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Rao, Pathak and Koltchinskii have recently studied a sequential
approach to resampling in which resampling is carried out sequentially

Ž .one-by-one with replacement each time until the bootstrap sample con-
Ž �1 .tains m � 1 � e n � 0.632n distinct observations from the original

sample. In our previous work, we have established that the main empiri-
cal characteristics of the sequential bootstrap go through, in the sense of

Ž �3 �4 .being within a distance O n from those of the usual bootstrap.
However, the theoretical justification of the second-order correctness of
the sequential bootstrap is somewhat difficult. It is the main topic of this
investigation. Among other things, we accomplish it by approximating our
sequential scheme by a resampling scheme based on the Poisson distribu-
tion with mean � � 1 and censored at X � 0.

Ž .1. Introduction. Efron 1979 introduced the bootstrap method of re-
sampling as a ubiquitous sampling technique of estimating the variance of an

Ž .estimator and sampling distribution of a given statistic. Singh 1981 showed,
using Edgeworth expansions in the case of univariate sample mean, that the
bootstrap is more accurate than the central limit theorem when higher-order
population moments exist. In a fundamental paper, Bhattacharya and Ghosh
Ž .1978 have demonstrated that Edgeworth expansion for a wide class of
statistics can be derived from Edgeworth expansions for multivariate sample

Ž .means. These ideas are further exploited by Babu and Singh 1983, 1984 to
Ž .show the superiority of the bootstrap method and by Babu and Singh 1985

to obtain Edgeworth expansions for the ratio statistic and similar statistics
based on samples from finite populations. The method is also used by Babu

Ž .and Singh 1989 to obtain global Edgeworth expansions for functions of
means of random vectors, when one of the coordinates has a lattice distribu-
tion and the remaining part of the vector has a strongly nonlattice distribu-

Ž .tion. Later, Gine and Zinn 1990 showed that in a certain weak sense, the´
Ž .bootstrap method is valid consistent if and only if the central limit theorem

holds. In fact, the central limit theorem furnishes accuracy of approximation
Ž .o 1 , while if the third population moment exists, one can expect, in many
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commonly encountered populations, the accuracy of the bootstrap method to
Ž �1�2 .be o n , where n denotes the sample size. Thus while the bootstrap

method has the potential of being second-order accurate, the central limit
approximation is not so. This is one of the several reasons for the current
interest and preference in the literature for those methods of resampling that

Ž �1�2 .are second-order accurate, that is, accurate o n .
Stemming from Efron’s observation that the information content of a

Ž �1 .bootstrap sample is based on approximately 1 � e 100% � 63% of the
Ž .original sample, Rao, Pathak and Koltchinskii 1997 have introduced a

sequential resampling method in which sampling is carried out one-by-one
Ž . Ž .with replacement until m � 1 distinct original observations appear, where

Ž �1 .m denotes the largest integer not exceeding 1 � e n. It has been shown
that the empirical characteristics of this sequential bootstrap are within a

Ž �3�4.distance O n from the usual bootstrap. The authors provide a heuristic
argument in favor of their sampling scheme and establish the consistency of
the sequential bootstrap; however the question of second-order correctness is
not addressed.

The main object of this paper is to examine the second-order correctness of
the sequential bootstrap. The theoretical justification of this is somewhat
more difficult because of the dependence among the bootstrap sample units.
At this time, a rigorous Edgeworth expansion under this kind of dependence
is unavailable in the literature. A cumbersome approach based on computa-

Ž .tion of cumulants, under the unsubstantiated assumption that a formal
Edgeworth expansion is valid, may be given along the lines of Hall and

Ž .Mammen 1994 . This does not lead to a complete solution, as the Edgeworth
expansions are not known. Instead, we first approximate the sequential
bootstrap by another sequential resampling scheme based on the Poisson
distribution. Under the new scheme the ‘‘independence’’ of sample units
under resampling is preserved. A rigorous justification of the Edgeworth
expansion can now be given more easily. In this paper we provide details for
the sample mean. Edgeworth expansions for statistics that can be repre-
sented as smooth functions of multivariate sample means are considered in
Section 4.

