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In kernel density estimation, those data values that make a nondegenerate
contribution to the estimator (computed at a given point) tend to be
spaced well apart. This property has the effect of suppressing many of the
conventional consequences of long-range dependence, for example, slower
rates of convergence, which might otherwise be revealed by a traditional loss-
or risk-based assessment of performance. From that viewpoint, dependence
has to be very long-range indeed before a density estimator experiences any
first-order effects. However, an analysis in terms of the convergence rate for
a particular realization, rather than the rate averaged over all realizations,
reveals a very different picture. We show that from that viewpoint, and in the
context of functions of Gaussian processes, effects on rates of convergence
can become apparent as soon as the boundary between short- and long-range
dependence is crossed. For example, the distance between ISE- and MISE-
optimal bandwidths is generally of larger order for long-range dependent
data. We shed new light on cross-validation, too. In particular we show that
the variance of the cross-validation bandwidth is generally larger for long-
range dependent data, and that the first-order properties of this bandwidth
do not depend on how many data are left out when constructing the cross-
validation criterion. Moreover, for long-range dependent data the cross-
validation bandwidth is usually perfectly negatively correlated, in the limit,
with the optimal stochastic bandwidth.

1. Introduction. In many problems of point estimation from time-series data,
estimators fail to be root-n consistent if and only if the sum of the correlations
at successive lags diverges. However, this condition, which is usually taken
to determine the barrier between short- and long-range dependence [see, e.g.,
Barndorff-Nielsen and Cox (1989), page 13], appears to have little connection
to problems of nonparametric density estimation. Indeed, the data can be either
short- or relatively long-range dependent, yet density estimators and their optimal
bandwidths can converge at the same rate as they would under the assumption
of independence. Results of this type are available from, for example, work of
Roussas (1969, 1990), Rosenblatt (1970), Prakasa Rao (1978), Nguyen (1979),
Ahmad (1982), Castellana and Leadbetter (1986), Roussas and Ioannides (1987),
Castellana (1989), Tran (1989, 1990), Hall and Hart (1990), Hall, Lahiri and
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Truong (1995), Hall (1997), Hart (1996), Kim and Cox (1997) and Masry and
Fan (1997). See also the review by Härdle, Lütkepohl and Chen (1997). Accounts
of properties of density estimators under long-range dependence have been given
by, for example, Cheng and Robinson (1991), Robinson (1991) and Csörgő and
Mielniczuk (1995). This work characterizes the strength of dependence that is
sufficient for traditional, first-order properties to break down.

The majority of this research has focused on conventional risk- or loss-based
measures of performance, however. There, the bandwidth is chosen to minimize
the expected distance between the estimator and the true density. In the present
paper we argue that the differences between short- and long-range dependence are
concealed by such an approach. The differences occur at the level of stochastic
fluctuations in the distance. We derive results which show that these stochastic
terms can be important as soon as the classical divide between short- and
long-range dependence is crossed. Prior to that point, properties of stochastic
fluctuations of the distance are virtually identical for independent and dependent
data; after that point, the order of the stochastic terms can increase sharply with
strength of dependence.

The stochastic terms have zero mean, and so their properties have gone
unnoticed in traditional loss- and risk-based analyses. As a result, the literature has
tended to overlook the more direct effects of long-range dependence on properties
of density estimators and empirically chosen bandwidths. Our results will be
derived in the case of time series that may be represented as functions of Gaussian
processes; this model plays a central role in a variety of practical applications. It
allows the strength of dependence to be represented simply and unambiguously
in terms of lagged correlations. For a more general process the strength would be
relatively difficult to describe, and the results would be more difficult to present,
discuss and derive. In particular, an account of strength of dependence based on
mixing conditions gives only an upper bound to the strength for a given separation
of time points at which the process is observed. The detailed results that we shall
give require considerably more precision than a single bound can supply; we need
bounds on both sides, and they must be asymptotically equivalent in the context of
relatively long separation in time.

To appreciate our results in more detail, consider measuring the accuracy of
a kernel estimator f̂ of a density f , in terms of either mean integrated squared
error (MISE) or its stochastic counterpart, integrated squared error (ISE). Let hopt

and ĥopt be the respective bandwidths that minimize these criteria, and let n denote
sample size. It is known that, under the assumption of independence, these two
bandwidths are generally close, and in fact the ratio ĥopt/hopt converges to 1 at
rate Op(n−1/10); see Hall and Marron (1987). We shall show that this rate persists
for dependent data, up to the point where the condition of short-range dependence
fails (i.e., where the sample mean fails to be root-n consistent for the population
mean). From there on, the ratio ĥopt/hopt can converge to 1 more slowly than it
would for independent data.
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Similarly, the size of the difference between values of ISE at the respective
bandwidths hopt and ĥopt can increase sharply as the classical boundary between
short- and long-range dependence is crossed. Prior to that point, the size is the
same as it would be for independent data, but after the boundary is crossed, size
can be of strictly larger order. “Size” here refers to fluctuations that have zero
mean and which would not be noticed in a purely loss- or risk-based assessment
of performance.

These examples show that by focusing on stochastic aspects of convergence
criteria we obtain a particularly simple way of characterizing the effects of long-
range dependence on density estimators. The situation is very different if we treat
only MISE. Indeed, the ratio of MISE for time-series data to its counterpart for
independent data converges to 1, as sample size increases, if and only if the
rate of convergence of the sample mean equals op(n−1/5). If this condition is
violated, then the time series is very long-range dependent indeed. Therefore,
one has to move well beyond the traditional barrier between short- and long-
range dependence before a significant effect is noticed on a loss- or risk-based
assessment of performance.

There is an intuitive explanation for these results, which helps explain the
apparent contradictions between them. Suppose the density estimator f̂ is con-
structed using a bandwidth h, and is computed from a segment X = {X1, . . . ,Xn}
of the time series. The contribution of Xi to f̂ (x) will be significant only if Xi
lies within a small interval of width O(h) centered at x. The probability of this
occurring is small, and so the expected values of the distances between indices of
successive Xi ’s that make significant contributions to f̂ (x) will tend to be large,
unless the time series is exceptionally long-range dependent. (In the latter case,
conditional on Xi = x, the probability that Xj is close to Xi for a run of values j
close to i can be relatively high.) As a result, the effects of long-range dependence
tend to be dampened down by the very nature of density estimation—estimation
of f at x inherently involves only a sparse subsequence of the time series.

However, while the expected value of the distance between successive non-
negligible components in the series may be large, the variability of fluctuations in
that distance can be substantial, even in the case of relatively moderate long-range
dependence. As a result, a view of the effects of long-range dependence which
ignores these stochastic fluctuations can underestimate the impact of relatively
low-level departures of the time series from independence. Interestingly, the same
arguments do not apply to nonparametric regression estimators, at least in cases
where dependence among errors is indexed in the same order as the explanatory
variable. (This is the usual time-series model in regression.) There, the smoothing
operation does not have nearly the same tendency to mask the effects of long-
range dependence, and the results described in the present paper do not have close
analogues.

