
The Annals of Statistics
2002, Vol. 30, No. 2, 397–430

WEAK DEPENDENCE BEYOND MIXING AND ASYMPTOTICS
FOR NONPARAMETRIC REGRESSION

BY PATRICK ANGO NZE, PETER BÜHLMANN AND PAUL DOUKHAN

Université Lille 3, ETH Zürich and Université Cergy Pontoise

We consider a new concept of weak dependence, introduced by Doukhan
and Louhichi [Stochastic Process. Appl. 84 (1999) 313–342], which is more
general than the classical frameworks of mixing or associated sequences.
The new notion is broad enough to include many interesting examples such
as very general Bernoulli shifts, Markovian models or time series bootstrap
processes with discrete innovations.

Under such a weak dependence assumption, we investigate nonparametric
regression which represents one (among many) important statistical estima-
tion problems. We justify in this more general setting the “whitening by win-
dowing principle” for nonparametric regression, saying that asymptotic prop-
erties remain in first order the same as for independent samples. The proofs
borrow previously used strategies, but precise arguments are developed under
the new aspect of general weak dependence.

1. Introduction. The analysis of statistical procedures for dependent data
usually relies on some decay of dependence as the distance, say in time or space,
between observations increases. The most popular notions describing such a decay
of dependence are from the framework of mixing sequences [10]. However, mixing
conditions can be very hard to verify for particular models or are even too strong to
be true. Not much is known in asymptotic theory about the behavior of a statistical
procedure when the data generating stationary process exhibits dependencies
which are beyond classical mixing or, as another example for a framework
describing dependence, beyond association (see Section 3.4). Examples where
mixing or association fails to hold include the following: (i) Bernoulli shifts driven
by discrete innovations, (ii) Markov processes driven by discrete innovations and
(iii) processes arising from model- or sieve-based time series bootstraps. More
precise definitions are given in Section 3.

Doukhan and Louhichi [12] have introduced a new concept of weak dependence
for stationary processes which generalizes the notions of mixing and association.
Relaxation of mixing or association conditions and assuming only the new notion
of weak dependence yields a fairly tractable framework for the analysis of
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statistical procedures with very general data generating processes, for example,
examples (i)–(iii) mentioned above.

For a stationary time series, weak dependence as defined in [12] is measured in
terms of covariances of functions. For convenient functions h and k, we assume
that

Cov
(
h(“past”), k(“future”)

)
(1.1)

is small when the distance between the “past” and the “future” is sufficiently large.
Regarding the functions h and k, we focus on the class of bounded Lipschitz
functions and modifications thereof. This class is small enough to actually prove
for various processes that the quantities in (1.1) can be bounded uniformly over
the function class as a function of the distance between the “past” and the “future.”
On the other hand, the function class is rich enough to obtain high order moment
bounds and central limit theorems (CLTs) for sums whenever suitable uniform
bounds for (1.1) hold. Alternative function classes are also possible and another
similar proposal for weak dependence has been given in [4]; see Section 2.2.

Under the general notion of weak dependence in terms of requiring only a
suitable (uniform) decay of the covariances in (1.1), it is still possible to get
fairly good bounds for moment and exponential inequalities and the CLT still
holds (see Section 2.3). However, these bounds are usually less tight than for
mixing or associated sequences. Another complication arises when dealing with
transformed values g(Zt , . . . ,Zt−v) for fixed v, where g(·) is nonsmooth: the
covariance bound in (1.1) controls only for transforms g(·) which are bounded
Lipschitz (or modifications thereof), although nonsmooth g(·)’s can be handled
under additional concentration assumptions for the process (Zt )t∈Z. Some of the
strategies for various proofs can be borrowed from previous work in mixing or
association, but the difficulties mentioned above indicate that precise arguments
have to be developed under the new aspect of weak dependence.

As one important example of an estimation problem, we focus on point and
interval estimation for conditional expectations. Consider a strictly stationary
process (Zt )t∈Z taking values in RD for some D ∈ N: (Zt )t∈Z does not need
to satisfy a mixing or association, but only a weak dependence assumption as
mentioned above. For 2 ≤ D = 1 + d , writing the components as Zt = (Xt , Yt )

with Xt ∈ Rd and Yt ∈ R, the problem of interest here is nonparametric point and
interval estimation of the function

r(x)= E(Y0|X0 = x).
For simplicity, we often restrict ourselves to D = 2 with Xt ∈ R, but extensions to
D = 1+d > 2 withXt ∈ Rd are straightforward. Known estimation techniques for
r(x), namely the kernel estimator and a local bootstrap thereof are shown to have
essentially the same first order asymptotic properties as in the independent case.
This phenomenon is known as the whitening by windowing principle and was first
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proved for mixing processes in [29]. There seem to be few difficulties extending
our results to other smoothing techniques such as local polynomial estimators. It
indicates validity of this principle for many windowing and smoothing methods
applied to very general, stationary weakly dependent observations, including
nonmixing or nonassociated sequences.

The paper is organized as follows. The definition and tools for weak dependence
are given in Section 2; examples of processes where weak dependence holds are
given in Section 3; Section 4 describes point and interval estimators for conditional
expectations; asymptotic properties are given in Section 5; Section 6 contains the
proofs.

2. Weak dependence.

2.1. Definition. We define here the new notion of dependence, thereby closely
following [12]. Generally, let E be some normed measurable space with norm
‖ · ‖, although we restrict later attention to the case where E = RD . Denote
by L∞(Eu) (u ∈ N) the set of measurable bounded functions on Eu and set
L∞ = ⋃∞

u=1 L∞(Eu). We then equip Eu with the l1-norm ‖(x1, . . . , xu)‖1 =
‖x1‖ + · · · + ‖xu‖, where x ∈Eu. Moreover, denote by

Lip(h)= sup
x 
=y

|h(x)− h(y)|
‖x − y‖1

the Lipschitz modulus of a function h: Eu → R with respect to the l1-norm in Eu.
Define

L =
∞⋃
u=1

{
h ∈ L

∞(Eu); Lip(h) <∞, ‖h‖∞ ≤ 1
}
.

DEFINITION 1 [12]. The E-valued sequence (Zt )t∈Z is called (θ,L,ψ)-
weak dependent if for some monotone sequence θ = (θr )r∈N decreasing to zero at
infinity and some real-valued function ψ with arguments (h, k,u, v) ∈ L2 × N2,∣∣Cov

(
h(Zi1 , . . . ,Ziu), k(Zj1, . . . ,Zjv )

)∣∣ ≤ψ(h, k,u, v)θr
for any u-tuple (i1, . . . , iu), any v-tuple (j1, . . . , jv) with i1 ≤ · · · ≤ iu < iu + r ≤
j1 ≤ · · · ≤ jv and all u, v ∈ N.

Various choices for the function ψ turn out to be convenient. Particularly,
consider

ψ1(h, k,u, v)= uLip(h)+ vLip(k), ψ ′
1(h, k,u, v)= vLip(k),

ψ2(h, k,u, v)= uvLip(h)Lip(k), ψ ′
2(h, k,u, v)= vLip(h)Lip(k),
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where the functions h and k are defined on Eu and Ev , respectively (u, v ∈ N).
Clearly (θ,L,ψ ′

j )-weak dependence implies (θ,L,ψj )-weak dependence (j =
1,2). The functions ψj (j = 1,2) are adapted to provide moment bounds by using
techniques in [12], whereas the functions ψ ′

j (j = 1,2) provide nice CLTs via
the Lindeberg–Rio method used, for example, in [9]. The distinction with the
subscripts 1 and 2 corresponds to our examples, where we always considerψ1, ψ

′
1

for Bernoulli shifts and Markov processes, and ψ2, ψ
′
2 for associated sequences

(see Section 3).
If the class L is replaced by L∞ and ψ(h, k,u, v)= 4‖h‖∞‖k‖∞, one obtains

strong mixing processes with θr = αr as defined by Rosenblatt (cf. [10]). However,
such strong mixing conditions refer to the total variation norm of two distributions
rather than an appropriate distance between random variables. This is often an
unnecessarily strong requirement. In Section 3, we will discuss some examples
where the mixing condition is too restrictive.

The notion of L-weak dependence can also be modified to deal with indicator
functions, which are not Lipschitzian, and empirical processes. In the latter case
with indicators of half-lines in R, we consider instead of L the class

I =
∞⋃
u=1

{
u⊗
i=1

gxi ; xi ∈ R
+ for i = 1, . . . , u

}
,

where gx(y) = 1{x≤y} − 1{y≤−x}, x ∈ R+. Under L-weak dependence and
additional regularity assumptions for the underlying process, I-weak dependence
can be established. For instance, under smoothness conditions for the distribution
of the process, the following uniform covariance bounds (as in Definition 1) over I

can be established: v
√
u+ vθr , (u+ v)4/3θ1/3

r and (u+ v)θ1/3
r in the (θ,L,ψ ′

1)-,
(θ,L,ψ2)- and (θ,L,ψ ′

2)-weak dependent cases, respectively.

