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A classification model is easiest to analyze when it has a balanced
design. Many of the nice features of balanced designs are retained by
error-orthogonal designs, which were introduced in a recent paper by the
authors. The present paper defines a kind of ‘‘partially balanced’’ design
and shows that this partial balance is sufficient to ensure the error-ortho-
gonality of a mixed classification model. Results are provided that make
the partial balance condition easy to check. It is shown that, for a
maximal-rank error-orthogonal design, the Type I sum of squares for a
random effect coincides with the Type II sum of squares.

1. Introduction. The analysis of a classification model is relatively
straightforward when the data are balanced, that is, when there are equal
numbers of observations for all combinations of levels of the factors. Then the
sums of squares for an ANOVA table are easily calculated and are unambigu-
ous; for example, in a balanced two-way model, the sum of squares for the
first factor is the same whether it is adjusted for the second factor or only for
the mean. Under the assumption that the observations have a joint normal
distribution, the sums of squares are independent and exact F-tests are
available for many hypotheses of interest. Moreover, a complete sufficient
statistic exists, which implies that uniformly minimum variance unbiased
estimators can be obtained for all unbiasedly estimable functions of the model
parameters.

A design does not necessarily have to be balanced to enjoy these desirable
Ž .properties. Extending Houtman and Speed’s 1983 definition of an orthogo-

Ž .nal design, which is based on Nelder’s 1965 concept of orthogonal block
Ž . Ž .structure, VanLeeuwen, Seely and Birkes 1998 herein abbreviated as VSB

defined the notion of an ‘‘error-orthogonal design,’’ which is a design in which
the least-squares estimator of the mean vector is a uniformly best linear

Ž .unbiased estimator UBLUE and the covariance matrix of the vector of
least-squares residuals has orthogonal block structure. The class of error-
orthogonal designs includes all orthogonal designs, all balanced classification

Ž .designs provided they are ‘‘proper’’ as defined in Section 5 , all fixed-effects
models, and many other models; other examples are given in later sections.
ŽSee the remark at the end of this section regarding the terms ‘‘design’’ and
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.‘‘model.’’ Error-orthogonal designs are similar to balanced designs in many
ways.

Ž .The purposes of this paper are 1 to review the desirable features of
Ž .error-orthogonal designs that have been established to date, 2 to prove

another desirable feature of most error-orthogonal designs, namely, that
Ž .Type I and Type II sums of squares coincide for a random effect, 3 to show

that a certain type of balance in the incidence matrix implies error-ortho-
Ž .gonality and 4 to provide convenient methods for checking the balance

requirements.
Ž .For purpose 1 we list the following properties of an error-orthogonal

design:
Ž .a By definition, the mean vector has a UBLUE. This implies that a

UBLUE exists for every estimable linear function of the fixed effects. When
there is no UBLUE, there is no clear choice for an estimator�one might
choose the least-squares estimator or the BLUE corresponding to some
particular prior guess for the covariance matrix or the BLUE corresponding
to an estimate of the covariance matrix or the maximum likelihood estimator
Ž . �MLE . For an error-orthogonal design, all these choices coincide Szatrowski
Ž . �1980 , Theorem 2 .

Ž .b Also by definition, the covariance matrix of the least-squares residuals
has orthogonal block structure. This implies that the sum of the squares of
the least-squares residuals has a ‘‘canonical’’ ANOVA decomposition into a
sum of component sums of squares. The component sums of squares, under
the assumption of normality, are independent and distributed as scalar

�multiples of chi-squared distributions. In VSB see the paragraph that in-
Ž . Ž .cludes display 2 and the paragraph following. Also see Brown 1983 for

�ANOVA decompositions of the total sum of squares. This leads to exact
F-tests of variance components. These tests are uniformly most powerful

Ž . � Ž .�unbiased UMPU El-Bassiouni and Seely 1980 .
Ž .c The least-squares estimator of the mean vector together with the

Ž .ANOVA sums of squares in b , under normality, jointly form a complete
Ž . Ž .sufficient statistic Lemma 2.5 in VSB . This implies that the UBLUEs in a

Ž .are actually uniformly minimum variance unbiased estimators UMVUEs .
Also, UMVUEs for variance components can be obtained as linear combina-
tions of the ANOVA sums of squares.

Ž . Ž .d The residual maximum likelihood estimators REMLEs of the vari-
� Ž .�ance components have explicit expressions El-Bassiouni 1983 , so that they

can be computed without iteration.
Ž .e If an error-orthogonal classification design has maximal rank, which

would usually be true, then the sums of squares for the random effects in the
model are unambiguous in the sense that Type I and Type II sums of squares

Ž .coincide Theorem 6.3 below . Thus the Type I sums of squares, which have
the appealing property that they add up to the total sum of squares, also have
the property that each sum of squares for a random effect is adjusted for all
effects not including it.
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These are some of the benefits of using an error-orthogonal design. It
should be noted we are not claiming that error-orthogonal designs are the
only designs having these benefits. It is also worth noting that the optimal
properties of being UBLU, UMVU, and UMPU, which are mentioned in the
list of benefits, are optimal only in the context of a given design and that
other designs may possibly provide better estimators and tests. The estab-
lished advantage of error-orthogonal designs is not necessarily that they are

Žoptimal with respect to some numerical optimality criterion although we
.conjecture that they are but that they provide relatively ‘‘easy,’’ ‘‘straightfor-

ward’’ analysis. The analysis is relatively straightforward because there is a
� Ž . Ž .�clear choice for estimating a fixed effect properties a and c , for estimating

� Ž .� �a variance component property c , for testing a variance component prop-
Ž .� �erty b and for forming an ANOVA table for the random effects property

Ž .�e . The analysis is relatively easy because there are noniterative formulas
� Ž .�for the MLE of a fixed effect property a and for the REMLE of a variance

� Ž .�component property d .
It can be difficult to check error-orthogonality directly from the definition,

and so it is helpful to have more convenient conditions to work with. In the
VSB paper, some conditions for orthogonality and for error-orthogonality
were derived, but the conditions apply primarily to models in which the
random effects are either all nested or are all main effects. In the present
paper, attention is restricted to classification models, but weaker conditions
are obtained that can be applied to all types of classification models. The
conditions here seem more convenient to verify than those in VSB in that

�they are expressed in terms of patterns in the incidence matrix similar to
Ž .�conditions given in Brown 1983 .

Further facts about error-orthogonality from the VSB paper are reviewed
in Section 2. Notation and terminology are presented in Section 3. In Section
4 we introduce some notions of ‘‘partially balanced’’ designs. Corollary 5.2
states that a certain kind of partial balance implies error-orthogonality. A
simple illustration of this result is provided by a random main-effects-only
model. Consider the two-way designs obtained by ignoring all but two factors.
If, for all pairs of factors, these two-way designs are balanced, then the model
has an error-orthogonal design.

The equality of Type I and Type II sums of squares for random effects in
error-orthogonal designs of maximal rank is shown in Section 6. The results
in Section 7 facilitate the process of checking the partial balance condition.
Proofs of lemmas and theorems are collected in Section 8.

REMARK. For brevity we sometimes abuse terminology by saying ‘‘a such-
and-such design’’ or ‘‘a such-and-such model’’ to mean ‘‘a model with a
such-and-such design.’’ For example, the properties listed above for error-
orthogonal designs would be more precisely described as properties of models
having error-orthogonal designs. And the phrase ‘‘balanced model’’ means
‘‘model with a balanced design.’’ We hope this will cause no confusion.
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2. Review of error-orthogonal designs. This section summarizes some
basic facts from VSB on error-orthogonal designs. First, we need some
terminology and notation concerning matrices. A symmetric idempotent ma-
trix is called an orthogonal projection matrix, or in this paper, since no other

Žkind of projection matrix occurs, simply a projection matrix. The range or
. Ž .column space of a matrix A is denoted by RR A , and the unique projection

Ž .matrix whose range is RR A is denoted by P . A set of matrices is said to beA
pairwise orthogonal if A�B � 0 for all distinct A and B in the set. The set is
said to be commutative if AB � BA for all A and B in the set. The linear
span of the set consists of all linear combinations of the matrices in the set;
for a set AA, the linear span is denoted by sp AA.

