set C k consists of the ‘‘pavements’’ � such that c � � k is called at t
k-covering. Its cardinality is

d d d�1dA.27 �C k � 2 k 	 1 � 2 k 
 2 d k � 1 .Ž . Ž . Ž . Ž . Ž .Ž . Ž .
'� � Ž .�For all � in a pavement � of a k-covering, it holds that k 
 � 
 k 	 1 d .t

Ž .Hence Theorem 11.1 of Ledoux and Talagrand 1991 may be applied on such
Ž . � � Ž . ��a pavement using in their denotation � �  , T � � , d s, t � s �d t1

� Ž Ž .. �qt exp �n K 	 � k and we obtain the following lemma.0

LEMMA A.6. Under the previous conditions for each q � 0, for n � m ,q'� � Ž .�h 
 d and for any pavement � of a k-covering C k it holds thatt

A.28 E� h 
 c exp �n K � � k�q h1� d1 ,Ž . Ž . Ž .Ž .k , n d 0

where

� � � �� h � sup W t 	 h � W t t , t 	 h � � � � ,� 4Ž . Ž . Ž .k , n n n t n

d�d1'c � 8 1 	 d d .Ž .d 1

With the above lemmas we are now able to get a maximal inequality for
the process W on � . We setn n

� � � � � � ,�k , n t n
Ž .�� �C ktA.29Ž .

� �W � sup W � � � � .� 4Ž .k , n n k , n

Ž Ž ..LEMMA A.7. Under the previous conditions, given � � 0, 1 , we have

Ž .2 d�1�� �d �q1A.30 P W � � 
 c � exp �n K 	 � k k 	 1Ž . Ž . Ž . Ž .Ž .k , n d 0

� Ž d d 1�2 d1. dwith c � 2 	 c d 2 d.d 1

Ž . Ž .�PROOF. Let us fix a pavement � � C k and � 0 � � � 1 and we sett

� � �p n , t � P sup W � � � � � � � � .� 4Ž . Ž .Ž .n t n

We consider a net � consisting of the points 
 of � ,s n


 � t� 	 k�1s, s � s , . . . , s , s � 0, . . . , k , j � 1, . . . , d.Ž .s 1 d j
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Then it holds that

� �
� '�p n , t 
P sup W � � � � � 	 P � d �k �� 4Ž . Ž . Ž .n k , nA.31 ž / ž /Ž . 2 2�p 	 p .1 2

Ž Ž . .For m � m the inequality p 
 Ý P W � � ��2 and the Markov in-q 1 � � � n

equality with Lemma A.4 lead to

d d�q1A.32 p 
 2�� exp �2nd K 	 � k k � 1 .Ž . Ž . Ž . Ž .Ž .1 1 0

Again the Markov inequality and Lemma A.6 give

1�d1�q 'A.33 p 
 2�� c exp �n K 	 � k d �k .Ž . Ž . Ž .Ž . Ž .2 d 0

These inequalities yield

A.34 p n , t� 
 p 	 p 
 � n , k , � ,Ž . Ž . Ž .1 2

dd 1�2 d �d �q1 1 1A.35 � n , k , � � 2 	 2c d � exp �n K 	 � k k � 1 .Ž . Ž . Ž . Ž .Ž .Ž .d 0

Ž � . Ž � .Obviously, we have P W � � 
 Ý p n, t . The previous upper�k , n � � CŽk .t

Ž � . Ž . Ž .bound for p n, t and the cardinality of C k see A.27 lead to the conclu-
sion of the lemma. �

Finally, we are able to prove Lemma A.8.

LEMMA A.8. Under the assumptions of Theorem 2.1 we have

lim exp n K 	 � B � 0 a.s.Ž .Ž .0 n
n��

Ž . Ž .PROOF. Let � dt be the probability measure induced by 	 d� and then 'transformation t � n � . We have B 
 Ý b withn k � � n k , n'

�p �2 � � p 2 d1b � n t W t I t � � � dt .Ž . Ž . Ž .Hk , n n n , k n

Obviously it holds that

p 2 d��p�2 1'A.36 b 
 n k 	 1 d W � � .Ž . Ž . Ž . Ž .Ž .k , n k , n n n , k

With assumption A5 we have the rough upper bounds

d	b �1 �b �23 2A.37 � � 
 c k 	 1 nŽ . Ž . Ž .n n , k

and
r 2 d� �1 �r 12A.38 b 
 c k 	 1 n W ,Ž . Ž . Ž .k , n k , n

� Ž .with the same constants c, c , r � p 	 d 	 b � 1, and r � p 	 b �2.1 3 2 2
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Noting that

�1�2 'k 	 1 
 � n ,Ž . Ž .Ý
k�� n'

we have the sequence of inclusions

�1'exp n K 	 � B � � nŽ .Ž . Ž .½ 50 n

�2� exp n K 	 � b � k 	 1Ž . Ž .Ž .� 4� 0 k , n
k�� n'A.39Ž .