In the context of density estimation our results have immediate implications for
time-series applications of the popular cross-validation technique for bandwidth
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choice; see Hart and Vieu (1990) for discussion of that method. Cross-validation is
sometimes interpreted as a method for selecting the bandwidth that minimises ISE,
rather than one that minimises MISE; see, for example, Hall and Johnstone (1992).
Our results lend considerable weight to this viewpoint. We show that the cross-
validation bandwidth ĥcv exhibits the properties noted above for ĥopt. In particular,
the ratio ĥcv/hopt converges to 1 at the same rate as for dependent data if the data
are short-range dependent; and beyond that point, it generally converges to 1 at the
same, slow rate as ĥopt/hopt.

Our work also reveals that the variability of ĥcv can increase markedly with
increasing range of dependence of the time series. We show that this property does
not depend on the leave-out number that is used to construct ĥcv. The effects of
that quantity go into higher-order terms. Hence, there does not seem to be a good
reason for taking the leave-out number to be other than 1. Numerical simulations,
such as those of Hart and Vieu (1990), lend weight to this suggestion.

Furthermore, in the context of long-range dependence and except for degenerate
cases, the asymptotic correlation between ĥcv and ĥopt equals −1. That is, ĥcv

makes a stochastic correction in exactly the wrong direction, relative to the
correction supplied by ĥopt. In the more traditional context of independent data
the correction is negative, but not −1. See Härdle, Hall and Marron [(1988), with
discussion by Johnstone and Scott] and Hall and Johnstone (1992).

We shall focus on L2 properties, and in particular on rates of convergence of
ISE and MISE. It is readily shown that the density estimators we consider are
consistent in the supremum metric, as well being consistent in L2.

2. Main results.

2.1. Expansion of integrated squared error for dependent data. We begin by
defining the density estimator. Let X = {X1, . . . ,Xn} denote an n-segment of
an infinite stationary time series X∞ = {X1,X2, . . .} with marginal density f .
A nonparametric estimator of f is given by

f̂h(x)= 1

nh

n∑
i=1

K

(
x −Xi
h

)
,

where h is a bandwidth and K a kernel function.
For i ≥ 1 let fi(x1, x2) denote the joint density of (X1,Xi+1), and define

gi(x1, x2) = fi(x1, x2) − f (x1) f (x2). Write g
(r,s)
i (x1, x2) for the (r + s)th

derivative of gi(x1, x2), r times with respect to x1 and s times with respect to x2.
We assume that

K is a compactly supported, bounded, symmetric probability density(2.1)
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and

f has six bounded, uniformly integrable derivatives, each gi is four times
differentiable and each of the first four derivatives of gi is bounded(2.2)
uniformly in i.

Suppose too that, for some ε > 0 and a positive sequence γ = γ (n),∫
sup
|z|≤ε

∣∣f (6)(x + z)∣∣dx <∞,

(2.3)
n∑
i=1

∫
sup

j1+j2=4
|z1|, |z2|≤ε

∣∣g(j1,j2)
i (x + z1, x + z2)− g(j1,j2)

i (x, x)
∣∣dx =O(γ ).

Define κ = ∫
K2, µj = ∫

xjK(x) dx, Ij = ∫
(f (j))2,

τn1 = 2
n−1∑
i=1

(1 − n−1i)

∫
gi(x, x) dx,

τn2 =µ2

n−1∑
i=1

(1 − n−1i)

∫ {
g
(2,0)
i (x, x)+ g(0,2)i (x, x)

}
dx,

M(h)=
∫
E(f̂h−f )2, N(h)= (nh)−1κ−n−1I0 + h4 1

4µ
2
2I2 −h6 1

24µ2µ4I3.

Thus, M(h) represents mean integrated squared error of the estimator f̂h. The
following result describes errors that arise in approximating M(h) by N(h).

THEOREM 2.1. For dependent data satisfying conditions (2.1), (2.2)
and (2.3),

M(h)=N(h)+ n−1(τn1 + τn2h
2)+O(n−1h2 + n−1h4γ + h8),(2.4)

where, for any functions h1(n), h2(n) satisfying 0 < h1(n) < h2(n) < ∞,
hj(n) → 0 and nhj (n) → ∞, the remainder terms are of the stated orders
uniformly in h ∈ [h1(n), h2(n)].

2.2. Function of a Gaussian process. Here we note that the results in
Section 2.1 are valid if X∞ is a sufficiently regular function of a Gaussian process.
Suppose Xi = a(Yi), where a is a function and the process Y∞ = {Y1, Y2, . . .} is
stationary and Gaussian with zero mean, unit variance and correlation τi between
Y1 and Yi+1. To simplify our theoretical arguments we shall assume that a is
infinitely differentiable and monotone, and that the function b = a−1 (i.e., the
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inverse of the function a) satisfies, for all x and each ε > 0,

|b′(x)|−1 ≤ C(ε) exp
{
εb(x)2

}
,

(2.5)
|b(j)(x)| ≤ Cj(ε) exp

{
εb(x)2

}
for j ≥ 0,

where C(ε) and Cj (ε) are constants. A more elaborate argument will show that the
number of derivatives needed of a is in fact bounded and that ε may be kept fixed
but sufficiently small. Examples of functions a satisfying these conditions include
smooth distribution functions of distributions with heavier tails than the Normal,
for example, where the tails decrease polynomially rather than exponentially fast.

We shall suppose too that E(X2) = 1; this assumption will simplify formulae
such as (2.6) below. Since a is monotone, then, with N a standard Normal random
variable, E{a′(N)} �= 0, which implies that the Hermite rank of a [see Taqqu
(1975)] equals 1.

Let ρi = ρ(i) denote the correlation betweenX1 andXi+1. If τi → 0 as i → ∞,
then ρi also converges to 0 with increasing i. If in addition (2.5) holds, then either
directly by Taylor expansion or using the definition of Hermite rank we have

ρi ∼ τi
{
Ea′(N)

}2 as i → ∞.(2.6)

To rule out cases where ρi is changing very erratically we shall often suppose in
addition to (2.5) that

ρi is of one sign for all sufficiently large i,

and for some ε > 0, |ρi | =O(i−ε) as i → ∞.
(2.7)

Under (2.5), and provided ρi → 0, the function gi defined in Section 2.1 admits
a Taylor expansion in powers of ρi : for each r ≥ 1, and uniformly in x1 and x2,

gi(x1, x2)=
r∑
j=1

ρ
j
i ψj (x1, x2)+O(|ρi |r+1)(2.8)

as i → ∞, where the functions ψj depend only on a. Further, (2.8) continues to
hold if we apply the operator (∂/∂x1)

r (∂/∂x2)
s to both gi and ψj . This suggests

that (2.3) holds if we take

γ =
n∑
i=1

|ρi |,(2.9)

and also that τn1 = O(γ ) and τn2 = O(γ ). In fact all these results are implied
by (2.5).

In classical problems of inference for time series the case where γ is bounded,
that is,

∞∑
i=1

|ρi|<∞,(2.10)
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is usually referred to as short-range dependence. Under mild additional assump-
tions on the sequence of correlations, for example, finite variance and (2.7), bound-
edness of γ is necessary and sufficient for the mean of the data X to be root-n
consistent for the population mean.