Ž .2. Sequential resampling scheme. Let S � X , X , . . . , X be a ran-1 2 n
Ž .dom sample from a distribution F and � F a parameter of interest. Let Fn

Ž .denote the empirical distribution function based on S and suppose that � Fn
Ž .is to be used as an estimator of � F . The Efron bootstrap method approxi-

' Ž Ž . Ž ..mates the sampling distribution of a standardized version of n � F � � Fn
ˆ' Ž Ž . Ž ..by the resampling distribution of a corresponding statistic n � F � � Fn n

ˆbased on a bootstrap sample S in which the original F has been replaced byn
the empirical distribution based on the original sample S and F of then
former statistic has been replaced by the empirical distribution based on

ˆ ˆa bootstrap sample F . In Efron’s bootstrap resampling scheme, S �n n
ˆ ˆ ˆŽ .X , X , . . . , X is a random sample of size n drawn from S by simple1 2 n

Ž .random sampling with replacement SRSWR . In the Rao, Pathak and
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Ž .Koltchinskii 1997 sequential scheme, observations are drawn from S se-
Ž . � Ž �1 .�quentially by SRSWR until there are m � 1 � n 1 � e � 2 distinct

original observations in the bootstrap sample; the last observation is dis-
carded to ensure technical simplicity. Thus an observed bootstrap sample
under the Rao�Pathak�Koltchinskii scheme admits the form

ˆ ˆ ˆ ˆ2.1 S � X , X , . . . , XŽ . N 1 2 Nž /1 1

ˆ ˆ ˆ �1Ž .in which X , X , . . . , X have m � n 1 � e distinct observations from S.1 2 N1

The random sample size N admits the following decomposition in terms of1
the independent random variables:

N � I � I � ��� �I1 1 2 m

� Ž �1 .�in which m � n 1 � e � 1; I � 1 and for each k, 2 � k � m,1

j�1k � 1 k � 1
P I � j � 1 � .Ž .k ž / ž /n n

Although we have established the consistency of this sampling scheme, a
rigorous proof of its second-order correctness requires an Edgeworth expan-
sion for dependent random variables; such an expansion is unavailable in the
literature at the present time. An alternative approach that can be used is to
slightly modify the preceding resampling scheme so that existing techniques

Ž .on Edgeworth expansion, such as those of Babu and Bai 1996 , Bai and Rao
Ž . Ž .1991, 1992 , Babu and Singh 1989 and others, can be employed. A modifi-
cation of our previous resampling scheme that allows the second-order cor-
rectness to go through is as follows.

2.1. Poisson Bootstrap. For the selection of a bootstrap sample with a
given number m of distinct units, under the Poisson bootstrap, we provide a
conceptual definition and a practical approach. Let us take a sample � , . . . , �1 n

Ž .of n independent observations from P 1 , that is, Poisson distribution with
mean 1. If there are exactly m nonzero values in the sample, we accept it and
take

ˆ2.2 S � X , � , X , � , . . . , X , � ,� 4Ž . Ž . Ž . Ž .1 1 2 2 n n

that is, with the observation X repeated � times, as the bootstrap sample.i i
If the number of nonzero values in � , . . . , � is not exactly m, we reject the1 n
entire sample and draw another sample of size n. The bootstrap sample size

ˆ Ž .N of S as in 2.1 is a random variable2

N � � � ��� �� .2 1 n

A practical way of implementing this resampling scheme is to first assign
Ž .at random n � m � ’s a value of zero and to the remaining m� ’s values

independently chosen from the Poisson distribution with mean � � 1 and
censored at X � 0. An outline of the equivalence of these two procedures is as
follows.
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Ž .THEOREM 2.1. The moment generating function M t of N , the sampleN 22

size of the Poisson resampling scheme, is given by

mt �1 �12.3 M t � exp e � 1 � e � 1 � e .Ž . Ž . Ž . Ž .Ž .Ž .Ž .N2

PROOF. Let Y , Y , . . . , Y be n Poisson variables with mean � � 1. Then1 2 n
it is easily seen that

�1�nP N � w � const � e � � ��� � ,Ž . Ž .2 1 1! 2! m !

where the sum Ý extends over all positive natural numbers � , � , . . . , �1 1 2 m
� Ž .�such that � � � � ��� �� � w. It then follows that see Pathak 19621 2 m

e�n
wmw wP N � w � const m � m � 1 � ��� � 1Ž . Ž .2 ž /ž /ž /1w!

2.4Ž .
e�n

m w �� const � X ,Ž .X�0w!

where � is the difference operator with unit increment.
Ž .From 2.4 it follows that

w1 X
mP N � w � � .Ž . m2 w!e � 1 X�0Ž .