� � 4� W � � ,� k , n k , n
k�� n'

Ž Ž .Ž ..Ž .�Ž2 	r1.� d1 r2 � d1with � � exp � n�2d K 	 � k 	 1 n .k , n 1 0
Ž .Using the inequality A.7 , for all q � 0 and n � m , an obvious calcula-q

tion leads to

Ž .2 d�1�� �d �q1P W � � 
 p � c � exp �n K 	 � k k 	 1Ž . Ž . Ž .Ž .k , n k , n k , n d k , n 0

Ž .2	r 	2 d�1� �r �q 12� c exp �n�2 K 	 � n k k � 1 .Ž . Ž .Ž .d 0

It is easy to see that the double series Ý P is convergent, if q isk , n k , n
sufficiently large. Therefore by the Borel�Cantelli theorem, for almost

Ž � � .all �, there is only a finite set of pairs n , k for which the inequalityi i
Ž Ž .. Ž . Ž .�2 Ž . �exp n K 	 � b � � k 	 1 holds. Then for n � n � � sup n0 k , n i i ii i

Ž Ž .. Ž . Ž .�2we have exp n K 	 � b � 
 k 	 1 for all k. Hence for almost all0 k , n
Ž . Ž Ž .. Ž . Ž .�1� and for n � n � we have exp n K 	 � B � 
 � , thus proving0 n

the lemma. �

A.2. Proof for Example 3 of Section 2. The density of the Cauchy
�1 ŽŽ . .distribution with location and scale parameters � and � is � h x � � ��

Ž . �1Ž 2 .�1where h x � � 1 	 x . We introduce the function

x � ��� �1�2 1�2 1�2� �A.40 r � � � � h g x dx ,Ž . Ž . Ž .H ž /�

Ž . � Ž .where � � �, � , and � � inf ��4, ��16 . We prove Lemma A.9.

LEMMA A.9. Under the assumptions of Example 3, Section 2, we have the
following:

Ž . Ž . �� �16i r � � C� for � � 1;
Ž . Ž . 1�4ii r � � C� for � � 1.

� Ž . Ž . � � �
�

PROOF. As we have � � 1, we majorize r � replacing in A.44 � by
� � �

�

� � �
�

Ž �1 �1 .� � x 	 x . Next for all positive constants p, q p 	 q � 1 using
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Ž .the Holder inequality, we obtain r � � r 	 r where¨ 1 2
� 1�p� p 1�q� �� � x � � x dx��1�2	1� p	� p�2 q�2r � � h g x dx ,Ž .H H1 ž / ž /ž /ž /� � �

1�p 1�q� � x dx �� q�1�2	1� p p�2 q�2� �r � � h x g x dx .Ž .H H2 ž / ž /ž /� �

Let us set for � � 1, q � 2 � ��2 and for � � 1, q � 4. Then a tedious
calculation leads to the following majorizations of r and r :1 2

r , r � C��� �16 if � � 1,1 2

r , r � C� 1�4 if � � 1. �1 2

A.3. Proof for the example of Section 3.

Ž .PROPERTY 1. We remark, that under 3.1 the posterior density pn, 	 , �

Ž .w.r.t. 	 fulfills for all � , n,

A.41 p � � p �� exp S 
 � ,Ž . Ž . Ž . Ž .n , 	 , � n , 	 , � n

where
n

S � � X � , 
 � � 2��v � .Ž . Ž . Ž . Ž .Ýn i
i�1

Ž .Obviously 
 � is negative for � � 0 and positive for � � 0, vanishes for � � 0
'and for � � � or ��, while it has maximum at � � c � a�b and its

minimum at � � �c.
With the notation

1 � 	� � � � R d � � � , � � � � � , � 	 � ,Ž . Ž .� 4� G �

�� � �� � � , �� 	 �Ž .�

Ž .we obtain from 3.6 for almost all � � � and all sufficiently small � � 0,
	 �A.42 lim P � � lim P � 	 P � � 1.Ž . Ž . Ž . Ž .n , 	 , � � n , 	 , � � n , 	 , � �

n�� n��

� Ž .4For almost all � the set of the accumulation points of the sequence S �n n� �

� 4 � 4 � Ž . .is R � R � �� � 	� see Chung 1976 , page 272, Exercise 5, . In other
� Ž � . �words, there exists a set � � �, P � � 1, such that for all � � � and

Ž Ž . . Ž . Ž .s � R, we can find a sequence n � n j, �, s , j � N with 3.6 , A.42 andŽ j.

A.43 lim S � � s.Ž . Ž .nŽ j.j

	 	� Ž . � 4 � Ž . � 4Let 
 � min 
 � � � � and 
 � max 
 � � � � . Assume as fixed a� � � �
� � 4 � 4� � � . Then for each � � 0 there is a subsequence n of n such that thei Ž j.

convergence

p � lim P �	Ž .� , s , � n , 	 , � �ii��

	 s
 Ž� . 	�
 lim supE I � � � p �� max � � � �Ž . � 4Ž .	 � n �ii��

A.44Ž .
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� Ž .� Ž .holds see A.41 and therefore because of A.42 we have

A.45 p 
 1 � p max exp 
 s , exp 
 s .� 4Ž . Ž . Ž . Ž .� , s , � � , s , � � �

An analogous reasoning leads to

A.46 p � 1 � p min exp 
 s , exp 
 s .� 4Ž . Ž . Ž . Ž .� , s , � � , s , � � �

Ž . Ž .As A.45 , A.46 hold for all sufficiently small � � 0, we have
�1s
 Ž� . stŽ� .� �A.47 p � lim p � e 1 	 e .Ž . � , s � , s , �

��0

Especially for s � 	� and s � �� we have p � 1 and p � 0, respec-�, s � , s
tively.

Ž . Ž .From A.42 and A.47 follows the weak convergence of the sequence
� 4 Ž .P to the mixture � defined by 3.7 . For all p � 0 the inequalityn , 	 ,� i� N pi � , s

p pp p�1� � � � �sup E � 
 2 sup � � � � 	 sup E d � � �� 4 Ž .Ž .n , 	 , � G n , 	 , � Gi i
i�i i�i0 0

holds for sufficiently large i and we obtain from P � � ,0 n , 	 , � pi � , s

� � p � � plim E � � � d� � .Ž .Hn , 	 , � pi � , si��

Therefore we have also the strong convergence P � � .n , 	 , � pi � , s

Thus we have shown that for almost all � and each mixture � with�

� � � 4� � 0, 1 there is a subsequence n for which P converges weakly andi n , 	 , �i

in all its abolute moments of order p � 0 to � .�

PROPERTY 2. Let � and � be positive and sufficiently small. Then˜
�1S � �H � 
 log �� 1 � � � 0Ž .n �̃

has the consequence

p � P �	 � E I � � �	 p �� exp S 
 �Ž . Ž .� Ž . 4Ž . Ž .n� n , 	 , � � 	 � n , 	 , � n˜ ˜


 1 � p �� 1 � �Ž . Ž .n�

and therefore p 
 � . We obtainn�

lim inf P p 
 � � lim inf P S � �HŽ . Ž .n� n
n�� n��

1'� lim inf � �H� n � .Ž . 2
n��

A.48Ž .

Analogously, it follows that
1A.49 lim inf P p � 1 � � � lim inf P S � H � .Ž . Ž . Ž .n� n 2

n�� n��

Ž . Ž .A.48 and A.49 together yield, for all � � 0, the property
1A.50 lim P p 
 � � lim P p � 1 � � � .Ž . Ž . Ž .n� n� 2

n�� n��
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Ž .The a.s. validity of A.42 for sufficiently small � has the consequence that
Ž .A.50 is also fulfilled for

� � P 0, � � p 	 P �c � 0, �Ž . Ž .Ž . Ž .n� n , 	 , � n� n , 	 , � �̃

in place of p .n�
	 Ž � Ž ..For the conditional posterior distributions P � P  � � 0, � andn, 	 , �

� Ž � Ž �.P � P  � � ��, 0 , we haven, 	 , �

p 	 �E d � � � d P , � 	 1 � � d P , � ,Ž . Ž .Ž . Ž .n , 	 , � G n� p n , 	 , � � n� p n , 	 , � ��

d P , d � � d P	 , � 	 1 � � d P� , � , 
 � � , �� .Ž .Ž . Ž . Ž .p n , 	 , � r n� p n , 	 , � 
 n� p n , 	 , � 


Because of
	 � � p � � � pd P , � � � , d P , � � �Ž . Ž .p n , 	 , � �� p n , 	 , � �

Ž . Ž . Ž .3.6 and A.50 together with the above two equations imply 3.10 for all
� , p � 0, that is, Property 2.