Much of our interest will center on the case of long-range dependence, since
otherwise, as we shall show, the convergence rates of bandwidth selection rules
are identical to their counterparts under independence. In such contexts, if (2.5)
and (2.7) hold, then the ratios |τn1|/γ and |τn2|/γ [with γ defined as in (2.9)]
are bounded away from zero and infinity. For reasons such as these, γ defined
by (2.9) provides a particularly effective, and simple, description of different orders
of magnitude that affect properties of integrated squared error.

2.3. The MISE-optimal bandwidth. Let M0 denote the version of M in the
case where the components of X are independent and identically distributed with
marginal density f . Note that, in this setting, each gi vanishes. Therefore the same
is true of τn1 and τn2, and so (2.4) simplifies to

M0(h)=N(h)+O(n−1h2 + h8).(2.11)

(The remainder terms here are of the stated orders uniformly in h ∈ [h1(n), h2(n)],
where h1(n) and h2(n) are as in Theorem 2.1.) It follows from (2.4) and (2.11)
that the ratio of MISE for time-series data to its counterpart for independent data
converges to 1 if and only if γ = o(n1/5), or equivalently, if and only if the sample
mean, X̄ = n−1 ∑

i Xi , converges to the population mean at rate op(n−2/5). Long-
range dependence is usually thought of as starting when the rate op(n−1/2) is
violated.

As Hall, Lahiri and Truong (1995) noted, (2.11) implies that the bandwidth hopt
0

that is optimal for independent data, in the sense of minimizing M0(h), satisfies

h
opt
0 = (J1/n)

1/5 + J2(J1/n)
3/5 +O(n−4/5),(2.12)

where J1 = κ/(µ2
2I2), J2 = µ4I3/(20µ2I2) and Ij = ∫

(f (j))2. To obtain the
analogue of this formula for a dependent process, assume that

τn2 =O(γ ) and γ = o(n7/10).

Then in view of (2.4) the bandwidth hopt that minimizes M(h) satisfies

hopt = h
opt
0 − J3n

−4/5τn2 +O(γ n−6/5 + γ 2n−7/5),(2.13)

where J3 = 1
5 (κ

2µ6
2I

3
2 )

−1/5.
In the case of short-range dependence, (2.12) and (2.13) are identical. Further-

more, it follows from (2.13) that hopt ∼ h
opt
0 provided γ = o(n3/5). A more de-

tailed analysis, based on a longer version of the expansion (2.4), will show that
hopt ∼ h

opt
0 if and only if γ = o(n3/5). Now, the latter condition fails if and only if

the L2 rate of convergence of the sample mean to the population mean is no better
than Op(n−1/5). By this time the series X∞ is particularly long-range dependent.
In summary, only for very long-range dependence do MISE properties of a time
series differ from those in the case of independence.
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2.4. The ISE-optimal bandwidth. Integrated squared error is defined by

M̂(h)=
∫
(f̂h − f )2,

where we use the “hat” notation to indicate that M̂ is a random quantity. Let ĥopt =
argminh M̂(h) denote the bandwidth that is optimal in the sense of minimizing the
distance of f̂h from f for the particular dataset X. When the data are independent
it is known that ĥopt is asymptotic to hopt (the MISE-optimal bandwidth), although
the rate of convergence is slow. In fact, n1/10{(ĥopt/hopt) − 1} has a limiting
Normal distribution with zero mean and nonzero variance; see Hall and Marron
(1987). This result continues to hold if the data are short-range dependent, that is,
if (2.10) holds. However, if that condition is violated, then the rate of convergence
of ĥopt/hopt to 1 can be very slow indeed, as our next result will show.

Recall from Sections 2.1 and 2.3 that hopt ∼ c0n
−1/5 and M(h)∼ c1(nh)

−1 +
c2h

4, where c0 = J
1/5
1 , c1 = κ and c2 = 4−1µ2

2I2; here it is assumed that
γ = o(n1/5). It may similarly be shown that M ′′(hopt) ∼ c3n

−2/5, where c3 =
2c1c

−3
0 + 12c2c

2
0. Define

s2
1 = (2/c0)

3
(∫

f 2
)∫ [

K(u+ v){K(v)−K1(v)
}
dv

]2
du,

where K1(x)= −xK ′(x), and if (2.5), (2.7) and (2.10) hold, put

s2
2 = var

{
f ′′(X1)

} + 2
∞∑
i=1

cov
{
f ′′(X1), f

′′(Xi+1)
}
.

Under (2.5) and (2.7), cov{f ′′(Xi), f ′′(Xi+1)} =O(|ρi |) as i → ∞. Hence, if in
addition (2.10) is valid, the infinite series on the right-hand side in the definition
of s2

2 converges absolutely. Put

σ 2
1 = c−2

3

{
s2

1 + (2µ2c0)
2s2

2
}
,

σ 2
2 = 8c−2

3 µ2
2

(
E[f ′′{a(N)}a′(N)]

E{a′(N)}
)2

.

We shall suppose that

X∞ is a function of a Gaussian process, (2.5) and (2.7) hold,
and the kernel K is a compactly supported, symmetric(2.14)
probability density with two Hölder-continuous derivatives.

THEOREM 2.2. Assume (2.14). If the time series X∞ is short-range depen-
dent in the sense of (2.10), then

n1/10{(ĥopt/hopt)− 1
} →N(0, σ 2

1 ) in distribution.(2.15)
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On the other hand, if (2.10) is violated and γ =O(n(1/5)−ε) for some ε > 0, then

n1/10γ−1/2{(ĥopt/hopt)− 1
} →N(0, σ 2

2 ) in distribution.(2.16)

If the function a is antisymmetric, then f is symmetric, and so f ′′{a(N)}a′(N)
is antisymmetric. In this special case, σ 2

2 = 0 and the limit distribution at (2.16)
is degenerate. As a rule, however, σ 2

2 �= 0 and (2.16) describes a nontrivial limit
theorem. The case σ 2

2 = 0 is of completely different character from when σ 2
2 �= 0,

and a nondegenerate limit theorem there is highly complex, depending intimately
on details of the behavior of ρi as i → ∞. In general the limit distribution has
two parts, one deriving from the limit distribution of

∑
i f

′′(Xi), which can be
non-Normal when σ 2

2 = 0 [compare Taqqu (1975)], and the other coming from a
term of U -statistic character in an expansion of ĥopt. This term is negligible when
σ 2

2 �= 0, but can be significant when σ 2
2 = 0. In the case of short-range dependence,

where (2.10) holds, the U -statistic term gives rise to the contribution c−2
3 s2

1 to the
variance σ 2

1 .
Results (2.15) and (2.16) demonstrate that the well-known order of the

difference between the MISE- and ISE-optimal bandwidths in the independence
case is preserved under dependence if the dependence is of short range. When the
latter condition fails, however, the MISE-optimal bandwidth can be approximated
very poorly by its ISE counterpart. Indeed, if γ ∼ cn1/5 for a constant c > 0, then
it is no longer true that ĥopt/hopt converges to 1 in probability. In this case (2.16)
fails, as too do (2.18) and (2.21)–(2.23) below. However, our results continue to
hold in cases where the condition γ ∼ cn1/5 “only just” fails, for example, where
γ = n1/5L(n), L is slowly varying at infinity, and L(n)→ 0 as n→ ∞, although
they require strengthening of other regularity conditions.