Ž .Consequently, the moment generating function M t of N is given byN 22

t w we X
mM t � E exp tN � �Ž . Ž .Ž . Ý mN 22 w!e � 1 X�0Ž .w	0

wt1 e XŽ .
m� �Ým w!e � 1 X�0Ž . w	0

�mm t �� � e � 1 exp XeŽ . Ž . X�0

�m mt t� e � 1 exp me � exp m � 1 eŽ . Ž . Ž .Ž .½ ž /1

m t� exp m � 2 e ���Ž .Ž . 5ž /2

�m m mt �t �2 t� e � 1 exp me 1 � e � e � ���Ž . Ž . ½ 5ž / ž /1 2
m�m t t� e � 1 exp me 1 � exp �eŽ . Ž . Ž .Ž .

mmt t �1 �1� exp e � 1 � e � 1 � exp e � 1 � e � 1 � e .Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž .Ž .
This completes the proof. �
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The preceding theorem shows that the distribution of N can be viewed as2
that of the sum of m i.i.d. random variables with a common distribution with
the moment generating function given by the formula

�1t �1 �12.5 m t � exp e � 1 � e 1 � e .Ž . Ž . Ž . Ž .Ž .Ž .
Ž .It is evident that m t is the moment generating function of the Poisson

distribution with mean 1 and censored at X � 0. Let T denote a random
Ž . Ž . Ž �1 .variable with moment generating function m t . Then E T � 1� 1 � e

Ž . Ž . Ž .2and V T � e e � 2 � e � 1 . Therefore

E N � mE T � n � O 1Ž . Ž . Ž .2

and

V N � mV T � n e � 2 � e � 1 � O 1 .Ž . Ž . Ž . Ž . Ž .2

2.2. Advantages of Poisson bootstrap over classical bootstrap. One of the
main advantages of the sequential bootstrap over the classical fixed sample
size bootstrap is to avoid situations where a bootstrap sample has several
repeated observations which may give rise to a degenerate value of the
statistic under consideration. Thus Poisson bootstrap avoids zero value for
variance estimation.

Another reason to prefer Poisson bootstrap is the robustness of variance
estimation. Since the bootstrap utilizes all the data points, in general, the
bootstrap estimator of variance of a statistic is not robust for robust statistics.
The bootstrap estimator of variance of the sample median m based on then
sample X , . . . , X is given by1 n

n n
2� 1V � X � X p p ,Ž .Ý Ýn Ž i. Ž j. i , n j , n2

i�1 j�1

where X � ��� � X is the ordering of the data,Ž1. Žn.

i�n n�rn � 1 rp � n u 1 � u du,Ž .Hi , n ž /r � 1 Ž .i�1 �n

Ž . Ž .and r � n�2 if n is an even integer and � n � 1 �2 if it is an odd integer.
Breakdown point is a widely used measure of robustness in modern statisti-

ˆ ˆ Ž .cal literature. The breakdown point of a statistic � � � X , . . . , X isn n 1 n
Ž .defined as k�n , where k is the minimum number of data points needed to

be replaced by worst possible outliers to move the statistic beyond any bound.
In the case of bootstrap variance of sample median, the breakdown point is
Ž .1�n .

However, in the case of sequential bootstrap or Poisson bootstrap, X forŽ i.
Ž .i � m � n�2 do not enter the estimate of the variance of the sample

1 �1median. Hence the breakdown point is � � e � 0.132.2

We now proceed to establish the second-order correctness of the Poisson
bootstrap, a sequential bootstrap based on the Poisson distribution.
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� 43. Second order correctness. Let X , . . . , X be i.i.d. random vari-1 n
ables with mean � and variance � 2. Suppose X satisfies Cramer’s condition´1

3.1 lim sup E exp itX � 1.Ž . Ž .Ž .1
� �t �	

Let Y , Y , . . . be a sequence of i.i.d. Poisson random variables with mean 1.1 2
Let

n n1 1 2
2X � X , s � X � X , C � C � X � X �s ,Ý Ý ž / ž /n i n j n j j , n j n nn ni�1 i�1

n n
�1 �1N � Y , T � 
 , q � e � P Y � 0 and p � 1 � e ,Ž .Ý Ýi n i

i�1 i�1

where

1, if Y � 0,i
 �i ½ 0, otherwise.

We shall obtain Edgeworth expansions for the distribution of N�1�2Ýn C Yj�1 j j

given T � m and X , . . . , X . Then use this result to establish second-ordern 1 n ' Ž .correctness for the Poisson bootstrap in the simple case of n X � � �� .
This result can be extended to statistics which can be represented as a
smooth function of a multivariate mean. Second-order correctness of Poisson
bootstrap for such models is discussed in Section 4.