Ž .Now we will see how the limit proeprty A.50 influences the behavior of
ˆ Ž .the posterior mean � � E � . We haven n, 	 , �

ˆ 	 �� �A.51 � � p E � � � � 	 q E � � � � 	 r ,Ž . Ž . Ž .n n , � n , 	 , � � n , � n , 	 , � � n

where � is a sufficiently small positive number and

q � P �� , r � E � I � � �c .� 4Ž . Ž .n , � n , 	 , � � n n , 	 , � �

Theorem 2.1 has the consequence

c� � � �A.52 lim r 
 lim E d � 	 � P � � 0 a.s.Ž . Ž . Ž .n n , 	 , � G n , 	 , � �
n�� n��

Ž .With A.51 and

�̂ � p � � � 	 1 � p �� � � 	 rŽ . Ž . Ž .n n� n� n

Ž . Ž .we obtain from A.50 and A.52 that for sufficiently small � ,

�1 1	ˆlim inf P � � � � lim P p � 1 � � 2� � .Ž .Ž . Ž .n 2 � n� 2
n�� n��

But we have analogously

1�ˆlim inf P � � � � .Ž .n 2 � 2
n��

Therefore lim inf is there just a convergence lim and it follows for alln�� n��

open sets U � R,

ˆlim P � � U � � U .Ž .Ž .n 1�2
n��

From this we obtain the weak convergence Q � � of the distribution Qn 1�2 n

ˆ ˆ ˆŽ .of � to the mixture � and the weak consistency p � lim d � � 0 of � .n 1�2 G n n
˜The distribution P of the posterior mode � also converges weakly to � .n n 1�2
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This is seen in the following way:

˜Ž .From the convergence lim P � � � � 1 for � � 0, which followsn�� n �

Ž .from Remark 4, Section 2, and because of A.41 , we obtain

1	˜lim P � � � � lim P sup p � � sup p � �Ž . Ž .Ž .� n , 	 , � n , 	 , � 2ž /	 �n�� n�� ��� ���� �

1�˜Ž .and analogously lim P � � � � . Therefore we obtain for sufficientlyn�� � 2

small � the convergences
1	 �˜ ˜lim P � � � � lim P � � � � ,Ž . Ž .n � n � 2

n�� n��

thus proving P � � .n 1�2

A.4. Proof of Theorem 4.1. We assume w.l.o.g., that � � 0.G
The Bayes estimator minimizes the posterior loss. We perform an expan-

sion of the posterior loss to get a simple expression which is asymptotically
equivalent to the Bayes estimator. In the next lemma we give an equivalent
term of the Bayes estimator.

LEMMA A.10. Under assumptions A1�A11, the following expression holds:
�1ˆ' 'A.53 n � � L L n A Z 	 G 	 o 1 ,Ž . Ž . Ž .n 2 1 n n P

Ž .where G is defined in A.59 and withn

A.54 A w � tw t dt w gt dt .Ž . Ž . Ž . Ž .H H
Ž . � Ž .�PROOF. Let r � be the posterior loss see 1.7 . Then

A.55 r � � E L � , t � E L � , t � L � , t dP t .Ž . Ž . Ž . Ž .Ž . Ž . Hn n , 	 , � n , 	 , �

Ž .Because of 2.9 , assumption A10 gives the a.s. differentiability of r in a
neighborhood of � � 0. The differentiation may be interchanged with the

ˆ Ž . Ž .expectation. As � � � minimizes r � with a Taylor expansion for r  wen
obtain, for some n and n � n almost surely,� �

� Ž1 , 0.ˆ ˆ' '0 � n r � � n E L � , tŽ . Ž .n

1Ž1, 0. Ž2 , 0. ˆ ˆ' '� E n L 0, t 	 E L u� , t du n � .Ž . Ž .Hn n
0

A.56Ž .