Both (2.15) and (2.16) have analogues for convergence of ISE itself. It is known
that, in the case of independent data, M̂(hopt)−M̂(ĥopt) converges to 0 at rate n−1.
Our next result shows that this remains true for dependent data, provided the
dependence is of short range in the sense of (2.10). For more strongly dependent
data, the difference between values of ISE at bandwidths hopt and ĥopt is generally
of larger order.

Define σ 2
3 = 1

2c
2
0c3σ

2
1 and σ 2

4 = 1
2c

2
0c3σ

2
2 . Let χ2

1 denote a random variable
having the chi-squared distribution on one degree of freedom.

THEOREM 2.3. Assume (2.14). If the time series X∞ is short-range depen-
dent in the sense of (2.10), then

n
{
M̂(hopt)− M̂(ĥopt)

} → σ 2
3χ

2
1 in distribution.(2.17)

If (2.10) fails and γ =O(n(1/5)−ε) for some ε > 0, then

nγ−1{M̂(hopt)− M̂(ĥopt)
} → σ 2

4χ
2
1 in distribution.(2.18)
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Comparing (2.17) and (2.18) with the analogues of those results in Theo-
rems 2.2 and 2.3 we see that the influence of long-range dependence on the optimal
empirical bandwidth can be very different from that when optimality is measured
in purely deterministic, MISE terms.

Of course, ĥopt is not a practical choice as a bandwidth; although it is optimal
from an empirical, rather than risk-based, viewpoint, it still depends heavily on the
unknown density. However, the fact that ĥopt can be so highly variable, for long-
range dependent data, indicates that in practical problems it will be very difficult
to develop an accurate, data-based approximation. In the next section we produce
evidence to support this claim, showing that the cross-validation bandwidth is at
least as variable as ĥopt.

2.5. The cross-validation bandwidth. Let 0≥ 1 be an integer; it will determine
how many data values we omit at the leave-one-out step of cross-validation. Put

f̂h,−i (x)= 1

n0h

∑
j :|i−j |>0

K

(
x −Xj
h

)
,

where

n0 = n#
{
(i, j) : |i − j |> 0 and 1 ≤ i, j ≤ n}.

The cross-validation criterion is

CV(h)=
∫
f̂ 2
h − 2

n

n∑
i=1

f̂h,−i(Xi)

and represents an approximation to M̂(h)+ ∫
f 2. The cross-validation bandwidth

ĥcv is the one that minimizes CV(·).
The properties of the optimal empirical bandwidth ĥopt evinced in Theorems 2.2

and 2.3 have direct analogues for its cross-validation counterpart, as we now show.
Critically, we shall show that the leave-one-out number 0 has negligible influence
on the convergence rate. Even in the case of long-range dependence, where (2.10)
is violated, its effect is expressed only through relatively high-order terms.

Define

s2
3 = (2/c0)

3
(∫

f 2
)∫ {

K(u)+ uK ′(u)
}2
du,

σ 2
5 = c−2

3

{
s2

3 + (2µ2c0)
2s2

2
}
, σ 2

6 = 1
2c

2
0c3σ

2
5 .

For simplicity we shall suppose that ĥcv is taken to equal the minimum of CV(h)
in an interval [C1n

−1/5,C2n
−1/5], where (C1,C2) contains the optimal constant

c0 = J
1/5
1 in the formula hopt ∼ c0n

−1/5. This avoids difficulties with spurious
small minima, which can persist when using cross-validation for dependent data.
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THEOREM 2.4. Assume (2.14). Suppose too that 0=O(n1−ε) for some ε>0.
If the time series X∞ is short-range dependent in the sense of (2.10), then

n1/10{(ĥcv/ĥopt)− 1
} →N(0, σ 2

5 ) in distribution,(2.19)

n
{
M̂(ĥcv)− M̂(ĥopt)

} → σ 2
6 χ

2
1 in distribution.(2.20)

On the other hand, if (2.10) is violated and γ =O(n(1/5)−ε) for some ε > 0, then

(hoptγ )−1/2{(ĥcv/hopt)− 1
} →N(0, σ 2

2 ) in distribution,(2.21)

nγ−1{
M̂(ĥcv)− M̂(ĥopt)

} → 4σ 2
4χ

2
1 in distribution,(2.22)

n3/10γ−1/2(ĥopt + ĥcv − 2hopt)→ 0 in probability.(2.23)

Result (2.23) shows that, except in degenerate cases where σ 2
2 = 0, the as-

ymptotic correlation between ĥopt and ĥcv equals −1. This result in particular,
but also (2.21) and (2.22), argues that cross-validation may not be an ideal band-
width choice method for long-range dependent data. A plug-in rule would suffer
less from variability, and on those grounds would be more attractive. However,
as the strength of dependence approaches a point where where the condition
γ = O(n(1/5)−ε) fails for all ε > 0, the asymptotic equivalence of the MISE-
optimal bandwidth hopt and the ISE-optimal bandwidth ĥopt also tends to disap-
pear. See the discussion two paragraphs below Theorem 2.2. Therefore the advan-
tages of plug-in rules, which focus on estimating hopt, become less clear.

The fact that the value of 0 plays no first-order role in Theorem 2.4 indicates that
the extent to which there is an “optimal” 0 will be determined by relatively high-
order properties. There seems little to be gained from pursuing this issue from a
practical viewpoint, however, since the variability of ĥcv, and hence the difficulty
of identifying high-order effects of choice of 0, increase with increasing range of
dependence.

It is of interest to address the difference between M̂(ĥcv) and M̂(hopt), rather
than between M̂(ĥcv) and M̂(ĥopt) as at (2.20) and (2.22). In the case of short-
range dependence the results are effectively the same as for independence and
may be deduced from the more extensive properties reported by Hall and Marron
(1987) for that setting. In the context of long-range dependence they follow from
Theorems 2.3 and 2.4, as follows:

nγ−1{M̂(ĥcv)− M̂(hopt)
} ∼ 1

2nγ
−1{(ĥcv − ĥopt)2 − (hopt − ĥopt)2

}
M̂ ′′(ĥopt)

∼ 3
2nγ

−1(ĥopt − hopt)2M̂ ′′(ĥopt)

∼ 3nγ−1{M̂(hopt)− M̂(ĥopt)
} → 3σ 2

4χ
2
1

in distribution. Here the first relation follows by Taylor expansion; the second
from (2.23); the third by Taylor expansion and the final limiting result, from (2.18).
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2.6. Pointwise convergence of f̂ . Here we show that the condition hγ → 0,
which was imposed in earlier sections when describing the effects of long-range
dependence on stochastic measures of the general performance of f̂ , also implies
that f̂ has, locally, the same first-order asymptotic properties that it would enjoy
in the case of independent data. Of course, the expected value of f̂ depends only
on the marginal distribution of X, not on the strength of dependence, so we shall
confine attention to local properties of f̂ −E(f̂ ).

THEOREM 2.5. Suppose X∞ is a function of a Gaussian process, (2.1), (2.5)
and (2.7) hold, h= h(n)→ 0 and nh→ ∞, and hγ → 0. Then for each x,

(nh)1/2
{
f̂ (x)−Ef̂ (x)} →N

{
0, σ (x)2

}
in distribution,

where σ(x)2 = f (x)
∫
K2.