2.2. Relation to ν-mixing. As discussed above, it is sometimes desirable
to bound covariances of non-Lipschitz functions. In [4], another type of weak
dependence, called ν-mixing, was introduced. Similar to Definition 1, uniform
covariance bounds over classes of functions with smooth averaged modulus of
continuity are required. This framework is closely related to the theory of weak
convergence as in Bhattacharya and Ranga Rao [3]. Example 3.3 in [4] explains
that weak dependence as in Definition 1 implies ν-mixing; the reverse implication
is generally not true. For a given process, it is therefore harder to prove weak
dependence than ν-mixing. On the other hand, within the framework of weak
dependence, covariance and exponential inequalities and CLTs for sums have been
established [12], whereas for the more general notion of ν-mixing, only covariance
bounds have been derived [4].
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2.3. Available tools under weak dependence. We briefly review the most
important tools when dealing with a stationary process (Zt )t∈Z satisfying a
suitable weak dependence condition with coefficient θr .

Rosenthal’s inequality, bounding higher moments of sums, becomes∣∣∣∣∣E
(

n∑
t=1

(Zt − E[Z0])
)q ∣∣∣∣∣

≤Aq max

{(
Cn

n−1∑
r=0

θr

)q/2
,BMq−2n

n−1∑
r=0

(r + 1)q−2θr

}
,

q an integer ≥ 2,

where Aq,B and C are positive constants, and the centered random variables
|Zt − E[Z0]| ≤M are bounded; see [12]. An exponential inequality, assuming
|Zt − E[Z0]| ≤M and E|Z0 − E[Z0]|2 ≤ σ 2 <∞, looks as follows:

P

[∣∣∣∣∣
n∑
t=1

(Zt − E[Z0])
∣∣∣∣∣ ≥ xσ√

n

]
≤B exp(−A√βx)

for universal positive constants A,B , and β > 0 is a constant depending on the
decay of θr ; see [12]. The difficulty with both inequalities is the complicated
dependence of their constants on the decay of the weak dependence coefficients θr ,
yielding less tight bounds than in the mixing framework.

Central limit theorems

n−1/2
n∑
t=1

(Zt − E[Z0]) D→ N

(
0, lim

n

(
n−1 Var

(
n∑
t=1

Zt

)))

can be established using either Bernstein’s blocking technique or Lindeberg’s
method. We usually prefer the latter, as described in [28], since it often works
under slightly weaker conditions.

From an asymptotic view as n→ ∞, we have qualitatively the same behavior
as in the mixing framework, although with different constants for inequalities.
Therefore, many strategies for proofs assuming mixing conditions carry over to
the more general setting of weak dependence. However, as already indicated,
the different constants require careful arguments which, unfortunately, have to be
given in a case-by-case manner.

3. Examples. We present here examples where weak dependence, as defined
in Section 2.1, holds. First, we focus on some general classes of processes and will
then specialize to specific models.
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3.1. Bernoulli shifts.

DEFINITION 2. Let (ξt )t∈Z be a sequence of real-valued random variables and
let F : RZ →E be a measurable function. The sequence (Zt )t∈Z defined by

Zt = F(ξt−j : j ∈ Z)(3.1)

is called a Bernoulli shift.

The class of Bernoulli shifts is very general. It provides examples of processes
that are weakly dependent but not mixing (see [30]). A bound for the decay of
weak dependence can be obtained as follows.

For any k ∈ N, let δk ∈ R be such that

sup
t∈Z

E
∥∥F(ξt−j : j ∈ Z)− F (ξt−j1{|j |<k} : j ∈ Z

)∥∥≤ δk.(3.2)

Such sequences (δk)k∈N are related to the modulus of uniform continuity of F . The
sequence (δk)k∈N can be evaluated under regularity conditions on the function F .
For example, if

‖F(uj : j ∈ Z)− F(vj : j ∈ Z)‖ ≤ ∑
j∈Z

aj |uj − vj |b,

for positive constants (aj )j∈Z and some 0< b≤ 1, and if the sequence ξt has finite
bth-order moment for all t , we can choose δk = ∑

|j |≥k ajE|ξj |b. Bernoulli shifts
then satisfy the condition of

(θ,L,ψ1)-weak dependence with θr = δr/2,
(see [12], Corollary 2 and Lemma 8). In the case of a causal Bernoulli shift where
Zt = F(ξt−j , j ∈ N0), then also (θ,L,ψ ′

1)-weak dependence holds with θr = δr .

3.2. Markov processes. Markov processes can be represented as Bernoulli
shifts. Consider an RD-valued Markov process, driven by the recurrence equation

Zt = f (Zt−1, ξt ) (t ∈ Z)(3.3)

for some i.i.d. sequence (ξt )t∈Z with E(ξ0)= 0, ξt independent of {Zs; s < t} and
f : RD × R → RD . Then the function F in (3.1) is defined implicitly (if it exists)
by the relation

F(ξ)= f (F(ξ ′), ξt
)

where ξ = (ξt , ξt−1, ξt−2, . . .),

ξ ′ = Bξ = (ξt−1, ξt−2, ξt−3, . . .),

with B denoting the backshift operator.
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Assume now in representation (3.3) that Z0 is independent of the sequence
(ξt )t∈N. Suppose that, for some 0 ≤ ci < 1,

E|f (0, ξ1)|<∞ and E|f (u, ξ1)− f (v, ξ1)| ≤
d∑
i=1

ci|ui − vi |,
(3.4)

c=
d∑
i=1

ci < 1 for all u, v ∈ R
D.

Duflo [14] shows under the condition in (3.4) that the Markov process (Zt )t∈N

has a stationary distribution µ with finite first moment. Assume now in addition
that Z0 is distributed with µ, that is, the Markov chain is stationary. Then, if (3.4)
holds, such a Markov chain is

(θ,L,ψ ′
1)-weak dependent with θr = crE|Z0|.

See [12].

3.3. Chaotic representations. We now specialize the Bernoulli-shift represen-
tation in (3.1) to expansions associated with the discrete chaos generated by the
sequence (ξt )t∈Z. In a condensed formulation we write

F(u)=
∞∑
k=0

Fk(u) (u ∈ R
Z),

(3.5)
Fk(u)=

∑
j1∈Z

∑
j2∈Z

· · · ∑
jk∈Z

a
(k)
j1,...,jk

uj1uj2 · · ·ujk (k ≥ 1),

where Fk(u) denotes the kth-order chaos contribution and F0(u)= a
(0)
0 is only a

centering constant. In short we write, in vector notation, Fk(u) = ∑
j∈Zk a

(k)
j uj .

Processes associated with a finite number of chaos, that is, Fk(u) ≡ 0 if k > k0
for some k0 ∈ N, are also called Volterra processes. A first example of Volterra
processes is the class of linear processes, including the popular ARMA models. It
corresponds to the expansion in (3.5) with Fk(u)≡ 0 for all k > 1.

A simple and general condition for L1-convergence of the expansion in (3.5),
still written in a condensed notation, is

∑∞
k=0

∑
j∈Zk |a(k)j | E|ξ0|k < ∞, which

allows us to define the distribution of such shift processes. Then

(θ,L,ψ1)-weak dependence holds with θr = δr/2,

δr =
∞∑
k=0

∑
j∈Zk;‖j‖∞>r

|a(k)j | E|ξ0|k <∞.

Under causality (see the end of Section 3.1), (θ,L,ψ ′
1)-weak dependence also

holds with θr = δr .
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3.4. Associated sequences.

DEFINITION 3 [15]. The sequence (Zt )t∈Z is associated, if for all coordinate-
wise increasing real-valued functions h and k,

Cov
(
h(Zt : t ∈A), k(Zt : t ∈ B)) ≥ 0

for all finite subsets A and B of Z.

Associated sequences are

(θ,ψ2,L)-weak dependent with θr = sup
k≥r

Cov(X0,Xr);

see [12]. Note that broad classes of examples of associated processes result
from the fact that any independent sequence is associated and that monotonicity
preserves association (cf. [23]).

The case of Gaussian sequences is analogous by setting θr = supk≥r |Cov(X0,

Xk)|; see [12]. For associated or Gaussian sequences, ψ ′
2-weak dependence also

holds with θr =∑
k≥r |Cov(X0,Xk)|.

3.5. More specific examples.

Nonparametric AR model. Consider the real-valued functional (nonparametric)
autoregressive model

Zt = r(Zt−1)+ ξt ,
where r: R → R and (ξt )t∈Z as in (3.3). This a special example of a Markov
process in (3.3). Assume that |r(u)− r(u′)| ≤ c|u− u′| for all u, u′ ∈ R and for
some 0 ≤ c < 1, and E|ξ0|<∞. Then (3.4) with D = 1 holds and implies

(θ,L,ψ ′
1)-weak dependence with θr = δr = crE|Z0|.

We emphasize here that the marginal distribution of the innovations ξt can be
discrete. In such a case, classical mixing properties can fail to hold.

As an example, consider the simple linear AR(1) model,

Zt = φZt−1 + ξt =
∑
j≥0

φjξt−j , |φ|< 1.

Let (ξt )t∈Z be a sequence of i.i.d. Bernoulli variables with parameter s = P[ξt =
1] = 1 − P[ξt = 0]. The AR(1) process (Zt )t∈Z with innovations (ξt )t∈Z and AR
parameter φ ∈]0, 1

2 ] is (θ,L,ψ ′
1)-weak dependent with θr = δr = φrE|Z0|, but it

is known to be nonmixing (cf. [30]). Note that concentration holds; for example,
Zt is uniform if s = 1

2 and it has a Cantor marginal distribution if s = 1
3 . Hence,

without a regularity condition on the marginal distribution of ξ0, Bernoulli shifts
or Markov processes may not be mixing.
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Nonparametric ARCH model. Consider the real-valued functional (nonparamet-
ric) ARCH model

Zt = s(Zt−1)ξt ,

where s: R → R
+ and (ξt )t∈Z as in (3.3) with E|ξ0|2 = 1. This is a special example

of a Markov process in (3.3) with f (u, v)= s(u)v. Assume that |s(u)− s(u′)| ≤
c|u− u′| for all u, u′ ∈ R and for some 0 ≤ c < 1. Then (3.4) with D = 1 holds
and implies

(θ,L,ψ ′
1)-weak dependence with θr = crE|Z0|.