ŽConsider the following general mixed linear model not necessarily a
.classification model for a random vector Y:

2.1 E Y � X� and Cov Y � V � � V � ��� �� V � � 2I ,Ž . Ž . Ž . � 1 1 r r

where X, V , . . . , V are known matrices, � is an unconstrained vector of1 r
Ž 2 .unknown fixed effects and � � � , . . . , � , � is a vector of unknown vari-1 r

ance�covariance parameters. The only conditions on the variance�covariance
parameters are that the set � of possible vectors � contains a nonempty open

Ž . Žsubset of r � 1 -dimensional Euclidean space this will be called the open set
. � 4assumption and that the set VV � V : � � � of all possible covariance�

matrices of Y consists of positive-definite matrices. One implication of the
� 4open set assumption is that sp VV � sp V , . . . , V , I .1 r

Error-orthogonality involves the notion of orthogonal block structure, which
Ž .was introduced by Nelder 1965 . The definition below is a slight alteration of

�Ž . �the one given by Houtman and Speed 1983 , page 1070 and is applied to
the vector of least-squares residuals rather than to the data vector Y. The
least-squares estimator of X� is P Y and the vector of least-squares residu-X
als is MY where M � I � P . Note that the set of possible covarianceX

� 4matrices of MY can be expressed as M VV M � MVM: V � VV .

Ž . Ž .DEFINITION. Cov MY is said to have orthogonal block structure OBS if
� s Ž . 4M VV M � Ý 	 F : 	 , . . . , 	 � 
 for some s where F , . . . , F are nonzeroi�1 i i 1 s 1 s

pairwise-orthogonal projection matrices and 
 contains a nonempty open
subset of s-dimensional Euclidean space.

OBS can also be characterized in terms of the concept of a quadratic
Ž .subspace or Jordan algebra , which has been a useful tool in linear model

� Ž . Ž . Ž .�theory for studying complete sufficiency Seely 1971 , 1972 , 1977 and
� Ž .�maximum likelihood Rao and Kleffe 1988 under normality, for nonnega-

� Ž .�tive unbiased estimation of variance components Pukelsheim 1981 , and for
� Ž .�optimal design Pukelsheim 1993 .

DEFINITION. A linear subspace LL of symmetric matrices is said to be a
quadratic subspace if A2 � LL for all A � LL .
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Ž . Ž .LEMMA 2.2 See Lemma 2.1 in VSB . Cov MY has OBS if and only if
sp M VV M is a commutative quadratic subspace.

OBS pertains only to the covariance structure of the model. To ensure a
straightforward analysis, a suitable relationship between the covariance
structure and the mean vector must also be required. The existence of a
UBLUE for the mean vector provides such a relationship. An estimator of a
linear parametric function a�� is a uniformly best linear unbiased estimator
Ž .UBLUE if it is a linear function of Y, is unbiased for a�� and, among all
linear unbiased estimators of a��, has the minimum variance for all possible
values of the variance�covariance parameters. A vector-valued estimator is a
UBLUE for a vector of linear parametric functions A�� if each component of
the estimator is a UBLUE for the corresponding component of A��. If X�

Ž .has a UBLUE, we say that E Y has a UBLUE.

Ž .LEMMA 2.3 See Lemma 2.3 in VSB . The following statements are equiva-
lent:

Ž .a P Y is a UBLUE for X�.X
Ž .b Every estimable linear function of � has a UBLUE.
Ž . Ž . Ž .c RR V X � RR X for all i � 1, . . . , r.i
Ž .d M commutes with VV .

DEFINITION. A linear model for Y is said to have an error-orthogonal
Ž . Ž . Ž .design or, simply, to be error-orthogonal if E Y has a UBLUE and Cov MY

has OBS.
Typically the easiest way to establish the UBLUE property is to verify

Ž .statement c of Lemma 2.3. To establish the OBS property, the following
lemma can be handy.

Ž . Ž .LEMMA 2.4 See Lemma 2.6 in VSB . Suppose E Y has a UBLUE. Then,
Ž .Cov MY has OBS if and only if V V � W � Z for all 1 � i � j � r, wherei j i j i j

Ž . Ž . Ž � . Ž .W � sp VV and either RR Z � RR X or RR Z � RR X .i j i j i j

3. Notation and terminology. The focus of this paper is on classifica-
tion models. In order to deal with general classification models having an
arbitrary number of factors and possibly including some interactions and
nested effects, we need notation that is general but not too cumbersome. For
specific examples of the general notation introduced in this section, see the
examples in Sections 5, 6 and 7.

The incidence matrix. Consider data Y that is classified accordingi � � � i k1 p

to p factors. The factors can be labeled by the integers 1, . . . , p. For each
factor g the index i ranges from 1 to t , which denotes the number of levelsg g
of factor g. The range of the index k is from 1 to n , which denotes thei � � � i1 p

number of observations at level i of factor 1, . . . , and level i of factor p. The1 p



D. M. VANLEEUWEN, D. S. BIRKES AND J. F. SEELY1932

p-dimensional t � ��� � t matrix of n ’s is called the incidence matrix1 p i � � � i1 p

and is denoted by N. Each position, or cell, in the incidence matrix corre-
sponds to a combination of levels of all the factors.

For a factor that is nested, we are requiring that the number of levels of
the factor be the same within each combination of levels of the factors in
which it is nested. However, note that even if the numbers of observed levels
of a nested factor are different within the different combinations of the
nesting factors, the numbers of levels can be made the same by introducing
unobserved levels with corresponding entries 0 in the incidence matrix.

If n is the same positive integer for all i , . . . , i , the design is said toi � � � i 1 p1 p

be balanced, or for emphasis, since we will be dealing with some notions of
‘‘partially balanced’’ designs, completely balanced.

� 4To every subset FF � g , . . . , g of factors there corresponds a marginal1 m
incidence matrix, which is the m-dimensional matrix obtained from the
incidence matrix N by summing over the indices for the other p � m factors.
We denote the marginal incidence matrix by N Žv . and its entries by either
Žv . Ž .� � Ž .n or n v w , where v � g , . . . , g is the subset of factors put into vectorw 1 m

Ž .form, usually in increasing order, and w � i , . . . , i varies over all combi-1 m
Ž .� �nations of levels of the factors. Thus n v w is the number of observations at

level i of factor g , . . . , and level i of factor g . Usually the notation for w1 1 m m
� � Žv .indicates what v must be and we write simply n w . The matrix N can be

regarded, at least when none of the factors in v is nested in factors not in v,
as the incidence matrix of a model obtained by dropping the other p � m
factors from the original model.