We now state the main theorem.

� � 5THEOREM 3.1. Suppose E X � 	 and that the characteristic function of1
Ž .X satisfies Cramer ’s condition 3.1 . If m � np is bounded, then´1

n1
�P X � X Y � xs T � m; X , . . . , XŽ .Ý i n i n n 1 nž /'N i�1

3.2Ž .
n1

�1� P X � E x � x� � O n ,Ž . Ž .Ž .Ý i 1 pž /'N i�1

uniformly in x.

REMARK 1. With truncation and additional analysis, the moment condi-
tion on X can be relaxed.1

To prove Theorem 3.1, we first establish some notation and a preliminary
proposition. Let � denote the standard normal density, � denote the bivari-0
ate normal density with zero mean vector and dispersion matrix

1 q
� � .0 ž /q pq
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Define

n1
3 3P x � C x � x ,Ž . Ž .Ýn jž /6n j�1

3��1 �1Q x , y ,  � P x � E Z � y , Ž . Ž . Ž .Ž .n n 06

� 2�1 �1� E Z � y ,  Y � 1 pq � q � p 
 � q p � qŽ . Ž . Ž . Ž .Ž .Ž .ž /ž /02

�2 �1 2 �1� x � 1 E Y � 1 Z � y ,  ,Ž . Ž . Ž .Ž .02

Žwhere Y is a Poisson random variable with mean 1, 
 � I and Z � Y ��Y � 04
.�1, 
 � p .

For brevity fix X ��� X and define1 n

y � r � n n�1�2 ,  � m � np n�1�2Ž . Ž .r m

and

n
'F x , r , m � P C Y � x n , N � r , T � m .Ž . Ýn i i nž /

i�1

Note that Ýn C � 0 and Ýn C 2 � n.i�1 i i�1 i

PROPOSITION 1. Suppose for any K � 0, there exists a 0 � � � 1 such that

n1
lim sup sup exp itC � � .Ž .Ý jn3n�	 � � j�1K� t �n

n � � 5Suppose m � np is bounded and for some M � 1, Ý C � nM. Theni�1 i
uniformly in x, r and m, we have

n
'nP C Y � x n , N � r , T � mÝ i i nž /

i�13.3Ž .
x

�3�2� � v , y ,  dv � O n ,Ž . Ž .H n r n
�	

where

� v , y ,  � � v � y , Ž . Ž . Ž .n 0

� 1 � n�1�2Q v , y ,  � n�1 Q v , y , w .Ž . Ž .Ž .n n1

3.4Ž .

Q is a fourth degree polynomial in v, y,  whose coefficients are bounded byn1
a constant depending only on M.

The proposition is proved in the Appendix.
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PROOF OF THEOREM 3.1. Using Proposition 1, we shall first show that
uniformly in x,

n1
�P X � X Y � xs T � m , X , . . . , XŽ .Ý i i n n 1 nž /'N i�13.5Ž .

1 1
2� � x � � 1 � x � x � O ,Ž . Ž . Ž .3 p ž /' n6 n

�3 Žwhere � is the standard normal distribution function and � � � E X �3 1
.3 � � �1�2 n Ž . � 4� . Let H � n Ý Y � 1 � log n . Then by a moderate deviationn i�1 i

result,

3.6 1 � P H � O n�10 .Ž . Ž . Ž .n

5n 5� �Suppose Ý X � X � nMs for some M � 1; then by Proposition 1,j�1 i n n

n1'n P X � X Y � xs , T � mÝ ž /j n j n nž /'N j�1

n1
�9'� n P C Y � x , N � r , T � m � O nŽ .Ý Ý j j nž /'r� � j�1r�n � n log n'

1 x r�n' �1� � v , y ,  dv � O nŽ . Ž .Ý H n r m'n �	� �r�n � n log n'
1�2

x1 1
� � u 1 � y , y , Ý H n r r mž /' 'ž /n n�	� �r�n � n log n'3.7Ž .

1�21
� 1 � y durž /'n

1�2
x 1

� � u 1 � y , y , H H n mž /'ž /ž � � n�	 y �log n

1�21
� 1 � y dy duž /' /n

� O n�1 .Ž .