The argument that we shall use to derive Theorem 2.5 may be employed
to establish a wide variety of related results, for example, about pointwise
convergence of the j th derivative of f̂ − E(f̂ ). Again, the result asserts that
the limit distribution is identical to that under independence. The only additional
regularity condition is the assumption that K has j bounded derivatives.

Perhaps of more interest are results which establish the validity of so-called data
sharpening methods applied to time-series data. We shall briefly describe them
here. Details are given by Hall and Minnotte (2000) in the case of independent
data. Let F̂ (x) = ∫

y≤x f̂ (y) dy denote the distribution function corresponding to

f̂ , let I represent the identity function and define functions

γ̂4 = I + h2µ2

2

f̂ ′

f̂
,

γ̂6 = γ̂4 + h4
{(
µ4

24
− µ2

2

2

)
f̂ (3)

f̂
+ µ2

2

2

f̂ ′′f̂ ′

f̂ 2
− µ2

2

8

(f̂ ′)3

f̂ 3

}
,

and so on; γ̂r may be defined for any even integer r . Assume the conditions of
Theorem 2.5, and in addition that K has sufficiently many bounded derivatives
and (logn)/(nhr) is bounded as n→ ∞. Then the estimator

f̂r (x)= 1

nh

n∑
i=1

K

(
x − γ̂r (Xi)

h

)
satisfies

E
{
f̂r (x)

} = f (x)+O{
hr + (nh)−1},

var
{
f̂r (x)

} ∼ (nh)−1t2r f (x),

(nh)1/2
{
f̂r (x)−Ef̂r(x)} →N

{
0, t2r f (x)

}
in distribution,

where tr > 0 depends only on K .
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3. Technical arguments.

3.1. Proof of Theorem 2.1. The proof is based on that of Theorem 2.1 of Hall,
Lahiri and Truong (1995), referred to below as HLT. Specifically, note that the
argument given on the lower half of page 2245 of HLT shows that

n

∫
var f̂ (x) dx =

∫
varKh(x −Xi)+ τn1 + 2

n−1∑
i=1

(1 − n−1i)

∫
ri1(x) dx,

where Kh(u)= h−1K(u/h),

ri0(x)=
∫∫

K(y1)K(y2)

{
gi(x − hy1, x − hy2)

−
0∑
k=0

(1/k!) ∑
j1,j1: j1+j2=k

g
(j1,j2)
i (x, x)(−hy1)

j1(−hy2)
j2

}
dy1 dy2.

To obtain our Theorem 2.1, first carry the expansion of n
∫

var f̂ to one further
term:

n

∫
var f̂ (x) dx =

∫
varKh(x −Xi)+ τn1 + τn2h

2 + 2
n−1∑
i=1

(1 − n−1i)

∫
ri3(x) dx.

Then apply the Taylor expansion argument on page 2245 of HLT to ri3 rather than
ri1, obtaining, in place of the fifth line on page 2246 of HLT,∫

var f̂ (x) dx = (nh)−1κ−n−1I0+n−1(τn1+τn2h
2)+O(n−1h2 +n−1h4γ +h8).

A similar but simpler argument leads to the following analogue of (2.11) of HLT:∫
(Ef̂ − f )2 = h4 1

4µ
2I2 − h6 1

24µ2µ4I3 +O(h8).

Theorem 2.1 follows on adding the last two displayed formulae.

3.2. Density expansions for functions of Gaussian processes. Put k0 = 0.
Given an r-vector v = (1, k1 + 1, . . . , kr−1 + 1), where the integers ki satisfy
0 < k1 < · · · < kr−1, let fv denote the joint density of (X1,Xk1+1, . . . ,Xkr−1+1)

and let fv0, a product of r marginal densities, be the function that fv would equal
if the components of X∞ were independent with the marginal distribution of X1.
Now, fv may be regarded as as a functional of the sequence of correlations of
the Gaussian process of which X∞ is a function. Those correlations may in turn
be expressed through the correlations of X∞ itself, and so we may treat fv as a
functional of the values ρ(ki − kj ) for i > j .

Index these values as ρ(1), . . . , ρ(p), where p = r(r − 1)/2. Given an integer
ν ≥ 1, expand fv as a Taylor series in ρ(1) about ρ(1) = 0, terminating with a
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term that involves the νth power of ρ(1) and expressing this term using the exact
form for the remainder in a Taylor series. Now Taylor-expand each of these ν + 1
terms as a series in ρ(2) about ρ(2) = 0, terminating with the term involving the νth
power of ρ(2), and again using the exact form of this term. Next, expand each of
the (ν+1)2 terms as a Taylor series in ρ(3) about ρ(3) = 0; and so on. This process
will produce a series that consists of (ν + 1)p terms. We now describe the forms
of those terms.

If i1, j1, . . . , i0, j0 are components of v with the property that each is < js ,
let v+(i1, . . . , j0) be the vector obtained from v by deleting all components
except those that appear at least once in the sequence of is’s and js’s, and
define v−(i1, . . . , j0) to be the vector made up of the deleted components of v.
Put x = (x1, xk1+1, . . . , xkr−1+1). Then for each v and each integer ν ≥ 1, the
expansion to (ν + 1)p terms (and neglecting the remainder), described in the
previous paragraph, may be written as

fv(x)= fv0(x)+
∑
0≥1

∑∑
i1<j1

· · ·∑∑
i0<j0

ρ(j1 − i1) · · ·ρ(j0 − i0)
(3.1)

×ψv+(i1,...,j0)(x)fv−(i1,...,j0),0(x),
where with a single exception [see (d) below], (a) for αu = fu,0 or ψu, the function
β = αv±(i1,...,j0)(x) depends nondegenerately only on those components of x that
are listed in v±(i1, . . . , j0), (b) for u= v−(i1, . . . , j0) (a t-vector, say) the function
fu,0 denotes the joint density of t independent random variables each having the
distribution of Xi and (c)

sup
x

|β(x)| ≤ C(r, ν),
∫

|β(x)|dx ≤ C(r, ν),(3.2)

where C(r, ν) depends on r but not otherwise on v. The exceptional term in the
expansion at (3.1) is one that has the form χ(x)

∏
1≤i≤p(ρ(i))ν , where (d) the

function β = χ satisfies (3.2). Result (3.1) is linked to (2.8) in that, in the special
case r = 2 where k1 = i, gi(x1, x2)= fv(x)− fv0(x).

3.3. Proof of Theorem 2.2. Sections 3.3.1–3.3.5 will derive result (2.16), and
Section 3.3.6 will outline the simpler proof of (2.15).