The model. A mixed classification model for the data can be expressed as

Y � � � a sum of unknown fixed effectsŽ .i � � � i k1 p

� a sum of unobserved random effects � e ,Ž . i � � � i k1 p

where � is a fixed overall mean effect and e is a random error term.i � � � i k1 p

We usually use Greek letters for fixed effects and roman letters for random
effects. The fixed and random effects may be main effects, interaction effects
or nested effects. In matrix notation, a mixed classification model has the
form

3.1 Y � 1� � G � � ��� �G � � H d � ��� �H d � e,Ž . 1 1 q q 1 1 r r

Ž .where 1 denotes a column of 1’s and each � respectively, d is a vector ofj j
Ž .fixed respectively, random effects for the observed combinations of levels of

the factors in a particular subset of factors. If � is associated with a subsetj
of factors FF, then its effects are called FF-effects. For example, if � isj

� 4associated with FF � g , then it is a vector of length t , and each of its entriesg
is a parameter representing the effect of one of the levels of the g th factor. If

� 4� is associated with FF � g, h , then it is a vector of length t t , at leastj g h
when all combinations of levels of the two factors are observed. When some
combinations are not observed, then we can choose either to remove or retain
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Ž .entries of � or d that correspond to unobserved combinations of levels, andj j
Ž .hence either to remove or retain columns of zeros in the matrix G or H . Ifj j

� 4� is associated with FF � g, h and the two factors are cross-classified, thenj
each of its entries is an interaction effect for a combination of levels of the
g th and hth factors. If the two factors are nested, say with the hth factor
nested in the g th factor, then each entry is the effect of a particular level of
the hth factor within a particular level of the g th factor.

It makes no difference whether we remove or retain columns of zeros in the
Ž .matrices G and H , because it does not affect RR X nor V and hence doesj j j

not affect the conditions for OBS and UBLUEs given in Section 2.
If a model includes FF-effects, then we call FF an included subset of factors.

For the empty set �, the �-effect is defined to be the overall mean �. We
always include � in our classification models and so the empty set � is an
included subset of factors.

Ž . 2 Ž .When Cov Y � � I, model 3.1 is called a fixed-effects model. When
X � 1 and r 	 1, the model is called a random-effects model. When Y has a
multivariate normal distribution, the model is called a normal model.

ASSUMPTIONS. The remainder of the paper is concerned with the mixed
Ž .classification model 3.1 under the following assumptions. The fixed effects

Žare unknown parameters and no constraints are imposed on them. A model
with linear constraints on the fixed effects can be reparametrized as a model

.with no constraints on the fixed effects. The random effects, that is, the
entries of d , . . . , d , e, are unobservable random variables. These random1 r
variables are assumed to be uncorrelated with one another and to have mean
0. The entries of d are assumed to have a common unknown variance � 2

j j
Ž .j � 1, . . . , r and the entries of e are assumed to have a common unknown

2 Ž .variance � . With these assumptions, model 3.1 can be expressed in the
Ž . Ž . Ž � � . �form of model 2.1 with X � 1, G , . . . , G , � � �, � , . . . , � �, V � H H ,1 q 1 q j j j

� � � 2. As in Section 2, it is assumed that the set of possible vectors ofj j
variance parameters satisfies the open set assumption and that all possible
covariance matrices of Y are positive-definite.

Single-effect matrices. Single-effect matrices are the basic components for
expressing a classification model in matrix form. A matrix K is said to be a
single-effect matrix if the entries of K are all 0’s and 1’s with exactly one 1 in

Žeach row. In VSB these were called classification matrices and the definition
.was slightly less general. Such a matrix is the model matrix for a one-way

classification model with each column corresponding to a classification group.
Ž .Each matrix G or H in 3.1 is a single-effect matrix.j j

4. Balance. In this section several notions of ‘‘balance’’ are defined for
incidence matrices and classification models. For examples of these concepts
and the notation, see the examples in Sections 5, 6 and 7.



D. M. VANLEEUWEN, D. S. BIRKES AND J. F. SEELY1934

DEFINITIONS. Let FF and GG be two subsets of factors. The following
definitions do not require that the effects corresponding to FF and GG are
actually included in the model.

Ž .a The incidence matrix N is said to be balanced with respect to FF if all
Žv . Ž .entries in the marginal incidence matrix N are the same and positive ,

Ž .where v is the vector form of FF. This property is denoted by Bal FF .
Ž .b N is conditionally balanced with respect to FF given GG if, for every

given combination w of levels of the factors in GG, the number of observationsg
� � � �n w w is the same for all combinations w of levels of the factors inf g f

ŽFF * � FF 
 GG. The notation AA 
 BB designates the subset of members of the set
. Ž .AA that are not in the set BB. This property is denoted by Bal FF � GG . Note that

the phrases ‘‘every given combination’’ and ‘‘all combinations’’ refer to all
possible combinations, including combinations that are not observed.

Ž . Ž . Ž .c A design or model is said to be Bal FF or Bal FF � GG if its incidence
matrix has that property.

Complete balance is equivalent to balance with respect to the set of all p
factors. As an example of conditional balance, if an incidence matrix is

� 4 � 4conditionally balanced with respect to factors 1, 2, 3, 4 given factors 3, 4, 5 ,
� �then n i i i i i is constant over all levels i , i for any given levels i , i ,1 2 3 4 5 1 2 3 4

� � � �i ; that is, we can write n i i i i i � m i i i .5 1 2 2 4 5 3 4 5

LEMMA 4.1. Let EE, FF, GG and HH be subsets of factors.

Ž . Ž . Ž .a For the empty set �, Bal HH � � � Bal HH .
Ž . Ž . Ž .b If GG � FF � EE and HH 
 GG � FF 
 EE, then Bal FF � EE � Bal HH � GG .
Ž . Ž . Ž .c If HH � FF, then Bal FF � Bal HH .
Ž . Ž . Ž .d If HH � FF 
 EE, then Bal FF � EE � Bal HH .
Ž . Ž . Ž .e If HH � GG � FF, then Bal FF � Bal HH � GG .
Ž . Ž . Ž .f If HH 
 GG � FF, then Bal FF � GG � Bal HH � GG .
Ž . Ž . Ž .g If HH 
 GG � FF � HH � GG, then Bal FF � GG � Bal HH � GG .
Ž . Ž . Ž .h If GG � EE and HH  EE � HH  GG, then Bal HH � EE � Bal HH � GG .
Ž . Ž . Ž .i If EE � GG and HH � EE � HH � GG, then Bal HH � EE � Bal HH � GG .
Ž . Ž . Ž . Ž .j Bal HH � GG � Bal HH � GG and Bal GG .

Ž .Part a is trivial but it is worth noting that unconditional balance can be
Ž . Ž .regarded as a special case of conditional balance. Parts c through i are

Ž . Ž . Ž .special cases of b . Parts b and j are proved in Section 8.
The following lemma shows how balance in the incidence matrix with

respect to subsets of factors is reflected in properties of the corresponding
single-effect matrices. Note that the effects to which the matrices correspond
are not required to be included effects.

LEMMA 4.2. Let FF and GG be subsets of factors and let LL � FF  GG. Let F, G
Ž .and L be the corresponding single-effect matrices. If LL is empty, let L � 1.

Ž . Ž . Ž .a If FF � GG, then RR F � RR G .
Ž . Ž .b If the design is Bal FF , then FF� � mP for some positive integer m.F
Ž . Ž . Ž . Ž .c If the design is Bal FF � GG , then RR FF�G � RR L .
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Ž . Ž . Ž .d If the design is Bal FF and Bal FF � GG , then P P � P .F G L

Ž .Part d says that with suitable ‘‘partial’’ balance in the incidence matrix,
the projection matrices associated with the effects in the model behave just as
they would with complete balance. The proof is given in Section 8.

The concepts of balance and conditional balance for an incidence matrix
depend only on the pattern of observations relative to the factorial structure
of the data and do not depend on the particular model that is chosen. Next we
define some types of balance for a mixed classification model. These defini-
tions depend on which effects are included in the model and on the status of

Žthe effects as fixed or random. If FF-effects are included and are fixed respec-
. Ž .tively, random , then FF is called a fixed-effect respectively, random-effect

subset.

DEFINITIONS. Consider a mixed classification model.