By Theorem 13 on local Edgeworth expansion on pages 205 and 206 of Petrov
Ž .1975 , we have

2
�j �2 �1'npq P T � m � �  � n q  �  � O nŽ . Ž . Ž . Ž . Ž .Ýn m j m m

3.8Ž . j�1

� �  � n�1�2q  �  � O n�1 ,Ž . Ž . Ž . Ž .m 1 m m



G. J. BABU, P. K. PATHAK AND C. R. RAO1674

where q and q are polynomials and1 2

3 �3�21 3q y � E 
 � p pq y � 3 y .Ž . Ž . Ž . Ž .1 16

Ž . Ž . Ž . Ž .The estimate 3.5 follows from 3.6 , 3.7 and 3.8 after some simple algebra.
The theorem now follows from the standard Edgeworth expansion

n1 1
2 �1P X � � � � x � � x � � 1 � x � x � O nŽ . Ž . Ž . Ž . Ž .Ý i 3ž /' 'n ni�1

and

n 15 5� �P X � X � nMs � O for some M � 1.Ý i n n ž /ž / nj�1

This completes the proof. �

4. Smooth functional model. Proposition 1 and Theorem 3.1 can be
extended to multivariate cases and to statistics which can be expressed as
smooth functions of multivariate means. Let X ��� X be a sequence of i.i.d.1 n
random vectors with mean � and dispersion �. Let � denote the samplen
dispersion matrix of X , . . . , X . With some additional effort and using the1 n

Ž .ideas and lemmas from Babu and Bai 1996 , we can establish the following
results.

THEOREM 4.1. Suppose the characteristic function of X satisfies Cramer ’s´1

� � 4condition and E X . Let H be a three times continuously differentiable1
Ž .function in a neighborhood of �. Let l y denote the vector of first-order

Ž . Ž �1 .partial derivatives at y and l � 	 0. If m � n 1 � e is bounded, then for
� 4almost all sample sequences X , we havej

�1 n'N H N Ý X Y � H XŽ . Ž .Ž .i�1 i i n' �sup n P � x T � m; X , . . . , Xn 1 n�� 0x l X � l X' Ž . Ž .n n n

�' '�P n H X � H � � x l � �l � � 0,Ž . Ž . Ž .Ž .Ž .ž /n

as n � 	.

The next two results are more suitable for applications to Studentized
statistics.
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� 4THEOREM 4.2. Let X be as in Theorem 4.1. Suppose the function H isn
three times continuously differentiable in a neighborhood of the origin and
Ž . Ž �1 .H 0 � 0. If m � n 1 � e is bounded, then for almost all sample sequences

� 4X , we havej

n
��1 2' ' �'sup n P N H N X � X Y � x l 0 � l 0 T � m;Ž . Ž .Ž .Ý i n i n nž /žx i�1

X , . . . , X1 n /
�' '�P n H X � � � x l 0 �l 0 � 0,Ž . Ž .Ž .ž /n

as n � 	.

It is easily seen that the second-order correctness of the Poisson bootstrap
of a pivot such as

n
� '� � N X � X Y sÝ ž /N j n j nž /

i�1

follows from Theorem 4.2. The one-term correction captures the skewness of
the underlying distribution.

The most commonly used statistics, especially the Studentized versions,
are of the type

n1'4.1 t � n H X � H � �� � X ,Ž . Ž . Ž . Ž .Ž . Ýn iž /n i�1

where � is a function on � k � � r and � is a smooth real-valued function on
� r. The classical Student’s t is an example of this type of statistic. If X arei
univariate, then

't � n X � E X �s ,Ž .Ž .n1 n 1 n

Ž . Ž . Ž . Ž 2 . Ž . Ž Ž 2 ..1�2satisfies 4.1 with H x � x, � x � x , x , � x, y � max 0, x � y
2 n 2Ž . Ž . Ž .and s � 1�n Ý X � X . The version corresponding to 4.1 under then i�1 i n

Poisson scheme is generally of the type
n n1 1't Y � N H X Y � H X � � X Y .Ž . Ž .Ž .Ý Ýn i i n i iž / ž /ž /n Ni�1 i�1

Ž .As in Theorem 4 of Babu and Singh 1984 , we can derive the following.