Again, the innovation distribution is allowed to be discrete.

Nonparametric AR–ARCH model. An often used combination of the two models
above is a process having nonparametric conditional mean and variance structure,

Zt = r(Zt−1)+ s(Zt−1)ξt ,

with r(·), s(·) and (ξt )t∈Z as in the examples above. Assume the Lipschitz
conditions as above for r(·) and s(·) with constants cr and cs , respectively. If
cr + cs = c < 1, the process satisfies

(θ,L,ψ ′
1)-weak dependence with θr = crE|Z0|.

Bilinear model. Consider the simple bilinear process with recurrence equation

Zt = aZt−1 + bZt−1ξt−1 + ξt ,
where (ξt )t∈Z is as in (3.3). Such causal processes are associated with the chaotic
representation in (3.5) with

F(u)=
∞∑
j=0

uj

j∏
s=1

(a + bus), u= (u0, u1, u2, . . .).

Under Tong’s [34] stationarity condition and if c = E|a + bξ0| < 1, the process
satisfies

(θ,L,ψ ′
1)-weak dependence with θr = cr(r + 1)

1 − c .

AR-sieve bootstrap for time series. The AR-sieve bootstrap for R-valued time
series (Zt )nt=1 resamples from an estimated autoregressive model of order p =
pn → ∞, pn/n→ 0 (n→ ∞), defined recursively by

Z∗
t =

pn∑
j=1

φ̂jZ
∗
t−j + ξ∗

t (t ∈ Z),

with (ξ∗
t )t∈Z an i.i.d. sequence, ξ∗

t ∼ P̂ξ (see below), independent of {Z∗
s ; s < t};

see [5, 17]. Asymptotically, since pn → ∞, this is not a finite order Markov
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process anymore. However, under the conditions (A1) and (A2) below, it is still
a Bernoulli shift. The parameter estimates φ̂1, . . . , φ̂pn are from the Yule–Walker
method in an AR(pn) model, yielding residuals ξ̂p+1, . . . , ξ̂n. The innovation
distribution Pξ of ξt can then be estimated by P̂ξ = (n−p)−1 ∑n

t=p+12ξ̃t , where

ξ̃t = ξ̂t − (n−p)−1 ∑n
s=p+1 ξ̂s are the centered residuals and2x is the point mass

at x ∈ R.
The following assumptions imply a weak-dependence property:

(A1) The data-generating process is AR(∞),

Zt =
∞∑
j=0

φjZt−j + ξt (t ∈ Z),

where (ξt )t∈Z is an i.i.d. sequence with E(ξ0)= 0, E|ξt |4 <∞, ξt independent of
{Zs; s < t}.

(A2) 3(z)= 1−∑∞
j=1 φjz

j is bounded away from zero for |z| ≤ 1 (z ∈ C) and∑∞
j=0 j

m|φj | <∞ for some m ∈ N. Moreover, the approximating autoregressive

order satisfies pn → ∞, pn = o((n/ log(n))1/(2m+2)).

Note that assumption (A2) requires
∑∞
j=0 j

m|φj |<∞, which becomes stronger

for large m, and pn = o((n/ log(n))1/(2m+2)), which is also more restrictive with
large m. However, the assertion in Proposition 1 below is stronger with large m
as well. The condition should be interpreted to mean that the underlying process
satisfies (A2) with a maximal m and the sieve bootstrap is then required to work
with a correspondingly small enoughpn. If the approximating order is chosen from
the data via minimizing the Akaike information criterion (AIC), then Shibata [33]
has shown that p̂AIC ∼ const·n1/(2β), if |φj | ∼ const· j−β as j → ∞: thus, (A2)
holds in conjunction with AIC for the maximal m ∈ N which is strictly smaller
than β − 1.

PROPOSITION 1. Assume (A1) and (A2) with m ∈ N. Then the AR-sieve
bootstrapped process (Z∗

t )t∈Z is (θ,L,ψ1)-weakly dependent with θr = Cr−m,
C > 0 a constant, on a set An with P[An] → 1.

PROOF. Due to Wiener’s theorem, our assumption (A2) is equivalent to
assumption A2 in [5]. Section 5.1 and Lemma 5.1 in [5] also describe that

Z∗
t =

∞∑
j=0

ψ̂j,nξ
∗
t−j , ψ̂0,n ≡ 1,

and there exists a random variable N such that

sup
n≥N

∞∑
j=0

jm|ψ̂j,n|<∞ a.s.
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Hence, (Z∗
t )t∈Z is a causal Bernoulli shift and the bound in the discussion

following formula (3.2) implies the assertion. �

It is not required to resample ξ∗
t from a smoothed version of P̂ξ . The result here

is an elegant extension of the work in [4], where smooth resampling was needed
to prove a version of weak dependence (namely ν-mixing, see Section 2.2) for the
sieve bootstrapped process.

4. Nonparametric estimation of conditional expectations. As an important
example of a statistical problem, we investigate asymptotic properties of nonpara-
metric estimation under weak dependence. This problem allows us to compare
sharpness of our results with known properties from the frameworks of mixing or
associated sequences, discussed in greater detail in Section 5.6.

4.1. Point estimation. We restrict ourselves in the sequel to the case of
stationary processes (Zt )t∈Z with Zt = (Xt , Yt ), where Xt, Yt ∈ R. The quantity
of interest is r(x)= E(Y0|X0 = x). The extension to the case where Xt ∈ Rd for
some d > 1 is straightforward. Let K be some kernel function integrating to 1,
Lipschitzian and rapidly convergent to 0 at infinity (faster than any polynomial
decay). For simplicity, we assume throughout the paper that it is compactly
supported. The kernel estimator (cf. [31]) is defined by

r̂(x)= r̂n,h(x)= ĝn,h(x)

f̂n,h(x)
if f̂n,h(x) 
= 0; r̂(x)= 0 otherwise;

f̂ (x)= f̂n,h(x)= 1

nh

n∑
t=1

K

(
x −Xt
h

)
,

ĝ(x)= ĝn,h(x)= 1

nh

n∑
t=1

K

(
x −Xt
h

)
Yt .

Here (hn)n∈N is a sequence of bandwidths (positive real numbers). We always
assume that hn → 0, nhn → ∞ (n→ ∞). The corresponding population versions
are the marginal density f (·) of Xt and g(x)= f (x)r(x).

4.1.1. Bias. We briefly recall the classical analysis for the deterministic part.

DEFINITION 4. Let ρ = a + b with a ∈ N and 0< b ≤ 1. Set

Cρ =
{
u: R → R; u ∈ Ca and there exists A≥ 0

such that |u(a)(x)− u(a)(y)| ≤A|x − y|b

for all x, y in any compact subset of R

}
.

Here, Ca is the set of a-times continuously differentiable functions and Cρ is
known as the set of ρ-regular functions.
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Using only the stationarity assumption, we have E(ĝ(x))= gh(x) with gh(x)=∫∞
−∞K(s)g(x − sh) ds. The study of the bias bh(x) = gh(x) − g(x) is purely

analytical and does not depend on dependence properties of the sequence (Zt )t∈Z.
Assuming g ∈ Cρ , one can choose a kernel function K of order ρ (not

necessarily nonnegative; see [26] or [2]) such that the bias bh satisfies

bh(x)= gh(x)− g(x)=O(hρ),
where the O-term is uniform on any compact subset of R (cf. [31]). If ρ is an
integer with b= 1, ρ = a−1, then with an appropriately chosen kernelK of order
ρ,

bh(x)∼
∫
sρK(s) ds

ρ! g(ρ)(x)hρ,

uniformly on any compact interval.
In the following, a ρ-regularity assumption for g (or f ) will always be

associated with using a kernel K of order ρ for the corresponding estimate.

4.2. Interval estimation with local bootstrap. Interval estimation of r(x) =
E(Y0|X0 = x) has been proposed with local bootstrap schemes without using
normal approximation (see [22], [24]; see also [21]). All these cited references
assume an α- or β-mixing condition for the stationary underlying process.

The local bootstrap for nonparametric regression is defined as follows. Consider
the empirical distribution function for Yt given Xt = x,

F̂b(·|x)=
n∑
t=1

K

(
x −Xt
b

)
1{Yt≤·}
f̂n,b(x)

,

with kernel K(·) and estimator f̂n,b(·) as in Section 4.1, but with bandwidth
b generally different from h used in the estimator r̂n,h. Construct the bootstrap
sample as

(X1, Y
∗
1 ), . . . , (Xn,Y

∗
n ), Y

∗
t ∼ F̂b(·|Xt) (t = 1, . . . , n),(4.1)

such that Y ∗
t is conditionally independent of Y ∗

s (s 
= t), given the data. Thus
it involves only some independent resampling. For the particular problem of
bootstrapping nonparametric estimators of conditional expectations, this turns out
to be sufficient, although the underlying process can be very general. The reason
for this is the whitening-by-windowing principle mentioned already in Section 1:
as will be shown in Theorem 2 and Proposition 6, the asymptotic distribution
of r̂(x) is the same as in the independent case, thus indicating that a bootstrap
mechanism does not need to mimic dependence properties of (Zt )t∈Z. In the
sequel, bootstrap moments and distributions induced by the resampling random
mechanism in (4.1) are always equipped with an asterisk *.
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The bootstrapped estimator is defined with the plug-in rule,

r̂∗n,h(x)=
ĝ∗
n,h(x)

f̂n,h(x)
, ĝ∗

n,h(x)=
1

nh

n∑
t=1

K

(
x −Xt
h

)
Y ∗
t .