Ž . Ž . Ž .a The model is said to be b-balanced or BLUE-balanced if it is Bal HH � GG

for all random-effect subsets HH and all fixed-effect subsets GG.
Ž . Ž . Žb The model is r-balanced or random-pairwise balanced if it is Bal HH �
.LL for all random-effect subsets HH and LL .
Ž .c The model is b & r-balanced if it is b-balanced and r-balanced.
Ž .d The model is weakly b-balanced if, for every random-effect subset HH

Žand fixed-effect subset GG, there exists a subset of factors FF not necessarily
.included such that GG � FF, HH  FF is contained in a fixed-effect subset, and

Ž .the model is Bal HH � FF .
Ž . Ž . Ž .e The model is p-balanced or pairwise balanced if it is Bal FF � GG for

all included subsets FF and GG.

For instance, consider a main-effects-only classification model. The model
is b-balanced provided that, for every fixed factor g and random factor h, the
entries within each row of N Ž g h. are all the same. If the model has only a
single random factor h, then it is r-balanced provided that the entries of N Žh.

are all the same. If the model has more than one random factor, then the
model is r-balanced provided that, for each distinct pair of random factors g
and h, the entries of N Ž g h. are all the same. In the terminology of VSB, this
is the same as requiring that the corresponding single-effect matrices G and
H be J-balanced.

In a general mixed classification model the following facts are not hard to
prove.

LEMMA 4.3. Consider a mixed classification model.

Ž .a If the model is b-balanced, then it is weakly b-balanced.
Ž .b If the model is p-balanced, then it is b & r-balanced.
Ž .c A random-effects model is p-balanced if and only if it is b & r-balanced.
Ž .d If the model includes two random effects such that the union of the two

subsets of factors is the set of all factors, then the model is r-balanced if and
only if it is completely balanced.
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A model that is weakly b-balanced and not b-balanced is given in Example
5.4.

5. Error-orthogonality in mixed classification models. In this sec-
tion sufficient conditions are established for a mixed classification model to
have an error-orthogonal design.

Ž .Most if not all classification models that occur in practice satisfy the
following property. A classification model is said to be proper if, whenever FF

and GG are both random-effect subsets, then either FF  GG is a random-effect
subset or it is contained in a fixed-effect subset. A proper classification model

� 4 � 4may include 1, 2 -effects without necessarily including 2 -effects. This hap-
pens when factor 2 is nested within factor 1. If the model includes both

� 4 � 4random 1, 2 -effects and random 2, 3 -effects, then properness requires that
� 4either 2 -effects must be included or else there must exist fixed FF-effects

with 2 � FF.

Ž .THEOREM 5.1. a If a mixed classification model is weakly b-balanced,
Ž .then E Y has a UBLUE.

Ž . Ž .b If a proper mixed classification model is r-balanced and E Y has a
UBLUE, then the model is error-orthogonal.

The proof is given in Section 8. Weak b-balance is sufficient to ensure that
Ž .E Y has a UBLUE, but it is not necessary; see Example 6.4 below.

COROLLARY 5.2. If a proper mixed classification model is weakly b-
balanced and r-balanced, then it is error-orthogonal.

Ž . Ž .Therefore, by Lemma 4.3 a , b , if a proper model is b & r-balanced, or in
particular if it is p-balanced, then it is error-orthogonal.

If a classification model is not proper, then it may not have an error-
orthogonal design even when the incidence matrix is completely balanced.

�Ž . �This follows from Seifert 1979 , Theorem 2 in which necessary and suffi-
cient conditions were given, in terms of subsets of factors, for a normal mixed
classification model with a completely balanced incidence matrix to admit a
complete sufficient statistic. For example, because it does not satisfy Seifert’s

Ž .condition i , the balanced random-effects model

Y � � � a � b � c � d � ei jk u i j ik jk i jk u

has no complete sufficient statistic and hence does not have an error-orthogo-
� Ž . �nal design see property c in Section 1 above . Note that the model is not

� 4 � 4 � 4proper because 1, 3 and 2, 3 are included subsets of factors but 1, 3 
� 4 � 42, 3 � 3 is not an included subset nor is it contained in �, the only
fixed-effect subset.

EXAMPLE 5.3. Consider a three-way main-effects-only model:

Y � � �  � � � � � e ,i jk u i j k i jk u
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where i � 1, 2, 3, j � 1, 2, 3, k � 1, 2 and u � 1, . . . , n . Whether or not thei jk
design is error-orthogonal depends on which effects are random and on the
balance properties of the incidence matrix.

Ž . Ž .a Suppose all three factors are random. Then by Lemma 4.3 c , b & r-
Ž� 4. Ž� 4. Ž� 4.balance is equivalent to p-balance, that is, Bal 1, 2 , Bal 1, 3 and Bal 2, 3 .

For example, the following design is p-balanced and hence error-orthogonal:

0 2 4 4 2 0
Design I: n � , n � .Ž . Ž .2 4 0 2 0 4i j1 i j2

4 0 2 0 4 2

The p-balance property can be verified by forming the three marginal two-fac-
tor incidence matrix and noting that the entries of N Ž12. are all 4’s, the
entries of N Ž13. are all 6’s, and the entries of N Ž23. are all 6’s. This design is
error-orthogonal regardless of which factors are random or fixed.

Ž .b Suppose factor 1 is fixed and factors 2 and 3 are random. Then, the
Ž� 4 � 4. Ž� 4 � 4.design is b & r-balanced if and only if it is Bal 2 � 1 , Bal 3 � 1 and

Ž� 4.Bal 2, 3 . Design I is b & r-balanced. Also the following design is b & r-
balanced and hence error-orthogonal:

0 1 2 2 1 0
Design II: n � , n � .Ž . Ž .2 4 0 2 0 4i j1 i j2

4 1 4 2 5 2

The b & r-balance can be verified by forming the marginal incidence matrices:

2 2 2 3 3 6 6
Ž12. Ž13. Ž23.N � , N � , N � .4 4 4 6 6 6 6

6 6 6 9 9 6 6

Since the entries within each row of N Ž12. and N Ž13. are the same, the design
Ž� 4 � 4. Ž� 4 � 4. Ž23.is Bal 2 � 1 and Bal 3 � 1 . Since the entries of N are all 6’s, the

Ž� 4.design is Bal 2, 3 .

Ž .c Suppose factors 1 and 2 are fixed and factor 3 is random. Then, the
Ž� 4 � 4. Ž� 4 � 4.design is b & r-balanced if and only if it is Bal 3 � 1 , Bal 3 � 2 and

Ž� 4.Bal 3 . Designs I and II are b & r-balanced. Also the following design is
b & r-balanced and hence error-orthogonal:

0 2 3 0 4 1
Design III: n � , n � .Ž . Ž .1 1 3 2 1 2i j1 i j2

2 3 2 1 1 5

The b & r-balance can be verified by forming the marginal incidence matrices
N Ž13. and N Ž23. and noting that the entries within each row are the same.

Ž� 4 � 4. Ž� 4 � 4.This verifies that the design is Bal 3 � 1 and Bal 3 � 2 . To show that
Ž� 4. Ž .the design is Bal 3 , we can invoke Lemma 4.1 d or simply note that

Ž3. � �N � 17 17 .

Ž .d Suppose all three factors are fixed. Then all designs are error-orthogo-
nal.
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EXAMPLE 5.4. Consider a three-way mixed model with one two-factor
interaction,

Y � � �  � b �  b � � � e ,Ž . i ji jk u i j k i jk u

where i � 1, 2, j � 1, 2, k � 1, 2, u � 1, . . . , n ,  is the fixed effect of thei jk i
Ž .ith level of factor 1, b is the random effect of the jth level of factor 2,  bj i j

is a random interaction and � is the fixed effect of the kth level of factor 3.k
Suppose the incidence matrix is the following:

1 1 2 2n � , n � .Ž . Ž .i j1 i j22 2 1 1

� 4 � 4The fixed-effect subsets of factors are �, 1 and 3 and the random-effect
� 4 � 4subsets are 2 and 1, 2 . The design is not b-balanced because it is not

Ž� 4 � 4.Bal 1, 2 � 3 ; that is, n does not depend only on k. Nevertheless, thei jk
design is error-orthogonal because it is weakly b-balanced and r-balanced, as
is shown in Example 7.3.