THEOREM 4.3. Let
� �'� E � X � l � �l � , � X � l X � l X'Ž . Ž . Ž .Ž .Ž . Ž . Ž . Ž .1 n n n n

Ž . Ž Ž ..and let L X be a linearly independent subcollection of X , � X with thei i i
Ž Ž ..property that all the coordinates of X , � X can be expressed as lineari i

Ž . Ž .combinations of those of L X . If the characteristic function of L X satisfiesi 1
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� Ž .� 4Cramer ’s condition E L X � 	, and if m � np is bounded then´ 1

' �sup n P t Y � x T � m, X , . . . , X � P t � x � 0,Ž . Ž .Ž .n n 1 n n
x

� 4as n � 	, for almost all sample sequences X .j

APPENDIX

To establish Proposition 1 of Section 3, we require some preliminary
results. First note that by Theorem 10.1 of Bhattacharya and Ranga Rao
Ž .1986 , there exists a random variable V with distribution J such that

110 ˆŽ . Ž � � .E V � 	, P V 	 1 � and the characteristic function J of J vanishes4
� �outside the interval �c, c , for some c � 0, that is,

ˆ � �A.1 J t � 0 for t � c.Ž . Ž .
For any � � 0, let J denote the distribution of V� . The next lemma is a�

Ž .trivial consequence of Lemma 24.1 of Bhattacharya and Ranga Rao 1986 .
Ž . Ž . Ž .The inequality is similar to 4.1 of Babu and Singh 1984 . See also 4.2 of

Ž .Babu and Singh 1984 .

LEMMA 1. Suppose h is a Borel measurable function on the real line �,
bounded by 1. Let � be a finite measure and � a finite signed measure. Then
for any 0 � � � 1,

1�4�� �h y � � � dy � 15 � � � � J � � 3 � � � � �Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .H �ž
� � � �1�2� � � � � � P V � �Ž . Ž . Ž .Ž .

� sup  h , 2� , z � y �� dy ,Ž . Ž .H /1�4� �z ��

� � � � � �where � � � � � is the Jordan decomposition, � � � � � is the total
variation measure and

� 
 � 
� � � � h , � , z � sup h z � y � h z � y : y � � , y � � .Ž . Ž . Ž .Ž .
Further, we have for any 0 � v � 1, 0 � � � 1,

 h , � , v � y � y dyŽ . Ž .H
A.2Ž .

1�3 �2� 3  h , � , y � y dy � O v exp � v .Ž . Ž . Ž .Ž .H 8

Ž . Ž . Ž .The inequality A.2 is the relation 35 of Sweeting 1977 .
ŽThe next lemma helps in estimating the total variation norm of � �

. k Ž .� � J . Let D h t, s,  denote the kth partial derivative of h with respect to�

t.

LEMMA 2. Let g be a real-valued function on � � �2 satisfying
	 	 	

21 � x g x , r , j dx � 	.Ž . Ž .Ý Ý H
�	r��	 j��	
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Then for all integers r and j,
	 	

kg x , r , j dx � max D g t , s,  dt ds d ,Ž . Ž .ˆH H H
k�0, 2�	 G �	

� � � �where G � �� , � � �� , � and g denotes the Fourier transform of g, thatˆ
is,

	 	 	
i t xg t , s,  � exp isr � i j e g x , r , j dx .Ž . Ž . Ž .ˆ Ý Ý H

�	r��	 j��	

PROOF. Following the proof of Lemma 11.6 of Bhattacharya and Ranga
Ž . � Ž . 4Rao 1986 , let A � x: g x, r, j 	 0 . If for each r, j,

	
i t xg t ; r , j � e g x , r , j dx ,Ž . Ž .ˆ H

�	

ˆthen the Fourier transform h of the functionr , j

h x � 1 � x 2 g x , r , jŽ . Ž . Ž .r , j

is given by
ˆ 2h t � g t ; r , j � D g t ; r , j .Ž . Ž . Ž .ˆ ˆr , j

Thus by Fourier inversion and Fubini’s theorem we have
	 � ��32 21 � x g x , r , j � 2� g t , s,  � D g t , s, Ž . Ž . Ž . Ž . Ž .ˆ ˆŽ .H H H

�	 �� ��

� exp �i sr �  j � tx ds d dt .Ž .Ž .
Hence we have

	

g x , r , j dxŽ .H
�	

� g x , r , j dx � g x , r , j dxŽ . Ž .H H
A ��A

� � 1 � x 2 g x , r , j dxŽ . Ž .H Hž /A ��A

	 � ��1�3 2� 2� � 1 � x g t , s, Ž . Ž . Ž .ˆŽH H H H Hž / žA ��A �	 �� ��

�D2 g t , s,  exp �i sr �  j � tx ds d dt dxŽ . Ž .Ž .ˆ . /
	 	�1�3 2� 2� 1 � x dx g t , s, Ž . Ž . Ž .ˆŽH H Hž /�	 �	 G

2� D g t , s,  ds d dtŽ .ˆ .
	

k� max D g t , s,  ds d dt .Ž .ˆH H
k�0, 2 �	 G

This completes the proof of the lemma. �
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Ž .The next lemma is Lemma 2 of Babu and Singh 1984 and is stated here
for ready reference.