3.3.1. Decomposition of M̂ ′(h). Put

M̂1(h)≡ −1
2hM̂

′(h)=
∫
(f̂h − f )(f̂h − ĝh),(3.3)

where ĝh(x)= (nh)−1 ∑
i K1{(x −Xi)/h} and K1(x)= −xK ′(x). Define

Kj(x)=
∫
K(u)L(u+ x) du
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for (j,L)= (2,K) and (j,L)= (3,K1), and let K4 =K2 −K3,

k4(x)= E

{
K4

(
x −Xi
h

)}
, κ4 = E

{
k4(Xi)

}
,

T1 = (n2h)−1
∑∑
i �=j

{
K4

(
Xi −Xj

h

)
− k4(Xi)− k4(Xj )+ κ4

}
,

k5(x)=
∫ {

2(1 − n−1)K4(u)+K1(u)−K(u)}f (x − hu)du,

κ5 = E
{
k5(Xi)

}
,

T2 = n−1
n∑
i=1

{
k5(Xi)− κ5

}
,

κ0 =
∫∫ {

(1 − n−1)K4(u)+K1(u)−K(u)}f (v)f (v − hu)dudv.
Both T1 and T2 are functions of h. In this notation,

M̂1(h)= T1(h)+ T2(h)+ (nh)−1K4(0)+ κ0.(3.4)

3.3.2. Bound for T1(h). Put t1(Xi,Xj )=K4{(Xi − Xj)/h} − k4(Xi) −
k4(Xj )+ κ4, and note that

(n2h)2E(T 2
1 )=O

[∑∑
i �=j

E
{
t1(Xi,Xj )

2}
+ ∑ ∑ ∑
i,j1,j2 all distinct

∣∣E{
t1(Xi,Xj1)t1(Xi,Xj2)

}∣∣(3.5)

+ ∑ ∑ ∑ ∑
i1,j1,i2,j2 all distinct

∣∣E{
t1(Xi1 ,Xj1)t1(Xi2 ,Xj2)

}∣∣].
To bound the double series on the right-hand side of (3.5), assume without loss
of generality that 0< i < j and put v = (0, j − i). Then fv is the joint density of
(Xi,Xj ), and

E
{
t1(Xi,Xj)

2} = h

∫∫
t1(x1, x1 − hx2)

2fv(x1, x1 − hx2) dx1 dx2

(3.6)
=O(h),

uniformly in i �= j . [The second identity at (3.6) follows after squaring the right-
hand side of the quantity

t1(x1, x1 − hx2)=K4(x2)− k4(x1)− k4(x1 − hx2)+ κ4,(3.7)
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integrating term by term, and noting that supx |k4(x)| =O(h).] It follows that the
double series on the right-hand side of (3.5) equals O(n2h).

To bound the triple series on the right-hand side of (3.5), assume without loss
of generality that 0< j1 − i < j2 − i and take v = (0, j1 − i, j2 − i). Then

E
{
t1(Xi,Xj1)t1(Xi,Xj2)

} = h2
∫∫∫

t1(x1, x1 − hx2)t1(x1, x1 − hx3)

(3.8)
× fv(x1, x1 − hx2, x1 − hx3) dx1 dx2 dx3.

Approximate fv using the expansion at (3.1) for arbitrarily large ν. Also, expand
t1(x1, x1 − hxj ) (for j = 2,3) using (3.7), and multiply out these parts of the
integrand at (3.8). Take the absolute value of the resulting expression for the right-
hand side of (3.8), and sum over distinct values of i, j1, j2. Two of these three series
each contribute a factor n to a bound for the triple series, while the third contributes
a factor γ , by virtue of the properties: (a) the right-hand side of (3.8) vanishes if
we replace fv there by fv,0, and (b) all other terms in the expansion (3.1) of fv
involve at least one factor ρi . Therefore, the triple series on the right-hand side
of (3.5) equals O(n2γ h2).

The same argument, applied to bound the fourfold series on the right-hand
side of (3.5), gives the bound O(n3γ h2). However, this can be improved upon
as follows. If the vector v+(i1, . . . , j0) at (3.1) has four components, then there are
at least two distinct terms ρ(js − is) in the corresponding product at (3.1), and as a
result, when summing over all four distinct indices in the quadruple series at (3.5),
two (rather than just one) of the factors nmay be replaced by γ . Therefore, the total
contribution of terms such as these equals O(n2γ 2h2) rather than O(n3γ h2). In
the remaining case, where v+(i1, . . . , j0) at (3.1) has three or fewer components,
the vector v−(i1, . . . , j0) must have one or more components (since v has itself
exactly four components). Multiplying t1(x1, x2)t1(x3, x4) by the marginal density
of this component (i.e., the marginal density of one of x1, . . . , x4), and integrating
over that component, we obtain zero, since the definition of t1(x1, x2) ensures
that E{t1(X,x)} = E{t1(x,X)} = 0. There is an exceptional case, corresponding
to (d) in the account in Section 3.1 of terms in the expansion (3.1). However,
since ρi = O(i−ε) for some ε > 0, then, provided ν > 1/ε, the exceptional case
contributes a term of order O{n2(

∑ |ρi|ν)2h2} =O(n2h2).
Combining these bounds we deduce from (3.5) that

(n2h)2E
{
T1(h)

2} =O(n2h+ n2γ h2 + n2γ 2h2 + n2h2)= o(n2γ h),

the latter identity holding provided γ → ∞ and γ h → 0. Hence, if these
conditions hold,

T1(h)= op
{
(γ /n2h)1/2

}
.(3.9)
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3.3.3. Limit theorem for T2(h). We use the method of moments to prove that
T2 is asymptotically Normally distributed. Note that

k5(x)= −µ2h
2f ′′(x)+ o(h2)

uniformly in x. If we define t3(x) = f ′′(x)+ ∫
(f ′)2 and T3(h)= n−1 ∑

i t3(Xi),
then the mth moment of T2(h) will equal that of −µ2h

2T3(h), up to terms that are
of smaller order than {h2(γ /n)1/2}m.

Consider writing E{nT3(h)}m as the sum, over 1 ≤ r ≤m, of series of the form∑ · · ·∑
i1,...,im such that

exactly r are distinct

∫
· · ·

∫
t3(xi1) · · · t3(xim)fv(x) dx,(3.10)

where, if 1 = k0 + 1 < · · · < kr−1 + 1 are the distinct elements of the sequence
i1, . . . , i2m, then v = (0, k1, . . . , kr−1). Expanding fv as in (3.1), and interchanging
the order of the summation and integration in the integral immediately above, we
deduce that the series equals O(nr ) if r < m/2, and equals O(nm/2γ1 · · ·γm/2) if
r > m/2 and m is even, where each γj has the form

∑
i≤n |ρi |s for some integer

s = s(j)≥ 1, and s(j)≥ 2 for at least one j . If r ≥ (m+ 1)/2 and m− 1 is even,
then the series equalsO(n(m−1)/2γ1 · · ·γ(m−1)/2), for the same interpretation of γj .
Define

q1 =E
[
f ′′′{a(N)}a′(N)

]
/E

{
a′(N)

}
.