6. Unambiguous sums of squares. Analysis of a classification model is
often based on an ANOVA table which associates a sum of squares to each of
the effects in the model. The sum of squares for an effect is usually adjusted
for other effects, but it is not always clear exactly which other effects to
adjust for. Before investigating this ambiguity, we need some notation and
terminology.

NOTATION AND TERMINOLOGY. Consider a mixed classification model. Let
� 4� � FF , . . . , FF be a collection of subsets of factors and let F , . . . , F be the1 s 1 s

corresponding single-effect matrices.

Ž .a An effect is called a �-effect if it is an FF -effect for some i � 1, . . . , s.i
Ž . Ž .b The model matrix corresponding to the �-effects is C � F , . . . , F .1 s
Ž . Ž .c The unadjusted sum of squares for �-effects is SS � � Y �P Y.C
Ž .d Let � be another collection of subsets of factors. The sum of squares for

Ž . Ž . Ž .�-effects adjusted for �-effects is SS � � � � SS � � � � SS � .
Ž .e Let � denote the collection of all fixed-effect subsets.
Ž .f If FF and GG are two subsets of factors with FF � GG, we say that FF-effects

are contained in GG-effects.
Ž . Žg Given a random-effect subset of factors HH, let � respectively, � , and1 2
.� denote the collection of all random-effect subsets, not including HH itself,3

Žthat are contained in HH respectively, neither are contained in nor contain HH,
.and contain HH .

Consider a random-effect subset of factors HH. In forming the sum of
squares for HH-effects, which effects should be adjusted for? Usually the sum of
squares for a random effect is adjusted for all the fixed effects, that is, for all
�-effects. It is also usual to adjust for all effects that are contained in the
HH-effects, that is, for all � -effects. The sum of squares would certainly not be1

Ž .adjusted for any � -effects because SS HH � HH � 0 for all HH � � . However,3 3 3 3



BALANCE IN MIXED MODELS 1939

it is not clear which, if any, � -effects should be adjusted for. Theorem 6.32
below states that in a maximal-rank error-orthogonal model, the same sum of
squares is obtained no matter which � -effects are adjusted for. In this sense2
the sum of squares for a random effect can be said to be ‘‘unambiguous.’’

Ž .LEMMA 6.1. In an error-orthogonal linear model, let A, B � sp VV . a
Ž . Ž . Ž . Ž . Ž .MP � P M � P , b RR P P � RR X � RR P P , c P and PA A M A X , A X , B A B X , A X , B

commute.

Ž .The matrix 1, G , . . . , G , H , . . . , H is called the all-included-effects1 q 1 r
model matrix. A classification model is said to have maximal rank if the rank
of the all-included-effects model matrix is the same as it would be if all the
entries in its incidence matrix were nonzero.

LEMMA 6.2. Consider a proper mixed classification model. Let H be the
single-effect matrix corresponding to a random-effect subset HH, let U be the
model matrix corresponding to the � -effects, and let W be a model matrix1

Ž .corresponding to some or all of the � -effects. If either a the model has2
Ž . Ž .maximal rank or b the model is r-balanced and E Y has a UBLUE, then

Ž . Ž . Ž . Ž .c RR X, H  RR X, W � RR X, U .

THEOREM 6.3. In a proper mixed classification model, let HH be a random-
effect subset, let �, � and � be as defined at the beginning of this section1 2

Ž .and let � � � . If the model is error-orthogonal and either a has maximal2 2
Ž . Ž . Ž . Ž .rank or b is r-balanced, then c SS HH � �, � , � � SS HH � �, � .1 2 1

Ž .For � � � , SS HH � �, � , � is called the Type II sum of squares for2 2 1 2
Ž .HH-effects. The Type I sum of squares for HH-effects is SS HH � �, � , � where �1 2 2

consists of all random-effect subsets in � that precede HH in some particular2
ordering of the included subsets of factors. The theorem implies that the Type
Ž .I no matter what ordering of the included subsets of factors is chosen and

Type II sums of squares for HH-effects coincide.
Most examples of error-orthogonal models in our experience satisfy both

Ž . Ž .a and b . We are not aware of any error-orthogonal proper classification
model that has maximal rank but is not r-balanced. Example 6.4 below
presents an error-orthogonal proper classification model that is r-balanced

Ž .but does not have maximal rank. The unambiguity property c holds for some
Ž . Ž .error-orthogonal models that satisfy neither a nor b , as is shown in

Example 6.5 below. Note that any model with nested error structure has
unambiguous sums of squares for its random effects, regardless of whether it
is error-orthogonal or not.

EXAMPLE 6.4. Consider the following mixed three-way main-effects-only
classification model:

Y � � �  � � � c � e ,i jk u i j k i jk u
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where i � 1, 2, j � 1, 2, 3, k � 1, 2, 3 and u � 1, . . . , n with n � n �i jk 111 112
n � n � 1, n � 2 and all other n equal to zero. The fixed-effect121 122 233 i jk

� 4 � 4 � 4subsets of factors are �, 1 and 2 and the only random-effect subset is 3 .
Write the model in matrix form as Y � 1� � A � B� � Cc � e. The model

Ž .does not have maximal rank, because rank 1, A, B, C � 4 and the maximal
Ž� 4.rank is 6. The model is r-balanced because it is Bal 3 . The model is not

Ž . Ž .weakly b-balanced but nevertheless E Y has a UBLUE, because RR CC�1 �
Ž . Ž . Ž . Ž . Ž .RR CC� A � RR CC�B � RR A � RR X . By Theorem 5.1 b the model is error-

orthogonal.

EXAMPLE 6.5. For the model in the preceding example, suppose now that
the second factor is regarded as random:

Y � � �  � b � c � e .i jk u i j k i jk u

� 4Now the fixed-effect subsets are � and 1 and the random-effect subsets are
� 4 � 42 and 3 . From above we know that the model does not have maximal rank.

Ž� 4.Also, the model is not r-balanced, because it is not Bal 2, 3 . So neither
Ž . Ž .condition a nor b in Theorem 6.3 is satisfied, but it can be shown that the

Ž . �model is error-orthogonal and satisfies c see VanLeeuwen, Birkes and Seely
Ž .�1997 .

The notion of unambiguous sums of squares can also be applied to fixed
Žeffects. Let GG be a fixed-effect subset of factors. Let � respectively, � , and1 2

.� denote the collection of all included subsets of factors, not including GG3
Žitself, that are contained in GG respectively, neither are contained in nor

.contain GG, and contain GG . In forming the sum of squares for GG-effects,
usually one would adjust for all � -effects and would not adjust for any1
� -effects. But it is not clear which, if any, of the � -effects should be adjusted3 2
for. In Theorem 6.6 below it is seen that if the model is p-balanced then there
is no ambiguity.

Suppose that a mixed classification model is p-balanced. Consider the
model having the same included subsets of factor and the same incidence

Ž .matrix but with all effects random except � . If the random-effects model is
proper, then it is error-orthogonal and so Theorem 6.3 is applicable. This
argument yields the following theorem.

THEOREM 6.6. Suppose that a mixed classification model is p-balanced
and that for every pair of included subsets of factors EE and FF, the intersection
EE  FF is also included. Let GG be a fixed-effect subset, let � and � be as1 2

Ž .defined in the second paragraph above, and let � � � . Then SS GG � � , �2 2 1 2
Ž .� SS GG � � .1

7. Shortcuts for checking balance. Verification of b-balance or weak
b-balance or r-balance directly from their definitions can be tedious, and so
convenient shortcut methods are developed in this section.