Bootstrap percentile confidence intervals for E[r̂ (x)] or r(x) are then constructed
as usual. Finite-sample numerical results of this local bootstrap are given in [24]
and [6].

5. Asymptotic properties. For asymptotic analysis we assume the following:

the marginal density f (·) of Xt exists and is continuous;
f (x) > 0 for the point x of interest;
the function r(·)= E(Y0|X0 =· ) exists and is continuous;(5.1)
for some p ≥ 1 and all m≤ p (m ∈ N), gm(·)= f (·)E(|Y0|m|X0 = ·) exist
and are continuous.

We set g = f r with obvious short notation. Moreover, assume one of the following
moment assumptions. Either

E(|Y0|S) <∞ for some S(5.2)

or

E
(
exp(|Y0|))<∞.(5.3)

We also consider a conditionally centered version of g2 appearing in the
asymptotic variance of the estimator r̂ ,

G2(x)= f (x)Var(Y0|X0 = x)= g2(x)− f (x)r2(x).

5.1. Variance and asymptotic normality of ĝ. Denote by f(k) the density of
the pair (X0,Xk) and assume that there exists some constant C > 0 such that

sup
k∈N

‖f(k)‖∞ ≤C, and

r(k)(x, x
′)= E

(|Y0Yk|
∣∣X0 = x,Xk = x′)(5.4)

are continuous, uniformly over all k ∈ N.

Under this assumption, the functions g(k) = f(k)r(k) are locally bounded. The
following result extends Lemma 1 in [11] for density estimation to the estimate
ĝ under weak dependence with either ψ1 or ψ2.

PROPOSITION 2. Let (Zt )t∈Z be a stationary sequence satisfying condi-
tions (5.1) with p = 2, (5.3) and (5.4). Suppose nδh→ ∞ for some δ ∈]0,1[. In
addition, assume that the sequence (Zt )t∈Z is (θ,ψj ,L)-weakly dependent with



410 P. ANGO NZE, P. BÜHLMANN AND P. DOUKHAN

θr = O(r−a) and a > 2 + j (j = 1 or 2). Then, uniformly in x belonging to any
compact subset of R,

Var
(
ĝ(x)

) = 1

nh
g2(x)

∫
K2(u) du+ o

(
1

nh

)
and

Var
(
ĝ(x)− r(x)f̂ (x)) = 1

nh
G2(x)

∫
K2(u) du+ o

(
1

nh

)
.

REMARK 1. The moment condition in (5.3) can be relaxed. Suppose that
the stationary sequence (Zt )t∈Z satisfies conditions (5.1) with p = 2, (5.2) with
S > 2 and (5.4). Let nδh → ∞ for some δ ∈]0,1[. In addition, assume that
the sequence (Zt )t∈Z is (θ,ψj ,L)-weakly dependent with θr = O(r−a) and
a >

(2+j)S−4
S−2 + 2

δ(S−2) (j = 1 or 2). Then the assertions of Proposition 2 still hold.

We now investigate central limit theorems.

PROPOSITION 3. Suppose that the stationary sequence (Zt )t∈Z satisfies
conditions (5.1) with p = 2, (5.3) and (5.4). Suppose that nδh → ∞ for some
δ ∈]0,1[. In addition, assume that the sequence (Zt )t∈Z is (θ,ψ ′

j ,L)-weakly
dependent with θr =O(r−a) and a > 2 + j (j = 1 or 2). Then

√
nh

(
ĝ(x)− Eĝ(x)

) D→ N

(
0, g2(x)

∫
K2(u) du

)
and
√
nh

([ĝ(x)− r(x)f̂ (x)] − E[ĝ(x)− r(x)f̂ (x)]) D→ N

(
0,G2(x)

∫
K2(u) du

)
.

REMARK 2. The results stated in Proposition 3 also hold for finite dimen-
sional convergence at different x’s: the components are asymptotically mutually
independent, as for i.i.d. samples. Proposition 3 will be used for proving Theo-
rem 2 in Section 5.3.

REMARK 3. The results stated in Proposition 3 also hold for (θ,ψj ,L)-
weakly dependent sequences. See Remark 6.1 and Proposition 6.1 in [1].

5.2. Higher order moments of ĝ. We give here rate-optimal bounds for higher
order moments of ĝ which turn out to be useful for asymptotics of r̂ .

THEOREM 1. Let (Zt )t∈Z be a stationary sequence satisfying conditions (5.1)
with p = 2, (5.3) and (5.4). Suppose that nδh → ∞ for some δ ∈]0,1[.
Let q ≥ 3 be some integer. In addition, assume that the sequence (Zt )t∈Z is
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(θ,ψj ,L)-weakly dependent with θr =O(r−a) and a >max(q−1, 4+2jδ(q−1)
(q−2)+δ(4−q))

(j = 1 or 2). Then, for all x belonging to some compact set,

lim sup
n→∞

(nh)q/2
∣∣E(ĝ(x)− Eĝ(x)

)q ∣∣<∞.

REMARK 4. Theorem 1 also holds under a weaker moment assumption
than (5.3). See Remark 4 in [1].

5.3. Asymptotic normality of the regression estimator.

PROPOSITION 4. Suppose that the stationary sequence (Zt )t∈Z satisfies
conditions (5.1) with p = 2, (5.3) and (5.4). Consider a positive kernel K . Let
f, g ∈ Cρ for some ρ ∈]0,2], and let nδh→ ∞ for some δ ∈]0,1[. In addition,
assume one of the following:

(i) The sequence (Zt )t∈Z is (θ,ψ1,L)-weakly dependent with θr = O(r−a)
and a >max(3,9δ).

(ii) The sequence (Zt )t∈Z is (θ,ψ2,L)-weakly dependent with θr = O(r−a)
and a >max(3,12δ).

Then, uniformly in x belonging to any compact subset of R,

E
(
r̂(x)

) = r(x)+O
(
hρ + 1

nh

)
.

PROPOSITION 5. Suppose that the stationary sequence (Zt )t∈Z satisfies
conditions (5.1) with p = 2, (5.3) and (5.4). Consider a positive kernel K . Let
f,g ∈ Cρ for some ρ ∈]0,2], and let nδh→ ∞ for some δ ∈]0,1[. In addition,
assume one of the following:

(i) The sequence (Zt )t∈Z is (θ,ψ1,L)-weakly dependent with θr = O(r−a)
and a >max(5, 30δ

7−5δ ).
(ii) The sequence (Zt )t∈Z is (θ,ψ2,L)-weakly dependent with θr = O(r−a)

and a >max(5, 40δ
7−5δ ).

Then, uniformly in x belonging to any compact subset of R,

Var
(
r̂(x)

) = G2(x)

nhf 2(x)

∫
K2(u) du+ o

(
1

nh

)
.

THEOREM 2. Let (Zt )t∈Z be a stationary sequence satisfying condi-
tions (5.1) with p = 2, (5.3) and (5.4). Consider a positive kernelK . Let f, g ∈ Cρ
for some ρ ∈]0,2], and let nh1+2ρ → 0, nδh→ ∞ for some δ ∈]0,1[. In ad-
dition, assume that the sequence (Zt )t∈Z is (θ,ψj ,L)-weakly dependent with
θr =O(r−a) and

a >min
(

max
(
2+j,3(2+j)δ),max

(
2+j+ 1

δ
,

2 + 2(2 + j)δ
1 + δ

))
(j = 1 or 2).
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Then, for all x belonging to any compact subset of R,

√
nh

(
r̂(x)− r(x)) D→ N

(
0,
G2(x)

f 2(x)

∫
K2(u) du

)
.

In the case where the bandwidth only satisfies the condition nδh → ∞ for
some δ ∈]0,1[, asymptotic normality when centered at E[r̂(x)] still holds (see [1],
Proposition 6.2). From this, asymptotic normality of

√
nh(r̂(x)− r(x)) with mean

squared error rate-optimal bandwidth h ∼ n−1/(1+2ρ) is expected to hold with an
asymptotic, nonvanishing bias term.

5.4. Almost-sure convergence properties.
We assume for the next Sections 5.4 and 5.5 that the kernel K is also

differentiable on its support.

THEOREM 3. Let (Zt )t∈Z be a stationary sequence satisfying conditions (5.1)
with p = 2, (5.3), (5.4) and assume that it is either (θ,ψ1,L)- or (θ,ψ2,L)-
weakly dependent with θr ≤ ar for some 0< a < 1:

(i) If nh/ log4(n)→ ∞, then for any M > 0, almost surely,

sup
|x|≤M

|ĝ(x)− Eĝ(x)| =O
(

log2(n)√
nh

)
.