If m is even and r =m/2, then standard arguments in a proof of the central limit
theorem by the method of moments may be used to show that the series in (3.10) is
asymptotic to nm/2qm2 E(N

m), where the random variableN has a standard Normal
distribution,

q2
2 = 2

n∑
i=1

cov
{
t3(X1), t3(Xi+1)

} = 2
n∑
i=1

τi
[
E

{
t3(a)

}′
(N)

]2 + o(γ )

= 2γ
[E{t3(a)}′(N)]2

{Ea′(N)}2 + o(γ )= 2γ q2
1 + o(γ ),

and we have used (2.6) to derive asymptotic formulae for correlations. Hence,

h−2(n/γ )1/2T2(h)→N(0,2µ2
2q

2
1 ) in distribution.(3.11)

3.3.4. Decomposition of M̂ ′′(h). Put

M̂2(h)≡ 1
2h

2M̂ ′′(h)=
∫ {
(f̂h − ĝh)2 + (f̂h − f )(2f̂h − ĝh − êh)},(3.12)

where êh(x)= (nh)−1 ∑
i K5{(x −Xi)/h} and K5(x) = −xK ′

1(x). This formula
is analogous to that for M̂2(h) at (3.3), and in fact the methods of Sections 3.3.1–
3.3.3 may be used to show that, for all integer k ≥ 1,

E
{
M̂2(h)−EM̂2(h)

}2k =O
{
(γ n−9/5)k

}
,
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uniformly in h ∈ H(C1,C2) ≡ [n−1/5C1, n
−1/5C2] for any 0 < C1 < C2 < ∞.

Furthermore,

E
{
M̂2(h)

} =M2(h)+O(n−1)

uniformly in h ∈ H , whereM2(h)= (nh)−1κ+ 3
2h

4µ2
2I2. Therefore, by Markov’s

inequality and the fact that γ =O(n(1/5)−ε) for some ε > 0,

sup
h∈H

P
{∣∣M̂2(h)−M2(h)

∣∣> εn−4/5} =O(n−λ)

for all ε, λ > 0. We may deduce from this result and the Hölder continuity of K ′′
that

sup
h∈H

∣∣M̂2(h)−M2(h)
∣∣ = o(n−4/5)(3.13)

with probability 1.
3.3.5. Completion of proof of (2.16). (It is notationally simpler if we confine

attention to the case q1 �= 0, which we do below.) A subsidiary argument may be
used to prove that, for constants 0 < C1 < C2 <∞, P {ĥopt ∈ H(C1,C2)} → 1
as n → ∞. Without loss of generality, C1 and C2 also have the property that
hopt ∈ H(C1,C2) for all sufficiently large n. By the Taylor expansion,

0 = M̂ ′(ĥopt)= M̂ ′(hopt)+ (ĥopt − hopt)M̂ ′′(h∗),(3.14)

where h∗ lies between hopt and ĥopt. Therefore the probability that h∗ ∈ H(C1,C2)

converges to 1, and so, by (3.13),

M̂ ′′(h∗)= {
1 + op(1)}2(h∗)−2M2(h

∗).(3.15)

Now, it may be deduced from (3.4), (3.9) and the property E{M̂ ′(hopt)} =
M ′(hopt)= 0 that

M̂ ′(hopt)= 23/2µ2q1h
opt(γ /n)1/2Z1,(3.16)

where for each j , Zj will denote an asymptotically standard Normal random
variable. Combining (3.14)–(3.16) we deduce that

(ĥopt − hopt)2(h∗)−2M2(h
∗)= 23/2µ2q1h

opt(γ /n)1/2Z2.(3.17)

In particular this implies that ĥopt − hopt = Op{(γ /n3/5)1/2}, and so h∗ = {1 +
op(1)}hopt. Therefore, by (3.17) again,

ĥopt − hopt = 21/2µ2q1(h
opt)3

{
M2(h

opt)
}−1

(γ /n)1/2Z3

= 23/2µ2q1h
opt{M ′′(hopt)

}−1
(γ /n)1/2Z4.

This implies (2.16).
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3.3.6. Outline proof of (2.15). Let fij denote the joint density of X1 and Xj .
When (2.10) holds, a slight elaboration of the argument in Section 3.3.2 shows that

(n2h)2 var(T1)= 4
∑∑
i < j

E
{
t1(Xi,Xj )

2} +O(n2h2)

∼ 4h
∑∑
i < j

∫∫
K4(x2)

2fij (x1, x1) dx1 dx2

∼ 2n2h

(∫
f 2

)(∫
K2

4

)
.

Furthermore,

var(T2)∼ (µ2h
2)2 var

{
n−1

n∑
i=1

f ′′(Xi)
}

∼ n−1(µ2h
2)2s2

2 ,

and cov(T1, T2)= o{(n2h)−1 + n−1h4}. Therefore,

n7/5 var
{
M̂ ′(hopt)

} ∼ 2c−3
0

(∫
f 2

)(∫
K2

4

)
+ c2

0µ
2
2s

2
2 = (c0c3σ1/2)

2.

A longer argument will show that all the moments of n7/10M̂ ′(hopt) converge to
the respective moments of a Normal random variable with zero mean and variance
(c0c3σ1/2)2. Therefore, n7/10M̂ ′(hopt) has this limit distribution, and so, by an
argument similar to that in Section 3.3.5,

(ĥopt − hopt)c3n
−2/5 = n−7/10c0c3σ1Z1,

where Z1 is asymptotically Normal N(0,1). This result is equivalent to (2.15).

3.4. Proof of Theorem 2.4. Define

D̂(h)= 1

nh

n∑
i=1

∫
K

(
x −Xi
h

)
f (x) dx − 1

nn0h

n∑
i=1

∑
j : |i−j |>0

K

(
Xi −Xj

h

)
,

and put K6 =K −K1, k6(x)=E[K6{(x −Xi)/h}], κ6 =E{k6(Xi)},
Ni = #{j : |i − j |> 0 and 1 ≤ j ≤ n},

T3(h)= 1

nn0h

n∑
i=1

∑
j : |i−j |>0

{
K6

(
Xi −Xj

h

)
− k6(Xi)− k6(Xj )+ κ6

}
,

T4(h)= 1

nh

n∑
i=1

{
k6(Xi)− κ6

}{2Ni
n0

− 1
}
.

In this notation,

D̂1(h)≡ −hD̂′(h)= T3(h)+ T4(h).
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The terms T3 and T4 are analogous, in the present setting, to T1 and T2 introduced
in Section 3.3.1.

Assume first that (2.10) holds. Note that supi |(2Nin−1
0 − 1)− 1| → 0 and

h−1k6(x)=
∫
K6(u)f (x − hu)du= −µ2h

2f ′′(x)+ o(h2).

Using these properties we may derive asymptotic formulae for the variances of T3
and T4, and their covariance, as was done in Section 3.3.6 for T1 and T2. In this
manner we may show that

var
{
D̂1(h)

} ∼ 2(n2h)−1
(∫

f 2
)(∫

K2
6

)
+ n−1h4µ2

2s
2
2,

and thence that

n7/5 var
{
D̂′(hopt)

} ∼ 2c−3
0

(∫
f 2

)(∫
K2

6

)
+ c2

0µ
2
2s

2
2 = (c0c3σ5/2)

2.

As in Section 3.3.6, a longer argument based on the method of moments will show
that the distribution of n7/10D̂′(hopt) is asymptotically Normal with zero mean and
variance (c0c3σ5/2)2.

Put V = M̂−M . Subsidiary arguments may be used to prove that ĥcv/hopt → 1
in probability and |V ′′(h)| + |D̂′′(h)| = op(n

−2/5), uniformly in h ∈ H(C1,C2)

for any 0<C1 < C2 <∞. (The argument leading to the latter property is similar
to that in Section 3.3.4.) Note too that M ′′(hopt)∼ c3n

−2/5 and

CV +
∫
f 2 =M + V + 2D̂.