A further expansion gives us
Ž1, 0. ˆ' 'A.57 0 � n L 0, 0 	 F 	 G 	 H 	 K n �Ž . Ž . Ž .n n n n

with the reduction
Ž1, 1. Ž1 , 1.' ' � �A.58 F � L 0, 0 E n t�L 0, 0 n A Z ,Ž . Ž . Ž .n n n

1 Ž1, 2.' � �A.59 G � n E L 0, ut t , t du,Ž . Ž .Hn n
0
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with

�
Ž1, 2. T Ž1 , 1. �� �L 0, 
 t , t � t L 0, � t ,Ž . Ž . ��


��

�
Ž2, 1. T Ž1 , 1. �˜ ˜� �L 
 , 
 t , t � t L � , 
 t .Ž . Ž .˜ ˜ ��


��
A.60Ž .

1 Ž2, 0. ˆA.61 H � L u� , 0 du,Ž . Ž .Hn
0

1 1 Ž2, 1. ˆ ˆ'A.62 K � E L u� , vt n � , t du dv.Ž . Ž .H Hn n
0 0

Ž . Ž Ž1, 0.Ž . .The first term in A.57 vanishes L 0, 0 � 0 because of assumption A7.
By the dominated convergence theorem we have, from assumption A10 and
Theorem 2.2,

A.63 lim H � LŽ2, 0. 0, 0 a.s.Ž . Ž .n
n��

Ž .Moreover we have, because of assumptions A10, 2.9 and Theorem 2.2,
b b 	1� 7 7ˆ ˆ'� � � � � � � � � �A.64 K 
 c 1 	 � E t 	 E t n � � o 1 .Ž . Ž .Ž .n n n n p

Ž . Ž . Ž .The lemma follows now from A.57 , A.63 and A.64 .
Ž .By the way, let us note that analogously to A.64 we have

2 b 	27'� � � � � �A.65 G 
 c n E t 	 t . �Ž . Ž .n n

Let us recall that � � 0. We denote by � the smallest eigenvalue of theG
� �matrix M in assumption A9. We choose � � 0 such that the sphere S 0, 2�

is included in � and
b6A.66 EC X 1 	 2� � 
 ��16.Ž . Ž . Ž .

First we replace the process Z by a more tractable process Z�, withn n
realizations in the space CC of the continuous functions on Rd vanishing at
infinity. Then Z� is defined byn

Z� t , � � Z� tŽ . Ž .n n

�1 d� Z t a t f t Z 0 f 0 , t � R ,Ž . Ž . Ž . Ž . Ž .½ 5n n n n n

A.67Ž .

with the scale transformation t � n�1�2 t, t � Rd,n

� �1, for u 
 � ,� � � � �2 1 � u �2� , for � � u � 2� ,Ž .A.68 a u �Ž . Ž . � � �0, for u � 2� .

LEMMA A.11. Let h: Rd � Rk be a function and q � 0 with
�1q� � � � � �� �A.69 h � sup 1 	 t h t � �.Ž . Ž .q

dt�R
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� Ž . Ž .�Further let see 1.4 and A.67

A.70 E h t � h t dP dt ,Ž . Ž . Ž .Ž . Hn n , 	 , �

A.71 E� h t � h t dP� t � h t Z� t dt Z� t dt .Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž . H H Hn n , 	 , n n�

where P stands for the random probability measure � � P . Then itn, 	 , n, 	 , ��� Ž .�holds that see A.54
� 'A.72 i E h t � E h n t 	 o 1 ,Ž . Ž . Ž .Ž . Ž .n n p

ii A Z� � A Z � o 1 .Ž . Ž . Ž . Ž .n n P

PROOF. We introduce the notation
i �1'N � E h n � Z 0Ž .Ž .i j 	 nA.73Ž .

� ��Z � ja � 	 1 � j 1 � a � , i , j � 0, 1.Ž . Ž . Ž .n

Then we may write
�1' � � � �E h n t � N 	 N N 	 NŽ .n 00 01 10 11

A.74Ž . �1�1 �1 �1� N N 	 1 N N 	 N N ,01 00 01 10 01 11

because of N � 0. We will now see that a.s. N�1N and N�1N tend to01 01 00 01 10
zero for n � �. Choosing � , � , � as in the proof of Theorem 2.1, we get

�1�1� � � � � �� �N N 
 h E I � � � Z �Ž .q0, 1 10 	 n
A.75Ž .