(ii) For any M > 0, if f, g ∈ Cρ for some ρ ∈]0,∞[, h ∼ (
log4(n)
n

)1/(1+2ρ)

and inf|x|≤M f (x) > 0, then, almost surely,

sup
|x|≤M

|r̂(x)− r(x)| =O
{(

log4(n)

n

)ρ/(1+2ρ)}
.

The bound in assertion (ii) is almost optimal: in the i.i.d. setting or also in the
framework of mixing processes, the logarithmic factor is log(n) instead of log4(n)

here; see also Section 5.6.

REMARK 5. Under the conditions of Theorem 3(ii), but assuming only the
weaker condition nδh→ ∞ for some δ ∈]0,1[, we obtain

sup
|x|≤M

|r̂(x)− r(x)| = o(1) almost surely.

REMARK 6. The assertions of Theorem 3 also hold under weaker moment
assumptions than (5.3). (See [1], Proposition 6.3.)
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5.5. Validity of the local bootstrap. We denote

Z
(s,1)
t = (Y st ,Xt ), s ∈ N.

THEOREM 4. Suppose that the stationary sequences (Z(s,1)t )t∈Z satisfy the
weak dependence and moment assumptions of Theorem 3, with p = 4 in
condition (5.1), for s = 1,2,3,4. Assume that nδh→ ∞ for some δ ∈]0,1[, and
the pilot bandwidth is b=O(n−β) for some β ∈]0,1/3[. Then:

(i)

sup
v∈R

∣∣P∗(√nh(r̂∗n,h(x)− E
∗(r̂∗n,h(x))) ≤ v)

− P
(√
nh

(
r̂n,h(x)− E

(
r̂n,h(x)

)) ≤ v)∣∣ = oP (1).
(ii) In the case of no asymptotic bias where lim

√
nh(E(r̂n,h(x))− r(x))= 0,

that is, nh1+2ρ → 0 if f, g ∈ Cρ for some ρ ∈]0,2], the term E(r̂n,h(x)) in (i) can
be replaced by r(x).

REMARK 7. In the case of asymptotic bias in (ii), the local bootstrap also is
expected to work if additional conditions on the kernel K and on the regularity of
the function r hold, and if the pilot bandwidth b satisfies b/h→ ∞ (n→ ∞); see,
for example, [24]. Then

sup
v∈R

∣∣∣P∗(√nh(r̂∗n,h(x)− r̂n,b(x)) ≤ v)− P
(√
nh

(
r̂n,h(x)− r(x)) ≤ v)∣∣∣ = oP (1).

REMARK 8. Weak dependence of (Z(s,1)t ) (s = 1,2,3,4) holds if (Yt )t∈Z is a
suitably regular R-valued Bernoulli shift and Xt = Yt−= for some = ∈ N. This is so
because, for Yt = F(ξt−j , j ∈ Z),∣∣F 2(ξt−j , j ∈ Z)− F 2(ξt−j1{|j |<k}, j ∈ Z

)∣∣
= ∣∣F(ξt−j , j ∈ Z)− F (ξt−j1{|j |<k}, j ∈ Z

)∣∣
× ∣∣F(ξt−j , j ∈ Z)+ F (ξt−j1{|j |<k}, j ∈ Z

)∣∣.
Assuming some regularity similar to that in the discussion following (3.2)
and E|Yt |1+κ < ∞ for some 0 < κ < ∞ yields by Hölder’s inequality weak
dependence for (Y 2

t ), typically with a slower decay of θr . By finite iteration, weak
dependence of (Y st )t∈Z follows for s ∈ N.
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5.6. Comparison with other frameworks. Similar asymptotic results as in
Sections 5.1–5.5 have been derived assuming suitable mixing conditions (which
are much stronger than weak dependence). Robinson [29] was first to prove
a CLT for r̂ under an α-mixing condition. Tran obtains optimal uniform
rates of convergence O((log(n)/(nh))1/2) for density estimators which should
be compared with our Theorem 3(i): [35] deals with a weak form of β-
mixing, and linear processes are considered in [36]. Masry and Tjostheim [19]
study nonparametric estimation in ARCH models and provide uniform rates of
convergence assuming an α-mixing condition: under an additional smoothness
assumption, they obtain optimal uniform rates of convergence; see the right-hand
side in (5.5) below. Asymptotic normality of a local polynomial estimator in
ARCH models was established in the β-mixing framework [16]. Alternatively,
the data generating process may be an associated sequence. Roussas [32] proves
uniform rates of convergence under association: his bounds are suboptimal.

Our results are almost as sharp as in the classical framework of mixing
sequences. The best comparative aspect is the uniform rates of convergence for
the estimator r̂(·), rather than the conditions for establishing a CLT. Zhao and
Fang [39] prove the optimal bound for almost-sure convergence, uniformly on
compact sets, of the kernel regression estimator for strongly mixing stationary
processes,

sup
|x|≤M

|r̂(x)− r(x)| =O
((
n−1 log(n)

)ρ/(1+2ρ)
)

a.s. (M > 0).(5.5)

For more details about underlying assumptions, see [1], Section 5.6. The difference
from Theorem 3 is a slightly better rate by the factor log(n)−3ρ/(1+2ρ); besides that
this result has been shown under a polynomial decay for the mixing coefficients,
whereas Theorem 3 requires an exponential decay of weak dependence. Truong
and Stone [38] establish optimal pointwise, L2 and L∞ bounds on compacts (the
latter as above) under some α-mixing conditions.

McKeague and Zhang [20] show asymptotic properties for the nonparametric
AR–ARCH model

Zt = r(Zt−1)+ s(Zt−1)ξt ,

described in Section 3.5 by using a rather different martingale approach. Their
results are about integrated conditional mean and variance functions rather than the
functions themselves. Moreover, they assume a variance property of the estimator
[their assumption (A3)] which was justified by assuming a mixing condition on the
data generating process. Our result here justifies their technique: the condition (A3)
in [20] can be shown via weak dependence which is implied by a Lipschitz
condition on r(·) and s(·); see Section 3.5.

Tran, Roussas, Yakowitz and Truong Van [37] stress the difficulties with time
series having discrete innovations: to cope with such problems, they focus on
linear processes. However, our framework of weak dependence also captures
discrete innovations in general nonlinear models; see Section 3.
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6. Proofs.

6.1. Variance and asymptotic normality of ĝ.

PROOF OF PROPOSITION 2. We give the proof for the more general case
described in Remark 1. Denote by C (different) constants whose values are allowed
to change. Let

Tt (x)= Yt1{|Yt |≤M(n)}K
(
x −Xt
h

)
(t = 1, . . . , n).(6.1)

Then the truncated kernel estimator of g(x),

g̃(x)= 1

nh

n∑
t=1

Tt (x),(6.2)

satisfies

(nh)E
(
ĝ − g̃ − E(ĝ − g̃))2

(x)≤ 2n2

nh
E

[
Y 2

0 1{|Y0|>M(n)}K2
(
x −X0

h

)]
≤ CM(2−S)(n)nh−1 → 0 (n→ ∞)

for M(n)=M0n
γ , M0 > 0, γ ≥ (1 + δ)/(S − 2). It remains to estimate

Var
(
g̃(x)

) = 1

nh2
Var

(
T0(x)

)+ 2

n2h2

n−1∑
r=1

(n− r)Cov
(
T0(x), Tr(x)

)
.

A classical result (see, e.g., [26], page 37) shows that

Var
(
T0(x)

) = hg2(x)

∫
K2(u) du+ o(h).

It follows from the boundedness assumptions on densities that∣∣Cov
(
T0(x), Tr (x)

)∣∣ ≤ Ch2.

Moreover, the (θ,ψ1,L)-weak dependence assumption yields∣∣Cov
(
T0(x), Tr(x)

)∣∣≤ Cθrh
−1M2(n).(6.3)

Next, we use a truncation device due to Tran [35]: if a > 3S−4
S−2 + 2

δ(S−2) , there
exists ς ∈]0,1[ such that (2δ+ 2γ )/(a− 1) < ς < δ, so that

2(nh)

n2h2

[nς ]∑
r=1

(n− r)∣∣Cov
(
T0(x), Tr(x)

)∣∣ ≤ Cnς−δ → 0 (n→ ∞)
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and

2(nh)

n2h2

n−1∑
r=1+[nς ]

(n− r)∣∣Cov
(
T0(x), Tr(x)

)∣∣ ≤ C
M2(n)

h2

∑
r≥[nς ]

θr

≤ Cnς(1−a)+2δ−2γ → 0 (n→ ∞).

Using the bounds given above, the first assertion of Proposition 2 follows. For a
(θ,ψ2,L)-weakly dependent process, the result follows from∣∣Cov

(
T0(x), Tr(x)

)∣∣ ≤ Cθrh
−2M2(n)

in place of (6.3).
The second assertion follows by replacing Yt with Yt − r(x). �

PROOF OF PROPOSITION 3. We proceed as in [27] and more specifically as
in [9] for density estimation. Consider a sequence (Wn)n∈N of i.i.d. N (0,1) r.v.’s,
independent of (Xt , Yt )t∈Z. Set M(n) = log(n), nhσ 2

n = Var(
∑n
t=1 Tt (x)) with

Tt (x) given in (6.1), and define the following:

ξt = 1

σn
√
nh

(
Tt (x)− ETt (x)

);
Sk =

k∑
t=1

ξt , 1 ≤ k ≤ n and S0 = 0;

τk =
n∑
t=k
Vt , 1 ≤ k ≤ n and τn+1 = 0;

where Vk =
√
vk
σn
Wk and vk

σ 2
n

= |Var(Sk)− Var(Sk−1)|. For applying the Lindeberg

method, denote by ϕ some three times differentiable function with bounded
derivatives, and consider

Ut = St−1 + τt+1,

Rt (x)= ϕ(Ut + x)− ϕ(Ut )− vt

2σ 2
n

ϕ′′(Ut ) (t = 1, . . . , n).