Ž .LEMMA 3. Suppose X satisfies Cramer ’s condition 3.1 . For any K � 0,´1
Ž .there exists a 0 � � � � K � 1 and � � 0 such that for almost all sample

� 4sequences X ,i

n1
lim sup sup exp iu X � X � � .Ý ž /ž /j nn�nn�	 � �K� t �e j�1

The next three lemmas are similar to Lemmas 2 and 3 of Babu and Bai
Ž . �1�2 �1996 . To state these, let d � d � c n satisfy for some M � 1,j j, n j

n n d
3 �2 '� �A.3 d � 0, d � 1 and d � M � n .Ž . Ž .Ý Ý Ýj j j

1 1 j�1

In proving Proposition 1, we apply the lemmas with d � C n�1�2. For eachj j
fixed r and m, the Fourier transform of

n n n

A.4 F x , r , m � P d Y � x , Y � r , 
 � mŽ . Ž . Ý Ý Ýn j j j jž /
j�1 j�1 j�1

is given by

n

n nh t ; r , m � E exp it d IŽ . Ý j ŽÝ Y �r , Ý 
 �m.j� 1 j j�1 jž /ž /j�1A.5Ž .
� �1

� f t , s,  exp �isr � im ds d ,Ž . Ž .H H n24� �� ��

n Ž .where f is the characteristic function of Ý d Y , Y , 
 . Note thatn j�1 j j j j
n

f t , s,  � f td � s,  ,Ž . Ž .Łn j
j�1

where

f u ,  � E exp iuY � i
 � e�1 1 � ei � exp i � eiu .Ž . Ž . Ž .Ž . Ž .1 1

� 4Let for any subset R of 1, . . . , n ,

f t , s,  � f td � s, Ž . Ž .Łn , R j
j
R

and for any 0 � k � 2, let

f t , s,  � max f t , s,  ,� 4Ž . Ž .n , k n , R

� 4where the maximum is taken over all subsets R of 1, . . . , n of size n � k.
Finally, let

n1
A.6 d t � exp itd .Ž . Ž . Ž .Ýn jn j�1
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LEMMA 4. For any 0 � k � 2,

A.7 f t , s,  � exp 1 � 0.2n 1 � d t .Ž . Ž . Ž .Ž .Ž .n , k n

PROOF. Observe that

n n1 12
f td � s,  � E exp i td � s Y � Y � i 
 � 
Ž . Ž .Ž . Ž .Ž .Ý Ý ž /j j 1 2 1 2n nj�1 j�1

n1
� E exp it Y � Y dŽ .Ž .Ý 1 2 jž /ž n j�1

�exp is Y � Y � i 
 � 
Ž . Ž .Ž .1 2 1 2 /
� E d t Y � YŽ .Ž .Ž .n 1 2

� � � �� P Y � Y 	 1 � d t P Y � Y � 1Ž .Ž . Ž .1 2 n 1 2

� �� 1 � 1 � d t P Y � Y � 1Ž . Ž .Ž .n 1 2

� 1 � 1 � d t 0.4.Ž .Ž .n

x�1 � 4As x � e for all 0 � x � 1, for any subset R � 1, . . . , n with at least
n � 2 integers, we have

22f t , s,  � f td � s, Ž . Ž .Łn , R j
j
R

2� exp 2 � n � f td � s, Ž .Ý jž /
j
R

n
2� exp 2 � n � f td � s, Ž .Ý jž /

j�1

� exp 2 � 0.4n 1 � dn t .Ž .Ž .Ž .

This completes the proof. �

�'� �LEMMA 5. For t � n �M , we have

n1 1
2A.8 d t � exp itd � 1 � tŽ . Ž . Ž .Ýn jn 3nj�1

�'� � � � � �and for 0 � k � 2, s � � ,  � � , t � n �M ,

1
2A.9 f t , s,  � exp 1 � t .Ž . Ž .n , 2 ž /15
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�'� �PROOF. For t � n �M ,

2 nt 1 1
2 2d t � 1 � � exp itd � 1 � itd � t dŽ . Ž .Ýn j j jž /2n n 2j�1

1 M �

32 �3�2� �� 1 � t � t n
2n 6
1

2� 1 � t .
3n

Ž .The second part follows from A.7 . �

� � � � � � 2 2 Ž .2 �1LEMMA 6. Suppose t � log n, s � � ,  � � and s �  	 log n n .
Then there exist constants k and k depending only on M � such that for1 2
0 � k � 2,

2A.10 f t , s,  � k exp �k log n .Ž . Ž . Ž .Ž .n , k 1 2

Ž 3.PROOF. As E Y � 5,1

�1exp �iu � ivp E exp iuY � iu
 � 1 � u , v � u , vŽ . Ž . Ž . Ž .Ž .1 1 02

3�22 2� u � v .Ž .