Ž .Throughout this section, � respectively, � and � denotes the collection of
Ž .all included respectively, fixed-effect and random-effect subsets of factors.
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Ž .For short, a subset of factors not necessarily included will sometimes be
called an f-set.

DEFINITIONS. Let � be a collection of f-sets, let FF � �, and let HH and KK be
Ž .f-sets not necessarily in � .

Ž . Ža We say that FF is maximal respectively, minimal in � if it is not
Ž .contained in respectively, does not contain any other member of �.

Ž . Ž .b Let � respectively, � denote the collection of f-sets that areMax Min
Ž .maximal respectively, minimal in �.

Ž . Ž . � 4 Ž . �c Let � HH; KK � CC � �: CC  HH � KK and � HH � DD � �: DD �I Max-I
� Ž .� 4 Ž .� HH; DD  HH . In other words, an f-set is in � HH if it is in � and isI Max Max-I
not contained in any other f-set in � having the same intersection with HH.

Ž . Ž . � 4 Ž . �d Let � HH; KK � CC � �: CC � HH � KK and � HH � DD � �: DD �U Min-U
� Ž .� 4 Ž .� HH; DD � HH . In other words, an f-set is in � HH if it is in � and0 Min Min-U
does not contain any other f-set in � having the same union with HH.

Ž . Ž . � Ž .� Ž . Ž .e Let �� HH � � HH HH . Thus, an f-set is in �� HH if it is inMin-U Max-I
Ž . Ž .� HH and is not contained in any other f-set in � HH having the sameMin-U Min-U

intersection with HH.
Ž . Ž . � Ž .� Ž . Ž .f Let �� HH � � HH HH . Thus, an f-set is in �� HH if it is inMax-I Min-U

Ž . Ž .� HH and does not contain any other f-set in � HH having the sameMax-I Max-I
union with HH.

LEMMA 7.1. Let � be a collection of f-sets and let FF � �. There exist f-sets
NN and MM such that NN is minimal in �, MM is maximal in � and NN � FF � MM.

LEMMA 7.2. Consider a mixed classification model.

Ž . Ž .a The model is b-balanced if and only if it is Bal HH � GG for all HH � �Max
and all GG � �.

Ž . Ž .b If the model is Bal HH � GG for all HH � � and all GG � � , then it isMax Max
weakly b-balanced.

Ž .c The model is weakly b-balanced if and only if, for each HH � � andMax
GG � � , there exists an f-set FF such that GG � FF, HH  FF is contained in aMax

Ž .member of �, and the model is Bal HH � FF .
Ž . Ž .d The model is r-balanced if and only if it is Bal HH � HH for all1 2

HH , HH � � .1 2 Max
Ž . Ž .e The model is p-balanced if and only if it is Bal FF � FF for all1 2

FF , FF � � .1 2 Max

The following two examples illustrate the application of Lemma 7.2.

EXAMPLE 7.3. Consider a three-way mixed model with one two-factor
interaction:

Y � � �  � b �  b � � � e ,Ž . i ji jk u i j k i jk u

where i � 1, . . . , t , j � 1, . . . , t , k � 1, . . . , t , u � 1, . . . , n . This is the1 2 3 i jk
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same model as in Example 5.4 except that here t , t , t can be any positive1 2 3
� � 4 � 44integers. The collection of fixed-effect subsets is � � �, 1 , 3 and the

�� 4 � 44collection of random-effect subsets is � � 2 , 1, 2 . The collections of maxi-
�� 4 � 44mal fixed-effect and random-effect subsets are � � 1 , 3 and � �Max Max

�� 44 Ž� 4 � 4. Ž� 4.1, 2 . Suppose the design is Bal 2 � 1, 3 and Bal 1, 2 ; that is, ni jk
depends only on i and k and n is the same for all i and j. These properties,i j�
which hold for the particular design given in Example 5.4, can be shown to
imply that the model is weakly b-balanced and r-balanced, and hence error-

Ž . � 4orthogonal. To show weak b-balance, apply Lemma 7.2 c with FF � 1, 3 .
� 4 � 4 � 4Note that both members of � are contained in FF, that 1, 2  1, 3 � 1Max

Ž� 4 � 4. Ž� 4� �, and that the model is Bal 1, 2 � 1, 3 , which is equivalent to Bal 2 �
� 4. Ž . Ž� 4.1, 3 . By Lemma 7.2 d , the design is r-balanced if and only if it is Bal 1, 2 .

EXAMPLE 7.4. Consider a random-effects classification model including all
Ž .two-factor interaction effects and no higher-order effects. By Lemmas 4.3 c

Ž .and 7.2 e , the model is b & r-balanced if and only if its incidence matrix is
balanced with respect to every subset of four factors. For example, if the

� �model has five factors, then it is b & r-balanced if and only if n i i i i ,1 2 3 4
� � � � � � � � Žn i i i i , n i i i i , n i i i i and n i i i i are constant possibly five1 2 3 5 1 2 4 5 1 3 4 5 2 3 4 5

.different constants . To illustrate, suppose all five factors have two levels. Let
� �a and b be two nonnegative integers and set n i i i i i � a or b according1 2 3 4 5

as i � i � i � i � i is even or odd. Then all five marginal four-factor1 2 3 4 5
incidence matrices have all entries equal to a � b. For a � 0 and b � 1, this
is a half-fractional factorial design.

As the preceding examples demonstrate, Lemma 7.2 typically reduces the
number of conditions that need to be checked in order to establish that a
model is b-, weakly b-, r- or p-balanced. For b & r-balance, often the number
of conditions can be reduced even further by the following lemma.

LEMMA 7.5. Consider a mixed classification model. Recall the notation
introduced at the beginning of this section. The following statements are
equivalent:

Ž .a The model is b & r-balanced.
Ž . Ž .b The model is Bal HH � FF for all HH � � and all FF � �.Max
Ž . Ž . Ž .c The model is Bal HH � FF for all HH � � and all FF � �� HH .Max
Ž . Ž . Ž .d The model is Bal HH � FF for all HH � � and all FF � �� HH .Max

EXAMPLE 7.6. Consider the following model for a split-plot experiment
with subsampling:

Y � � �  � b �  b � � � � � e ,Ž . Ž .i j iki jk u i j k i jk u

Ž .which can be obtained from the model in Example 7.3 by adding the �
� 4 � 4 � 4 � 4 � 4interaction term. The included subsets of factors are �, 1 , 2 , 1, 2 , 3 , 1, 3 .

� 4 � 4 �� 44The random-effect subsets are 2 , 1, 2 and so � � 1, 2 . To check theMax
Ž� 4. Ž� 4.model for b & r-balance, it is convenient to find either �� 1, 2 or �� 1, 2
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� 4and apply Lemma 7.5. Union of 1, 2 with the six included subsets yields
� 4 � 4 � 4 � 4 � 4 � 41, 2 , 1, 2 , 1, 2 , 1, 2 , 1, 2, 3 , 1, 2, 3 . Among the four included subsets

� 4 � 4whose union with 1, 2 is 1, 2 , the only minimal f-set is �. Among the two
� 4 � 4included subsets whose union with 1, 2 is 1, 2, 3 , the only minimal f-set is

� 4 Ž� 4. � � 44 � 4 � 43 . Thus � 1, 2 � �, 3 . Intersection of 1, 2 with �, 3 yields �, �.Min-U
Ž� 4.Among the two members of � 1, 2 , both of whose intersection withMin-U

� 4 � 4 Ž� 4. �� 441, 2 is �, the only maximal f-set is 3 . Thus �� 1, 2 � 3 . By Lemma
Ž . Ž� 4 � 4.7.5 a � c , the model is b & r-balanced if and only if it is Bal 1, 2 � 3 .