Now, we want to show that

σn →
(
g2(x)

∫
K2(u) du

)1/2

,(6.4)

√
nh

(
ĝ(x)− Eĝ(x)

)− σnSn L2→ 0,(6.5)

Sn
D→ N (0,1).(6.6)
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We consider either a (θ,ψ1,L)- or (θ,ψ ′
1,L)-weakly dependent sequence

(Zt )t∈Z. Analogously as in the proof of Proposition 2, we show that (6.4)
holds true if the sequence (Zt )t∈Z is (θ,ψ ′

1,L)-weakly dependent with θr =
O(r−a) and M2(n)h

(a−3)
n → 0. The same result is valid in the (θ,ψ1,L)-weakly

dependent case. Formula (6.5) is easily proved using the exponential moment
assumption (5.3).

To prove (6.6), we apply the so-called Lindeberg–Rio method [28]. Note that

ϕ(Sn)− ϕ(τn)=
n∑
t=1

ϕ

(
t∑
s=1

ξs +
n∑

s=t+1

Vs

)
− ϕ

(
t−1∑
s=1

ξs +
n∑
s=t
Vs

)

=
n∑
t=1

Rt(ξt )−Rt(Vt).

Then

|Eϕ(Sn)− Eϕ(W0)| ≤
n∑
t=1

|ERt(ξt )| +
n∑
t=1

|ERt(Vt)|.(6.7)

Since
|ERt(Vt)| = ∣∣E(ϕ(Ut + Vt)− ϕ(Ut)− Vtϕ′(Ut)− V 2

t ϕ
′′(Ut)/2

)∣∣
≤ E

∣∣V 3
t ϕ

(3)(Ut + ϑVt )
∣∣/6 (with 0<ϑ < 1)

≤ (‖ϕ(3)‖∞/6)(vt/σ 2
n )

3/2
E|W0|3

and vt

σ 2
n

= ∣∣Var(St )− Var(St−1)
∣∣

≤ C
(

1

n
+
t−1∑
j=1

1

nh
min

(
M2(n)θt−j

h
,h2

))
,

we obtain
n∑
t=1

|ERt(Vt)| ≤ C

σ 3
n

n∑
t=1

v
3/2
t

(6.8)

≤ C

n3/2σ 3
n

n∑
t=1

(
1 +

t−1∑
j=1

min
(
M2(n)θj

h2
, h

))3/2

.

Moreover,
Rt(ξt )= ϕ(Ut + ξt )− ϕ(Ut )− vt

2σ 2
n

ϕ′′(Ut )

= ξtϕ
′(Ut )+ 1

2

(
ξ2
t − vt

2σ 2
n

)
ϕ′′(Ut )

+ 1

6
ξ3
t ϕ

(3)(Ut + ϑtξt ) with 0<ϑt < 1.
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It then follows that

n∑
t=1

|ERt(ξt )| ≤
∣∣∣∣∣E
(

n∑
t=1

Cov(ξ0, ξt )

n∑
k=t+1

ϕ′′(Uk)
)∣∣∣∣∣

+
∣∣∣∣∣
n∑
t=1

E
(
ϕ′′(Ut)(ξ2

t − Eξ2
t )
)∣∣∣∣∣/2

+
∣∣∣∣∣
n∑
t=1

t−1∑
j=1

Cov
(
ϕ′′(St−1−j + τj+1)ξt−j , ξt

)∣∣∣∣∣(6.9)

+
∣∣∣∣∣
n∑
t=1

t−1∑
j=1

Cov
(
ϕ(3)(St−1−j + τj+1 + ϑt−j ξt−j )ξ2

t−j , ξt
)∣∣∣∣∣/2

+
∣∣∣∣∣
n∑
t=1

E
(
ϕ(3)(Ut + θt ξt )ξ3

t

)∣∣∣∣∣/6 =E1 +E2 +E3 +E4 +E5.

We now follow [9] to bound the five terms above:

E1 ≤
n∑
t=1

∣∣Cov(ξ0, ξt )
∣∣∣∣∣∣∣

n∑
k=t+1

Eϕ′′(Uk)
∣∣∣∣∣

(6.10)

≤ C

nhσ 2
n

n∑
t=1

(n− t)min
(
M2(n)θt

h
,h2

)
.

Denoting by ιj some numbers in ]0,1[,

E2 ≤ 1

2

n∑
t=2

t−1∑
j=1

∣∣∣∣Cov
(
ϕ(3)(Sj−1 + ιj ξj + τj+1)ξj ,

ξ2
t

2

)∣∣∣∣
+

n∑
t=1

∣∣∣∣Cov
(
ϕ′′(τt+1),

ξ2
t

2

)∣∣∣∣

≤



CM(n)

(σn
√
nh)3

n∑
t=2

t−1∑
j=1

min
(
M2(n)(t − j)θj

h
,h2

)
+ Ch

σ 2
n

,

in the (θ,ψ1,L) case,
CM(n)

(σn
√
nh)3

n∑
t=2

t−1∑
j=1

min
(
M2(n)θj

h
,h2

)
+ Ch

σ 2
n

, in the (θ,ψ ′
1,L) case,

(6.11)
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E3 ≤



C

nhσ 2
n

n∑
t=1

t−1∑
j=1

min
(
M2(n)(t − j)θj

h
,h2

)
, in the (θ,ψ1,L) case,

C

nhσ 2
n

n∑
t=1

t−1∑
j=1

min
(
M2(n)θj

h
,h2

)
, in the (θ,ψ ′

1,L) case,

(6.12)

E4 ≤



C

(σn
√
nh)3

n∑
t=1

t−1∑
j=1

min
(
M3(n)(t − j)θj

h
,h2M(n)

)
,

in the (θ,ψ1,L) case,

C

(σn
√
nh)3

n∑
t=1

t−1∑
j=1

min
(
M3(n)θj

h
,h2M(n)

)
,

in the (θ,ψ ′
1,L) case,

(6.13)

E5 ≤ C

(σn
√
nh)3

n∑
t=1

M(n)h≤ CM(n)

σ 3
n

√
nh
.(6.14)

If the sequence (Zt )t∈Z is (θ,ψ ′
1,L)-weakly dependent with θr = O(r−a) for

some a > 3, then by using (6.8)–(6.14), the right-hand side of (6.7) tends to zero,
which implies the first assertion.

For a (θ,ψ1,L)-weakly dependent sequence, again using (6.8)–(6.14), we need
θr =O(r−a) with

a >max
(

3 + 1

δ
,

6δ+ 2

δ+ 1

)
.

The second assertion is an application of the first one when replacing Yt with
Yt − r(x). �

6.2. Higher order moments of ĝ.

PROOF OF THEOREM 1. We keep the notation from (6.1) and (6.2) and
denote again by C a universal constant (whose value might change). Since
E(exp(|Y0|)) <∞,

(nh)q/2E|ĝ− g̃ − E(ĝ − g̃)|q(x)

≤ (2n)q

(nh)q/2
E

[
|Y0|q1{|Y0|>M(n)}

∣∣∣∣K(
x −X0

h

)∣∣∣∣q]

≤ C
(2n)q

(nh)q/2
‖K‖q∞(E|Y0|2q)1/qn−M0/2

(
E exp(|Y0|))1/2 → 0 (n→ ∞)
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for M(n) = M0 log(n), M0 > 0 big enough. It remains to check that Sn =
(g̃ − Eg̃)(x)= 1

nh

∑n
t=1Wt , Wt = Tt − ETt , satisfies

lim sup
n→∞

(nh)q/2 |ESn|q <∞.

We set, for any integer l ∈ [1, n],
Al(g̃) :=

∑
1≤t1≤···≤tl≤n

|E(Wt1 · · ·Wtl )|.

As in [12], the method relies on the inductive relationship

Aq(g̃)≤ n|EWq
0 | +Cqn

n−1∑
r=1

(r + 1)q−2Cr,q(g̃)+
q−2∑
m=2

Am(g̃)Aq−m(g̃).

Here Cr,q =Cr,q(g̃) is defined as

Cr,q = sup{|Cov(Wt1 · · ·Wtm,Wtm+1 · · ·Wtq )|;
1 ≤ t1 ≤ · · · ≤ tq ≤ n, tm+1 − tm = r, 1 ≤m≤ q − 1},

which is a bound for the expressions

|Cov(Wt1 · · ·Wtm,Wtm+1 · · ·Wtq )|,
for all increasing sequences (ti)

q
i=1 with the same length r = tm+1 − tm of the

mth spacing. Since |W0| ≤ C log(n) almost surely and the kernel K is compactly
supported, we obtain

n|EWq
0 | ≤ Cnh logq(n).(6.15)

The boundedness assumptions on the densities in (5.4) (implying boundedness
uniformly in k by uniform continuity) yield a first bound for Cr,q ,

Cr,q ≤ C log(n)q−2h2.(6.16)

The (θ,ψ1,L)-weak dependence of the process yields a second bound for Cr,q ,

Cr,q ≤ C log(n)qh−1θr .(6.17)

We again use Tran’s truncation technique. Assume that q ≥ 4 is an even integer. If
a >max(q− 1, 6δ(q−1)

q−2+δ(4−q)), then there exists ς ∈]0,1[ such that ((2 + q)δ+ 2 −
q)/2(a − q + 1) < ς < ((4 − q)δ + q − 2)/2(q − 1), so that

(nh)−q/2
[nς ]∑
r=1

n(r + 1)q−2Cr,q

≤ C(nh)−q/2nh2(log(n)
)q−2[nς ]q−1(6.18)

≤ n(2ς(q−1)−((4−q)δ+q−2))/2(log(n)
)q−2 → 0 (n→ ∞)
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and

(nh)−q/2
n−1∑

r=1+[nς ]
n(r + 1)q−2Cr,q

≤ C(nh)−q/2nh−1(log(n)
)q[nς ]q−1−a(6.19)

≤ n(−2ς(a−q+1)+(q+2)δ+2−q)/2(log(n)
)q → 0 (n→ ∞).