� q q�2� � � �� �E I � � � 1 	 � n Z �Ž .Ž .	 n

Ž . Ž . Ž .and the limits 2.18 , 2.19 , 2.20 allow choosing a positive k, so that a.s. for
all n � N,

� �1 � �n � �2 q�2A.76 N N 
 ke n .Ž . 01 10

This and a similar reasoning for N�1N prove the desired convergences01 00

A.77 lim N�1N � 0, lim N�1N � 0 a.s.Ž . 01 10 01 00
n�� n��

'Ž . Ž .From A.74 and A.77 and substituting n � by t, we finally arrive at
��1'A.78 E n t � N N 	 o 1 � E h t 	 o 1 .Ž . Ž . Ž .Ž .Ž .n 01 11 p n p

Ž . Ž � . � Ž .For the conclusion ii , we have only to remark that A Z � E t andn n

' 'n A Z � E n t . �Ž . Ž .n n

Ž � .Next, the following lemmas show that Z converge in distribution ton n� �

the exponential function of a Gaussian process. Lemma A.12 deals with the
finite-dimensional distributions of Z�. In Lemmas A.13 and A.14 we shown

� � Ž .�that Z is tight see Dacunha-Castelle and Duflo 1983 . The followingn
lemmas will be proven under assumptions A1�A11.
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LEMMA A.12. The finite-dimensional p.d.’s of Z� converge to those ofn

1T 1�2 TY � exp t I U � t Mt ,G 2

where U is a standard normal random vector in Rd.

d 1�2 � � �1�2PROOF. Let t � R be fixed, n � t �� and let us set t � n t. Thenn
we may write

�log Z t � log a t f t �f 0Ž . Ž . Ž . Ž .n n n

� log Z t � log Z 0Ž . Ž .n n nA.79Ž .
1 1

�T T� t S � t M � R t t ,Ž .n n n' 2n

� Ž . Ž . Ž .� Ž .where log a t f t �f 0 � o 1 ,n n

n t
� � � �A.80 S � l X , 0 , S t � l X , t ,Ž . Ž . Ž . Ž .Ý Ýn i n i

i�1 i�1

1 11� � �A.81 R t � S 0 	 M 	 2 1 � u S ut � S 0 du.Ž . Ž . Ž . Ž . Ž . Ž .Hn n n n n nž /n n0

Ž .Using 4.2 ,

R t 
 � tŽ . Ž .n n n n

n1 1 b� 6� � � �� S 0 	 M 	 C X 1 	 t t .Ž . Ž . Ž .Ýn i n nn n i�1

A.82Ž .

By assumption A8, the application of a central limit theorem yields

1
� 1�2A.83 LL S � LL I U � N 0, I .Ž . Ž .� 4n G G½ 5'n

Next, by application of the law of large numbers we have

A.84 R t � o 1 for all fixed t � � , t � n�1�2 t .Ž . Ž . Ž .n n p n

Ž . Ž . Ž .Then the lemma is a direct consequence of A.79 , through A.83 and A.84 .
�

Now we will give an exponential bound

� 2� � � �A.85 m t � c exp a t � tŽ . Ž .� � � 4

for the random functions Z� and Y.n

LEMMA A.13. Let � be the smallest eigenvalue of the matrix M. For all
Ž .� � 0 there exist positive c , a such that for all n large enough say, n � n� � �

it holds that

A.86 P Z� t 
 m t , Y t 
 m t for t � Rd � 1 � � .Ž . Ž . Ž . Ž . Ž .Ž .n � �
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� 'Ž . � � � � 4 Ž .PROOF. Z t vanishes outside � � t � � t 
 2� n . From A.79 wen n
get