Ž .In the preceding example we could have used condition d of Lemma 7.5
Ž . Ž .rather than condition c , but less work is involved in applying condition c . It

has been our experience that this is typically the case.

EXAMPLE 7.7. Consider the model obtained from the preceding split-plot
model by dropping the � term. The two models are merely reparametriza-k
tions of one another in the sense that they specify the same set of possible
mean vectors and the same set of possible covariance matrices. This is
because the range of the single-effect matrix corresponding to �-effects is

Ž .contained in the range of the single-effect matrix corresponding to � -
�� 44 Ž� 4. Ž� 4.effects. As before, � � 1, 2 . It can be shown that �� 1, 2 � �� 1, 2Max

� � 44� �, 1, 3 . Therefore, this model is b & r-balanced if and only if the design
Ž . Ž� 4. Ž� 4 � 4.satisfies the condition C : Bal 1, 2 and Bal 1, 2 � 1, 3 . Recall that the2

Ž . Ž� 4 � 4.condition for b & r-balance in Example 7.6 was C : Bal 1, 2 � 3 . Lemma1
Ž . Ž . Ž . Ž .4.1 d , i implies that C � C , but the design in Example 5.4 satisfies1 2

Ž . Ž .C and not C . Thus we see that b & r-balance is not invariant under2 1
reparametrization of the model.

Error-orthogonality is invariant under reparametrization of the model. By
Ž . Ž .Lemma 2.3, the property that E Y has a UBLUE depends only on RR X ,

which coincides with the set of possible mean vectors of Y, and on the set VV

of possible covariance matrices of Y. By Lemma 2.2, the property that
Ž . Ž .Cov MY has OBS depends only on M, which depends only on RR X , and on

VV . Examples 7.6 and 7.7 show that in determining whether or not a particu-
lar model is error-orthogonal, it can sometimes be advantageous to consider a
different parametrization of the mean vector.

8. Proofs.

Ž . Ž . Ž .PROOF OF LEMMA 4.1 b , j . For any subset of factors, say CC or CC* or CC� ,
Ž � � .let w or w or w denote an arbitrary combination of levels of the factors.c c c

Ž . Ž .Let FF * � FF 
 EE, HH* � HH 
 GG, DD � FF � EE 
 HH � GG , GG* � GG  FF *, GG� � GG

Ž . EE, DD* � DD  FF * and DD� � DD  EE. The Bal FF � EE property says that the
� � � � � �number n w w depends only on w ; that is, for every given w , n w w isf e e e f e

� � �the same, say m w , for all w . Let the symbol � denote a disjoint union.˙e f
Ž .The assumptions in b imply that HH � GG � HH* � GG � FF � EE. Then FF * � EE �˙ ˙

FF � EE � HH* � GG � DD � HH* � GG* � GG� � DD* � DD�. Note that EE � GG� � DD�. The˙ ˙ ˙ ˙ ˙ ˙ ˙
Ž . � � � � � � � � � � � � � �Bal FF � EE property says that n w w w w w � m w w . Now n w wh g g d d g d h g



D. M. VANLEEUWEN, D. S. BIRKES AND J. F. SEELY1944

� � � � � � � � � � � � � � � �� � � �� n w w w � Ý Ý n w w w w w � Ý Ý m w w , which de-h g g w w h g g d d w w g dd d d d� Ž .pends only on w and hence only on w . This verifies property Bal HH � GG andg g
Ž .so b is proved.

Ž . Ž . Ž .The implication � in j follows from e and c . For the reverse implica-
Ž . Ž . � �tion, assume Bal GG and Bal HH � GG . These properties say that n w � m forg

� � � � � � � � � � ��all w and n w w � m w for all w . Now m � n w � Ý n w w �g h g g h g w h gh� � � � � �
�Ý m w � t m w , where t is the product of the numbers of levels of thew g h g hh � � � � � � �factors in HH*. Therefore n w w � m w � m�t for all w w , henceh g g h h g
Ž .Bal HH � GG , since HH � GG � HH* � GG. �˙

Ž . ŽPROOF OF LEMMA 4.2. For any subset of factors, say FF or FF * , let w orf
� .w denote an arbitrary combination of levels of the factors. Each column off

F corresponds to a combination w and the number of 1’s in the column isf
� � Ž . � �n w . Bal FF means that n w � m for all w , which implies F�F � mI andf f f

Ž .�1 �1 Ž .P � F F�F F� � m FF�, hence b .F
Ž . Ž .The proofs of a and c require that we carefully index the entries of the

three single-effect matrices F, G and L. By ordering the factors suitably, we
can write w � w� w and w � w w�, where FF * � FF 
 GG and GG* � GG 
 FF. Af f l g l g
combination of levels of all the factors can be written as w � w� w w� w ,f l g h

� 4 Ž .where HH � 1, . . . , p 
 FF � GG . The columns of F can be indexed by w �f
w� w , the columns of G can be indexed by w � w w� and the columns of Lf l g l g
can be indexed by w . The rows of F, G and L correspond to observations.l
Suppose that row i corresponds to an observation taken at levels z � z� z z� zf l g h

Ž .of the factors. The i, w -entry of L is 1 if z � w and is 0 if not. Thel l l
Ž � . � � Ž .i, w w -entry of G is 1 if z z � w w and is 0 if not. For a we assumel g l g l g
FF � LL . From the description of the entries of L and G, we see that the
w -column of L is the sum of the w w�-columns of G as w� varies. Thusl l g g
Ž . Ž . Ž .RR F � RR L � RR G .

Ž . Ž . � � � � � � �For c we assume Bal FF � GG , that is, n z w w � m w w . Thef l g l g
Ž � . Ž � � .i, w w -entry of FF�G is the same as the z z , w w -entry of F�G, whichl g f l l g
is the dot product of the z� z -column of F and the w w�-column of G. The dotf l l g

� � � � � � � �product is n z w w � m w w if z � w and is 0 if not. Thus the w w -f l g l g l l l g
� � �column of FF�G is equal to the w -column of L multiplied by m w w , hencel l g

Ž . Ž . �
RR FF�G � RR L . Conversely, the w -column of L is equal to the w w -l l g

� � � �column of FF�G multiplied by 1�m w w , provided we can find w suchl g g
� � � � � � � � � �� �that m w w � 0. If no such w exists, then n w � Ý Ý n w w w �l g g l w w f l gf g

� � �� �Ý Ý m w w � 0, and so the w -column of L is a column of 0’s.w w l g lf g

Ž . Ž . Ž . Ž . Ž . Ž .For d we assume Bal FF and Bal FF � GG . Using parts b , c and a , we
Ž . Ž . Ž . Ž . Ž .obtain RR P P � RR P G � RR FF�G � RR L � RR G . Now apply LemmaF G F

8.1 below. �

LEMMA 8.1. Let P and Q be two projection matrices. The following state-
Ž . Ž . Ž .ments are equivalent: a P and Q commute, b PQ is symmetric, c

Ž . Ž . Ž . Ž .RR PQ � RR Q , d PQ is a projection matrix, e P � Q � PQ is a projection
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Ž . Ž . Ž .matrix. If any, hence all, of the statements hold, then RR PQ � RR P  RR Q
Ž . Ž . Ž .and RR P � Q � PQ � RR P � RR Q .

The proof of this lemma is left to the reader.

Ž .PROOF OF THEOREM 5.1. Lemma 2.3 implies that E Y has a UBLUE if
Ž . Ž .and only if RR HH�G � RR X for every pair of single-effect matrices G and

H corresponding, respectively, to a fixed-effect subset GG and a random-effect
subset HH. Under the assumption of weak b-balance, given such subsets GG and
HH, there exist subsets FF and JJ such that GG � FF, JJ is a fixed-effect subset,

Ž .LL � JJ where LL � HH  FF, and the design is Bal HH � FF . Let F, L and J be the
single-effect matrices corresponding to FF, LL and JJ, respectively. Lemma

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .4.2 a , c implies RR G � RR F , RR L � RR J and RR HH�F � RR L . Now
Ž . Ž . Ž . Ž . Ž .RR HH�G � RR HH�F � RR L � RR J � RR X .