Formulae (6.15), (6.18) and (6.19) show that the numbers Bl = (nh)−l/2Al(g̃)
satisfy the relation Bq ≤ ∑q−2

m=2BmBq−m + c0. Therefore (see [8] for more details

on Catalan numbers Bl), Bq ≤ c0
(2q−2)!
q!(q−1)!, that is,

lim sup
n→∞

(nh)q/2|ESn|q ≤ lim sup
n→∞

q!(nh)−q/2Aq(g̃)≤ c0,

which completes the proof for q ≥ 4 an even integer and for a (θ,ψ1,L)-weakly
dependent process. The case when q is an odd integer greater than or equal to 3 is
analogous.

If the process is (θ,ψ2,L)-weakly dependent, the bound in (6.17) for Cr,q
becomes

Cr,q ≤ C log(n)qh−2θr . �

6.3. Asymptotic normality of the regression estimator.

PROOF OF PROPOSITION 4. We closely follow [7] and [25]. From the
expansion

u−1 =
p∑
i=0

(−1)i
(u− u0)

i

ui+1
0

+ (−1)p+1 (u− u0)
p+1

uu
p+1
0

,(6.20)

we deduce with p = 2, u= bn, u0 = Ebn = 1,

E(r̂(x))= Ean − E
(
(an − Ean)(bn − Ebn)

)+ (Ean)E(bn − Ebn)
2

(6.21)
+ E

(
(an − Ean)(bn − Ebn)

2)− E
(
r̂(x)(bn − Ebn)

3),
where r̂(x)= an/bn (if bn 
= 0) with

an =
n∑
i=1

YiK

(
x −Xi
h

)/(
nEK

(
x −X0

h

))
,

bn =
n∑
i=1

K

(
x −Xi
h

)/(
nEK

(
x −X0

h

))
.
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Clearly, since f and g are ρ-regular,

Ean = r(x)+O(hρ).
Assume that the sequence is (θ,ψ1,L)-weakly dependent. By the Cauchy–
Schwarz inequality, we bound the second right-hand side term in (6.21) with the
variance bounds given in Proposition 2 yielding the orderO((nh)−1) if a > 3. The
third term has the same order.

Rosenthal type results, stated in Theorem 1, then yield∣∣E(an − Ean)(bn − Ebn)
2∣∣

≤
(

h

EK((x −X0)/hn)

)3(
E
(
ĝ(x)− Eĝ(x)

)4)1/2(
E
(
f̂ (x)− Ef̂ (x)

)2)1/2

=O(
(nh)−3/2)

if a >max(3,9δ).
For the last term, we use a truncation device(

E
(
r̂(x)

)4)1/4 ≤M(n)+
(

E

(∑n
i=1 Y

4
i 1{|Yi |>M(n)}K((x −Xi)/hn)∑n
j=1K((x −Xj)/hn)

))1/4

=O
(

log(n)+ n(2−M0)/8
)

if M(n)=M0 log(n). Thus, by Hölder’s inequality,

Er̂(x)(bn − Ebn)
3 =O(

log(n)(nh)−3/2)
if a > max(3,9δ). This completes the proof in case of (θ,ψ1,L)-weak depen-
dence. The (θ,ψ2,L)-weakly dependent case is similar and details are omit-
ted. �

PROOF OF PROPOSITION 5. We use Collomb’s expansion (6.20) with p = 1,
u= f̂ (x), u0 = Ef̂ (x). Thus,

r̂(x)− Er̂(x)

= ĝ(x)Ef̂ (x)− f̂ (x)Eĝ(x)
(Ef̂ (x))2

+ (Eĝ(x)− ĝ(x))(f̂ (x)− Ef̂ (x))+ E((ĝ(x)− Eĝ(x))(f̂ (x)− Ef̂ (x)))

(Ef̂ (x))2

+ r̂(x)(f̂ (x)− Ef̂ (x))2 − E(r̂(x)(f̂ (x)− Ef̂ (x))2)

(Ef̂ (x))2
.

Now,

Var
(
r̂(x)

) = E(ĝ(x)Ef̂ (x)− f̂ (x)Eĝ(x))2
(Ef̂ (x))4

+ o
(

1

nh

)
(6.22)
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under the conditions

nhE|ĝ(x)− Eĝ(x)|3 ≤ (
(nh)4/3E|ĝ(x)− Eĝ(x)|4)3/4 → 0,

nhE
∣∣r̂(x)(ĝ(x)− Eĝ(x)

)∣∣3 ≤ nh(Er̂4(x)
)1/4(

E
(
f̂ (x)− Ef̂ (x)

)4)3/4 → 0,

nh
(
Var

(
ĝ(x)

))2 → 0

and

nh
(
E
(
f̂ (x)− Ef̂ (x)

)6)1/2(
E
(
ĝ(x)− Eĝ(x)

)6)1/6(
E|r̂(x)|3)1/3 → 0.

The first and second bounds are obtained if the sequence (Zt )t∈Z is (θ,ψj ,L)-
weakly dependent (j = 1 or 2) with θr =O(r−a), where

a >max
(

3,
9(j + 2)δ

5 − 2δ
,

3(j + 2)δ

1 + 2δ

)
.

The third bound is satisfied if

a >max
(

1,
2(j + 2)δ

1 + δ
)
.

The last bound holds true if

a >max
(

5,
10(j + 2)δ

7 − 5δ

)
.

The first right-hand term in (6.22) can then be handled along the same lines as in
the proof of Proposition 2 (note that a > 2 + j ). �

PROOF OF THEOREM 2. Consider the following identity:

r̂(x)− r(x)= (ĝ − rf̂ )(x)− E((ĝ − rf̂ )(x))
Ef̂ (x)

−
(
r(x)− Eĝ(x)

Ef̂ (x)

)
+ (r(x)− Eĝ(x)/Ef̂ (x))(f̂ (x)− Ef̂ (x))

Ef̂ (x)

− (ĝ(x)− Eĝ(x))(f̂ (x)− Ef̂ (x))

(Ef̂ (x))2
+ r̂(x)(f̂ (x)− Ef̂ (x))2

(Ef̂ (x))2
.

The term

√
nh

(
r(x)− Eĝ(x)

Ef̂ (x)

)
=O(nh1+2ρ)1/2,
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as a contribution from bias. Assume that the sequence (Zt )t∈Z is (θ,ψj ,L)-
weakly dependent (j = 1 or 2). Then,

E

∣∣∣∣√nh(r(x)− Eĝ(x)/Ef̂ (x))(f̂ (x)− Ef̂ (x))

Ef̂ (x)

∣∣∣∣=O(nh(1+2ρ))1/2,

E

∣∣∣∣√nh(ĝ(x)− Eĝ(x))(f̂ (x)− Ef̂ (x))

(Ef̂ (x))2

∣∣∣∣
≤ C√

nh
(
E
(
ĝ(x)− Eĝ(x)

)2)1/2(
E
(
f̂ (x)− Ef̂ (x)

)2)1/2

=O(nh)−1/2 if a > 2 + j,

E

∣∣∣∣√nhr̂(x)(f̂ (x)− Ef̂ (x))2

(Ef̂ (x))2

∣∣∣∣1/2
≤ (nh)1/4(E|r̂(x)|)1/2(

E
(
f̂ (x)− Ef̂ (x)

)2)1/2

=O(
(nh)−1/4 log1/2(n)

)
if a > 2 + j.

The result then follows from Proposition 3. �

The CLT for the centered regression function can be proved by the same device.
Consider the numbers

α1(δ)= min
(

max(3,9δ),max
(

3 + 1

δ
,

6δ + 2

δ + 1

))
,

α2(δ)= min
(

max(4,12δ),max
(

4 + 1

δ
,

8δ+ 2

δ+ 1

))
,

β1(δ)= max
(
α1(δ),max

(
3,

27δ

7 − 4δ

))
,

β2(δ)= max
(
α2(δ),max

(
3,

36δ

7 − 4δ

))
.

Note that 3 ≤ α1(δ)≤ 3(1+√
3)

2 and 4 ≤ α2(δ)≤ 6.

PROPOSITION 6. Suppose that the stationary sequence (Zt )t∈Z satisfies
conditions (5.1) with p = 2, (5.3) and (5.4). Let nδh→ ∞ for some δ ∈]0,1[. In
addition, assume that the sequence (Zt )t∈Z is (θ,ψj ,L)-weakly dependent (j = 1
or 2), and θr =O(r−a), where a > βj(δ). Then

√
nh

(
r̂(x)− Er̂(x)

) D→ N

(
0,
G2(x)

f 2(x)

∫
K2(u) du

)
.