Therefore,

0 = CV ′(ĥcv)=M ′(ĥcv)+ V ′(ĥcv)+ 2D̂′(ĥcv)

= (ĥcv − hopt)M ′′(ĥ∗
1)+ V ′(hopt)+ (ĥcv − hopt)V ′′(ĥ∗

2)

+ 2D̂′(hopt)+ 2(ĥcv − hopt)D̂′′(ĥ∗
3)

= {
1 + op(1)}(ĥcv − hopt)c3n

−2/5 + V ′(hopt)+ 2D̂′(hopt).

A similar argument gives

0 = {
1 + op(1)}(ĥopt − hopt)c3n

−2/5 + V ′(hopt);
compare (3.14). Subtracting, and noting that ĥopt − hopt = Op(n

−3/10), by (2.4),
we deduce that

(ĥcv − hopt)c3n
−2/5 = −2

{
1 + op(1)}D̂′(hopt)+ op(n−7/10).(3.18)

This formula, and the limit result given in the previous paragraph, imply (2.19).
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Now suppose (2.10) fails. Then, arguing as in Sections 3.3.1–3.3.5, we may
show that the conclusion reached in the second paragraph of the present section
changes to

D̂′(hopt)= 21/2µ2q1h
opt(γ /n)1/2Z,(3.19)

where Z is asymptotically Normal N(0,1). Furthermore, the argument leading
to (3.18) now gives instead

(ĥcv − hopt)c3n
−2/5 = −2

{
1 + op(1)}D̂′(hopt)+ op(n−7/10γ 1/2).(3.20)

Result (2.21) follows from (3.19) and (3.20).
Tracing the origins of the dominant terms in D̂′(hopt) and M̂ ′(hopt) in

Sections 3.3 and 3.4 we may show that, when (2.10) fails, D̂′(hopt)= −M̂ ′(hopt)+
op(n

−7/10γ 1/2). Result (2.23) follows from this property, (3.14) and (3.20).
Results (2.20) and (2.22) follow via a simple Taylor expansion argument.

3.5. Proof of Theorem 2.5. We shall use the method of moments. Put A =
n{f̂ (x) − Ef̂ (x)}, u0 = E{f̂ (x)} and u1(y) = h−1K{(x − y)/h} − u0, and let
m≥ 1 be an integer. Then

E(Am)=
m∑
r=1

∑ · · ·∑
p1,...,pm such that
exactly r are distinct

E
{
u1(Xp1) · · ·u1(Xpm)

}
.(3.21)

If r < m/2, then the expected value on the right-hand side equals O(hr−m),
uniformly in sequences i1, . . . , im with just r distinct components, and so the
contribution to the right-hand side equals

O(nrhr−m)=O
{
(nh)rh−m} = o

{
(nh)m/2h−m}

.

To treat the case r > m/2 we expand the joint density of the r distinct
components of (Xp1, . . . ,Xpm), as in (3.1). Taking a particular term in this
expansion, say

u3(y)= ρ(j1 − i1) · · ·ρ(j0 − i0)ψv+(i1,...,j0)(y)fv−(i1,...,j0),0(y),(3.22)

where y = (y1, . . . , yr), we write the contribution to E{nf̂ (x)}m as∫
· · ·

∫
u1(y1)

ξ1 · · ·u1(yr)
ξr u3(y) dy

= hr−m
∫

· · ·
∫

{K(y1)− hu0}ξ1 · · · {K(yr)− hu0}ξr

× u3(x − hy1, . . . , x − hyr) dy1 · · · dyr,
where each ξi ≥ 1 and ξ1 + · · · + ξr = m. Performing, for this contribution to
E(Am) and this value of r , the summation over p1, . . . , pm at (3.21), and noting
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that at least r−(m/2) (for r even) or r−{(m−1)/2} (for r odd) of the summations
are effectively over one of the indices in one of the components ρ(jk − ik) in the
product at (3.22), and so produce a quantity that equals O(γ ) rather than O(n),
we deduce that the contribution to E(Am) equals

O(hr−mnm/2γ r−(m/2))=O
{
(n/h)m/2(hγ )r−(m/2)

}
in the case of even r , and

O(hr−mn(m−1)/2γ r−{(m−1)/2})=O
{
(nh)(m−1)/2h−m(hγ )r−{(m−1)/2}}

for odd r . Combining this result with that derived in the previous paragraph, and
noting that hγ → 0, we deduce that, for even m,

E(Am)= ∑ · · ·∑
p1,...,pm such that

exactly m/2 are distinct

E
{
u1(Xp1) · · ·u1(Xpm)

} + o{(n/h)m/2},(3.23)

while for odd m,

E(Am)= o
{
(n/h)m/2

}
.(3.24)

Takem= 2r for an integer r ≥ 1, and suppose there are exactly r distinct values
among p1, . . . , pm. Let these be q1 < · · · < qr , put q = (q1, . . . , qr) and let fq
denote the joint density of Xq1, . . . ,Xqr . Then

E
{
u1(Xp1) · · ·u1(Xpm)

} = E
{
u1(Xq1)

2 · · ·u1(Xqr )
2}

= h−r
∫ {
K(y1)− hu0

}2 · · · {K(yr)− hu0
}2

× fq(x − hy1, . . . , x − hyr) dy1 · · · dyr

∼
(
h−1

∫
K2

)r
fq(x, . . . , x).

Hence, by (3.23),

E(Am)=
(
h−1

∫
K2

)r ∑ · · ·∑
p1,...,pm such that
exactly r are distinct

fq(x, . . . , x)+ o{(n/h)r}.(3.25)

Still considering the case m = 2r , let f0(x, . . . , x) = f (x)r denote the value
that fq(x, . . . , x) would take if the components of the time series X were totally
independent. Given 0 ≥ 1, let Q(0) be the set of vectors q , among all those
involved in the summation in (3.25), for which none of the absolute values of
the lags between any two components is strictly less than 0. For each fixed 0,{

#Q(0)
}/{

#Q(1)
} → 1
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as n→ ∞, and

lim
0→∞ lim sup

n→∞
sup
q∈Q(0)

∣∣fq(x, . . . , x)− f0(x, . . . , x)
∣∣ → 0.

These two results imply the following simplification of (3.25):

E(Am)=
{
h−1f (x)

∫
K2

}r ∑ · · ·∑
p1,...,pm such that
exactly r are distinct

1 + o{(n/h)r}.(3.26)

The expansion on the right-hand side of (3.26) does not involve the dependence
structure of X, and in the case of total independence, where (3.26) is also valid, it
is of course known that the mth moment of Am is asymptotic to that of its Normal
limiting distribution:

E(Am)∼
{
(n/h)f (x)

∫
K2

}r
E(Nm),

where N is a standard Normal random variable. Hence, (3.26) implies that for a
general time series X satisfying our regularity conditions, and for even integers
m≥ 2,

E(Am)=
{
(n/h)f (x)

∫
K2

}m/2
E(Nm)+ o{(n/h)m/2}

.

This result and (3.24) imply that all the moments of (h/n)1/2A converge to those
of a Normal N{0, σ (x)2} random variable, and so the distribution of (h/n)1/2A
converges to this limit.
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