Ž . Ž .To prove b , it suffices to show that Cov MY has OBS, which will follow
from Lemma 2.4. Recall that V � H H � for j � 1, . . . , r and sp VV �j j j

� 4 Ž .sp V , . . . , V , I . We will show that V V � W � Z where W � sp VV and RR Z1 r i j
Ž .� RR X . To reduce the use of subscripts, let F � H and H � H . Let FF and HHi j

be the subsets of factors corresponding to F and H. Let LL � FF  HH and let L
be the single-effect matrix corresponding to LL . The assumption of r-balance

Ž . Ž . Ž .says that the design is Bal FF � HH . By Lemma 4.1 c , e , the design is also
Ž . Ž . Ž . Ž . Ž . Ž .Bal FF , Bal HH , Bal LL and Bal FF � HH . Therefore, by Lemma 4.2 b , d , V Vi j

� FF�HH� � m m P P � m m P � cLL� where c � m m �m . SinceF H F H F H L F H L
Ž . Ž .the model is proper, either 1 LL is a random-effect subset or 2 LL is

Ž .contained in a fixed-effect subset, say GG. In case 1 , LL� � VV , so let W � cLL�
Ž . Ž . Ž . Ž .and Z � 0. In case 2 , RR L � RR G � RR X , so let W � 0 and Z � cLL�. �

PROOF OF LEMMA 6.1. By Lemma 2.3, error-orthogonality implies MA �
Ž . Ž . Ž . Ž .AM, and so RR MP � RR MA � RR P . Now apply Lemma 8.1 to obtain a .A A

Ž .It is a general fact that P � P � P . By using a we see that P PX , A X M A X , A X , B
Ž .Ž . Ž . Ž .� P � MP P � MP � P � P P M, hence b . To show c it sufficesX A X B X A B

to show P and P commute. Note that 2 MA � MAM � sp M VV M. ByM A M B
Ž .Lemma 2.2, sp M VV M is a commutative quadratic subspace, and so, by 2.b

Ž .in Seely 1971 , P � sp M VV M. �M A

Ž . Ž .PROOF OF LEMMA 6.2. Assume a . Let T � X, H , . . . , H be the all-1 r
Ž .included-effects model matrix. Note that statement c can be written as

Ž . Ž . Ž .RR TC  RR TC � RR TC for suitable C , C and C . Let S be what the1 2 3 1 2 3
all-included-effects model matrix would be if there were exactly one observa-
tion for each cell. Each row of S corresponds to a cell and we can write
T � KS where the matrix K replicates each row according to the number of

Ž .observations in the corresponding cell. Assumption a says that T has
maximal rank, which implies that K is a one-to-one transformation from
Ž . Ž . Ž . Ž . Ž .RR S onto RR T . Hence, RR KSC  RR KSC � RR KSC if and only if1 2 3
Ž . Ž . Ž . Ž .RR SC  RR SC � RR SC . Therefore, to prove c we can assume a com-1 2 3

Ž .pletely balanced design. Since a completely balanced design satisfies b , it
Ž . Ž .suffices to prove that b � c .
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Ž . Ž .Assume b . Write W � F , . . . , F where each F is a single-effect matrix1 k i
corresponding to a random-effect subset FF which neither is contained in nori
contains HH. Let A � HH� � VV and B � WW� � F F� � ��� �F F� � sp VV .1 1 k k

Ž . Ž .By Theorem 5.1 b and Lemma 6.1 c , P and P commute. By LemmasX , A X , B
Ž . Ž . Ž . Ž . Ž . Ž .8.1 and 6.1 b , RR X, H  RR X, W � RR P  RR P � RR P P �X , A X , B X , A X , B

Ž . Ž . Ž . Ž . Ž . Ž .RR X � RR P P . Next note RR P P � RR P B � Ý RR P F � Ý RR P P .A B A B H H i H Fi
Ž . Ž . Ž .It suffices to show RR P P � RR X, U . By r-balance and Lemmas 4.2 d andH Fi

Ž . Ž .4.1 c , e , P P � P where L is the single-effect matrix corresponding toH F L ii i
Ž . Ž . Ž . Ž .HH  FF . Since the model is proper, either RR L � RR U or RR L � RR X . �i i i

PROOF OF THEOREM 6.3. Let H, U and W be as defined in Lemma 6.2. We
must show that P � P � P � P . Let P � P andX , H , U, W X , U, W X , H , U X , U X , H , U
Q � P . Note that P � P and Q � P where A � HH� � VV andX , U, W X , A X , B

Ž .B � UU� � WW� � sp VV , and so by Lemma 6.1 c , P and Q commute. By
Lemma 8.1, P � Q � PQ � P � P . It remains to show PQ � P .P , Q X , H , U, W X , U

Ž . Ž .By Lemma 8.1, PQ is the projection matrix whose range is RR P  RR Q �
Ž . � Ž . Ž .� Ž . � Ž . Ž .�RR X, H  RR X, U � RR X, W � RR X, U � RR X, H  RR X, W . By

Ž .Lemma 6.2, this is simply RR X, U . �

Ž . Ž . Ž . Ž . Ž .PROOF OF LEMMA 7.2. For a , d and e , apply Lemmas 7.1 and 4.1 c , f .
Ž . Ž . Ž .Part b follows from c with FF � GG. The ‘‘only if’’ half of c is immediate. To

prove the ‘‘if’’ half, take any HH � � and GG � �. By Lemma 7.1 there exist
HH* � � and GG* � � such that HH � HH* and GG � GG*. There exist an f-setMax Max

Ž .FF and JJ � � such that GG* � FF, HH*  FF � JJ, and the model is Bal HH* � FF .
Ž .Now, GG � GG* � FF, HH  FF � HH*  FF � JJ and, by Lemma 4.1 f , the model is

Ž .Bal HH � FF . �

Ž . Ž .PROOF OF LEMMA 7.5. Assume a . This implies Bal HH � GG for all HH � �
Ž . Ž . Ž .and all GG � � and Bal HH � EE for all HH, EE � �. Lemma 4.1 e implies b .

Ž . Ž .Now assume b . Lemma 7.2 a implies b-balance. To show r-balance, take
˜ ˜ ˜any HH, EE � �. By Lemma 7.1 there exist HH, EE � � such that HH � HH andMax

˜ ˜ ˜ ˜ ˜Ž . Ž . Ž . Ž .EE � EE. Statement b implies Bal HH � EE and Bal EE � � , that is, Bal EE , and
˜ ˜Ž . Ž . Ž . Ž . Ž . Ž .hence, by Lemma 4.1 j , c , Bal HH � EE and Bal HH � EE . Thus b � a . Clearly

Ž . Ž . Ž . Ž . Ž .b � c and b � d . Now assume c . Given HH � � and FF � �, we mustMax
Ž . � 4show Bal HH � FF . Consider the collection � � DD � �: HH � DD � HH � FF . By

Ž .Lemma 7.1, there exists NN � � such that NN � FF. Note that NN � � HH .Min Min-U
� Ž .� Ž . Ž .Lemma 7.1 implies the existence of MM � � HH HH � �� HH suchMin-U Max-I

Ž . Ž . Ž . Ž . Ž .that NN � MM. By Lemma 4.1 h , i , Bal HH � MM � Bal HH � NN � Bal HH � FF . Thus
Ž . Ž . Ž . Ž .c � b . The proof of d � b is similar. �
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