The proof of Proposition 6 is based upon Collomb’s expansion. Details are given
in [1] (proof of Proposition 6.2).
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6.4. Almost-sure convergence.

PROOF OF THEOREM 3. We keep the notation as in (6.1) and (6.2) and
again denote by C a universal constant (whose value might change). Since
E(exp(|Y0|)) <∞,

P

(
sup

|x|≤M
|ĝ − g̃|(x) > 0

)
≤ nP(|Y0|>M0 log(n)

) ≤ Cn1−M0,

and, by the Cauchy–Schwarz inequality,

sup
|x|≤M

E
(|ĝ − g̃|(x)) ≤ 1

h
E

[
|Y0|1{|Y0|>M0 log(n)}

∣∣∣∣K(
x −X0

h

)∣∣∣∣] ≤ 1

h
h1/3n−M0 .

We can now reduce the computations to those of a density estimator, as given
in [12]. Assume that the interval [−M,M] is covered byLν intervals with diameter
1/ν [ν = ν(n) depends here on n]; we denote by Ij the j th interval and xj its
center. Assume that the relation hν → ∞ holds (n → ∞). We then follow a
strategy described in detail in [18]. We can bound suprema over an interval Ij
as follows:

sup
x∈Ij

|g̃ − Eg̃|(x)≤ |g̃(xj )− Eg̃(xj )|
(6.23)

+ C

hν

(|g̃′ − Eg̃′|(xj )+ 2|Eg̃′|(xj )),
where g̃′ is another suitable kernel density estimator as defined below. To prove
(6.23), set

w(z)= ‖K ′‖∞1{|z|≤2R0},

where [−R0,R0] is the support of the kernel K . This w(·) is an even kernel,
decreasing on [0,∞[, constant on [0,2R0], taking the value 0 at z= 3R0, whereas
the kernel K vanishes for z > R0. Now take x ∈ Ij . Then∣∣∣∣K(

x −Xt
h

)
−K

(
xj −Xt
h

)∣∣∣∣ ≤ 1

hν
w

(
xj −Xt
h

)
.

If |(xj −Xt)/h|> 2R0, we have∣∣∣∣x −Xt
h

∣∣∣∣≥ ∣∣∣∣xj −Xt
h

∣∣∣∣− ∣∣∣∣xj − x
h

∣∣∣∣ ≥ 2R0 − 1

hν
> R0

for n big enough since hν → ∞. Define now another kernel-type estimate as

g̃′(x)= 1

nh

n∑
t=1

|Yt |1{|Yt |≤M0 log(n)}w
(
x −Xt
h

)
.
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Recalling that x ∈ Ij ,

|g̃(x)− Eg̃(x)| ≤ |g̃(xj )− Eg̃(xj )| + |g̃(x)− g̃(xj )| + |Eg̃(x)− Eg̃(xj )|
=: I + II + III.

By the Lipschitz property of K ,

II ≤ 1

hν

1

nh

n∑
t=1

|Yt |1{|Yt |≤M0 log(n)}w
(
xj −Xt
h

)
= 1

hν
g̃′(xj ).

Thus,

III ≤ E(II)≤ 1

hν
Eg̃′(xj ).

Finally, by centering

II ≤ 1

hν
|g̃′(xj )− Eg̃′(xj )| + 1

hν
Eg̃′(xj ).

This proves (6.23).
Therefore, for any λ > 0,

P

(
sup

x∈[−M,M]
|ĝ(x)− Eĝ(x)| ≥ 2λ√

nh
+ 1

h
h1/3n−M0 + C

log(n)

hν

)

≤ Cn1−M0 +CLνP
(
|g̃ − Eg̃|(x1)≥ λ√

nh

)

+CLνP
(
|g̃′ − Eg̃′|(x1)≥ λ√

nh

)
.

Following the same ideas as in [12], the proof of assertion (i) will be complete
with the inequality in Lemma 1 below.

The proof of assertion (ii) in Theorem 3 is then straightforward, using Collomb’s
expansion in (6.20). �

LEMMA 1. Under the conditions in Theorem 3, there exist positive constants
F,G such that, for any λ > 0 and any bandwidth h→ 0 with nh≥ 1,

sup
x∈R

P

(
|g̃(x)− Eg̃(x)|> λ√

nh

)
≤ F exp(−G√

λ).

The same exponential inequality holds for g̃′, too.

SKETCH OF THE PROOF OF LEMMA 1. Denote by K∞ = 2‖K‖∞. We now
specify the constants in the covariance inequalities (6.15), (6.16) and (6.17) for a
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(θ,ψ1,L)-weakly dependent process:

C1(q)= 2‖f ‖∞R0K
q∞, C2(q)=Kq−2∞ ‖f0,r‖∞

(∫
|K(u)|du

)2

,

C3(q)= q2Kq∞ Lip(K)/2.

Then for some constantD > 0, which neither depends on r nor on q ,

(nh)−q/2
n∑
r=1

n(r + 1)q−2Cr,q ≤ (qD)q .

Together with the previous inductive relation on Aq(g) in Section 6.2 this yields

Aq(g̃)≤
q−2∑
m=2

Am(g̃)Aq−m(g̃)+ (qD)q,

which holds for all integers q ≥ 2. Thus, the numbers Bl = Al(g̃)/(Dl
√
nh)l

satisfy the relation Bq ≤ ∑q−2
m=2BmBq−m+ 1 ≤ (2q− 2)!/(q!(q − 1)!). Therefore,

P

(
|g̃(x)− Eg̃(x)| ≥ λ√

nh

)
≤ λ−qq!Aq(g̃)(nh)−q/2 ≤

(
q2

Deλ

)q
≤ exp

(
−D√

λ γ

(
q√
Dλ

))
,

where γ (t)= t log(t). Now by optimizing the value of γ (q/
√
Dλ)) we obtain the

exponential inequality (for more details see [12] or [13]). �

6.5. Local bootstrap.

PROOF OF THEOREM 4. We follow the proof of Theorem 2.1(i) in [24]. Their
conditions (A3) and (A8) hold by assumption. The Lipschitz property of the kernel
K(·) with compact support is sufficient for the part in their assumption (A4) which
is used to achieve Theorem 2.1(i) in [24]. Asymptotic normality in (A6) of [24]
holds by our Proposition 6. Then Lemma 5.1 for ϕ(x)= xs (s = 1,2,3,4) in [24]
follows from our Theorem 3(ii); see also Remark 5. All that remains to do for
assertion (i) is to check the T1 term in the proof of Lemma 5.2 in [24].

For the conditional variance V (x) = Var(Y0|X0 = x) and fourth moment
M(x) = E{(Y0 − E(Y0|X0 = x))4|X0 = x}, assumption (5.1) with p = 4 implies
that, in a neighborhood Ux of x,

V (·) is differentiable with sup
v∈Ux

|V ′(v)|<∞,(6.24)

M(·) is differentiable with sup
v∈Ux

|M ′(v)|<∞.(6.25)
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It then suffices to show

(nh)−1
n∑
t=1

V (Xt)K
2
(
x −Xt
h

)
= f (x)V (x)

∫
K2(w)dw+ oP (1),(6.26)

(nh)−1
n∑
t=1

M(Xt)K
4
(
x −Xt
h

)
= f (x)M(x)

∫
K4(w)dw+ oP (1).(6.27)

Consider first (6.26). Since we do not assume that V is in L, that is, a bounded
Lipschitz function, there is not a direct way to achieve (6.26). By the compact
support ofK , the term V (Xt)K((x−Xt)/h) is zero forXt outside a neighborhood
of x and if n is sufficiently large. Thus, consider a modification Ṽ (·) which is
bounded, is Lipschitz, satisfies (6.24) and has the requirement that Ṽ (x) = V (x)

at the point x. Then write the left-hand side of (6.26) as

(nh)−1
n∑
t=1

V (Xt)K
2
(
x −Xt
h

)
= (nh)−1

n∑
t=1

Ṽ (Xt )K
2
(
x −Xt
h

)
+2n,

(6.28)

2n = (nh)−1
n∑
t=1

(
Ṽ (Xt )− V (Xt))K2

(
x −Xt
h

)
.

By (6.24) applied to Ṽ (·), the fact that Ṽ (x)= V (x) and the continuity of f (·),

E

(
(nh)−1

n∑
t=1

Ṽ (Xt )K
2
(
x −Xt
h

))
= f (x)V (x)

∫
K2(w)dw+ o(1).(6.29)

Moreover, since Ṽ (·) andK(·) are bounded Lipschitz functions it follows from the
weak-dependence assumption that

Var

(
(nh)−1

n∑
t=1

Ṽ (Xt )K
2
(
x −Xt
h

))
= o(1) (n→ ∞).(6.30)

Finally,

E|2n| ≤ E

(
(nh)−1

n∑
t=1

|V (Xt)− Ṽ (Xt )|K2
(
x −Xt
h

))
(6.31)

=
∫

|V (v)− Ṽ (v)|K2
(
x − v
h

)
f (v) dv =O(h2),

where the last bound follows by assumption (6.24) for V (·) and Ṽ (·). By (6.28)–
(6.31) we have shown (6.26). The proof of (6.27) is analogous. This then completes
the proof of the first assertion.

The second assertion is an immediate consequence of the first one. �
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