� 1�1 T TA.87 Z 0 Z t � exp t S � t M � R t t ,Ž . Ž . Ž . Ž .Ž .n n n n n n n2

Ž . Ž . Ž .and from A.82 we have sup R t 
 � 2� .� n n nn

Using the notation
�1 2'� �A.88 C � S � n b , C � R 2� 
 ��2 ,� 4Ž . Ž .� 4n n � n n

the application of the CLT gives positive constants b and a n1 with� �

�
1 1A.89 P C � 1 � for all n � n .Ž . Ž .n �3

Ž . 1Because of A.66 and the SLLN, there is an n � n with� �

�
2A.90 P C � 1 � for all n � n .Ž . Ž .n �3

For � � C1 � C 2 we haven n

� 2�1 � � � �A.91 Z 0 Z t � 
 exp b t � t , t � �Ž . Ž . Ž . Ž .n n n � n4

and moreover, for n � n ,�

2�
1 2A.92 P C � C � 1 � .Ž . Ž .n n 3

On the other hand, we have

A.93 sup a t f t 
 k � sup f t ,Ž . Ž . Ž . Ž .n n �
t�� , n�N � �t �2 �

� 1 2'Ž . � �and as Z t vanishes for t � � n and n � n , we obtain, if � � C � C ,n � n n

� 2� � � � �A.94 Z t , � 
 k exp b t � t for all t � �.Ž . Ž .n � � 4

From the definition of Y follows obviously the existence of constants c � k� �

and a � b such that for all n � N,� �

� �2� � � �A.95 P Y t 
 m t � c exp a t � t � 1 � .Ž . Ž . Ž .� � �ž /4 3

Ž . Ž .This together with A.92 and A.91 proves the lemma. �

Next we will study the equicontinuity of the trajectories of Z�.n

LEMMA A.14. For each � � 0 there is a set H � CC of equicontinuous�

functions with:

i P Z� � H � 1 � � for all n � n .Ž . Ž .n � �

Ž . Ž � .ii The sequence of the processess Z is tight in CC.n n� N
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PROOF. From the previous lemma it is sufficient to prove that for all
Ž � . Ž .T � 0 the sequence Z is tight in the set CC 0, T of the continuousn n� N

Ž .functions on the closed sphere S 0, T . Obviously the sequence of functions
� Ž . Ž . 4 da t f t ; n � N are equicontinuous on � . The product of two sequences ofn n
equibounded and equicontinuous functions is a sequence of equicontinuous

'Ž . Ž . � � � � 4functions. Then a t b t vanishes outside � � t � � t 
 2� n . Withn n n
the notations of the previous lemma, we have only to prove that the deriva-
tives

d 1�1 �1 �A.96 J t � Z 0 Z t � Z 0 Z t S t tŽ . Ž . Ž . Ž . Ž . Ž . Ž .� 4n n n n n n n n'dt n

are bounded for n � n , t � � , � � C1 � C 2.� n n n
A Taylor expansion yields

1�1 �A.97 J t � Z 0 Z t S 	 M 	 R t tŽ . Ž . Ž . Ž . Ž .Ž .n n n n n n n'n

On C1 � C 2 and for n � n , t � � the bracket is majorized byn n � n

�
1 � � � �q � b 	 M 	 t see A.88Ž .� � ž /2

�1Ž . Ž .and Z 0 Z t byn n

� 22 � � � �q t � exp b t � t .Ž .� � 4
1 Ž . 2Ž .Then setting q � sup q t q t , we get� t � �

� � 1 2A.98 P sup J t 
 q � P C � C � 1 � 2��3.Ž . Ž . Ž .n � n nž /
t��n

Ž . Ž . Ž .Conclusion i is proved. Conclusion ii is a consequence of i and of the fact
� Ž .that Z 0 � 1. �n

Final reasoning in the proof of Theorem 4.1. Recall that CC is the set of
the continuous real functions on Rd. Because of Lemma A.12, the majoriza-
tion of Z� and Y in Lemma A.13 and Lemma A.14 for all functions h � CCn

Ž .satisfying A.69 , we have the convergence in distribution

A.99 h t Z� t dt , Z� t dt � h t Y t dt , Y t dtŽ . Ž . Ž . Ž . Ž . Ž . Ž .H H H Hn n dž / ž /
Ž . Ž . Ž � . Ž .and HY t dt � 0 a.s. Setting h t � t, we get A Z � A Y . The distribu-n d
Ž . Ž �1 �1. Ž .tion of A Y is Gaussian N 0, M I M . On the other hand, from A.65G

and Lemma A.11 we have

� � �1�2 � � � 2 �Žb7	1 .�2 � � � b7	2G 
 c n E t 	 n E t 	 o 1 .Ž .Ž .n n n P

Ž . � � 2 � � b7	2 Ž . Ž .Then setting h t � t or t in A.71 , we can see with A.65 and
Ž . Ž . Ž .A.99 that G � o 1 . Then A.53 proves the theorem.n p
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