Since

� 1 2 2u , v � u , v 	 q � q u � v ,Ž . Ž . Ž .Ž .0 2

1Ž .Ž . � � � �there exists a positive � � q�16 � q such that for all u � 4�, v � 4�,2

we have

1
� E exp iuY � iv
Ž .Ž .1 12

3�2��1 2 2� 1 � 2 u , v � u , v � u � vŽ . Ž . Ž .0

q 1 3�22 2 2 2� 1 � � q u � v � u � vŽ . Ž .ž /2 2A.11Ž .
q 1

2 2� 1 � � q � 4� u � vŽ .ž /ž /2 2

� 1 � � u2 � v2Ž .
� exp �� u2 � v2 .Ž .Ž .
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� � Ž . � � Ž � .1�3 �1�6 Ž � .If t � log n then td � M n log n � � for all n � n M , � . Inj
� � � � � � Ž � .this case if s � 2�,  � 2�, then s � td � 3� for all n 	 n M , � . So byj

Ž .A.11 ,

f t , s,  � 4 f t , s, Ž . Ž .n , k n

� 4 exp ��n s2 �  2 � �t 2Ž .Ž .
� 4 exp ��n s2 �  2Ž .Ž .

2� 4 exp �� log n ,Ž .Ž .
2 2 Ž .2 �1 � � � �provided s �  	 log n n and s � 2�,  � 2�.

Ž .To establish inequality A.10 for the remaining s and , note that b given
by

�b u � E exp iuY Y � 0Ž . Ž .Ž .1 1

is the characteristic function of a lattice distribution of span 1. So for
0 � � � ��10,

i vE exp iuY � iv
 � q � pe r uŽ . Ž .Ž .1 1

� q � p r u � 1 � �Ž .
� � � � � �for some 0 � � � 1, whenever � � u � � � �. Hence for t � log n, 2� � s

� � , all  and for all large n,

f td � s,  � 1 � � .Ž .j

� � � �Now consider the case s � 2� and v 	 2�. Let 0 � � � � be such that
� Ž . � 2 � �1 � r u � � q whenever u � � . Hence as 0 � � � 1,

i vE exp iuY � iv
 � q � pe r uŽ . Ž .Ž .1 1

i v� �� q � pe � p 1 � r uŽ .
� i v � 2� q � pe � � pq

1�2 2� 1 � 2 pq 1 � cos u � � pqŽ .Ž .
1�2 2� 1 � 2 pq 1 � cos � � � pqŽ .Ž .

� 1 � pq cos 2� � 1 � � 2Ž .
� 1 � � 2 pq � 1 � � 2 pq.

� � � � � �Thus if t � log n and s � ��2, then rd � s � � for all large n. So ifj
� � � 2�, 0 � k � 2, then

f t , s,  � k � nŽ .n , k 3

for some k � 0 and 0 � � � 1. This completes the proof of the lemma. �3

PROOF OF PROPOSITION 1. Since for any � � 0,
x��

� u dv � O �Ž . Ž .H
x��
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uniformly in x, we have by Lemmas 1 and 2, with � � n�2 ,

x
nF x , r , m � � v , y ,  dvŽ . Ž .Hn n r m

�	

� � 5�2�cn�2 j ˆ� n � max D nf t , s,  exp �isr � imŽ . Ž .ŽH H H n
5�20�j�2 �� �� �cn

A.12Ž .

ˆ�� t , s,  dt ds d ,Ž . .n

ˆ ˆ n �1�2Žwhere � and f denote the characteristic functions of � and Ý n C Y ,n n n i�1 j j
. Ž .Y , 
 , and c is the constant in A.1 . Note that for each r and m, the Fourierj j

Ž .transform of F �, r, m is given byn

� �1ˆ ˆF t , r , m � f t , s,  exp �isr � im ds d .Ž . Ž . Ž .H Hn n24� �� ��

Ž .To estimate the last integral in A.12 , we divide the range of integration
into four possibly overlapping regions:

Ž . � � � � Ž . �1�2 � � Ž . �1�2i t � log n, s � log n n ,  � log n n ;
Ž . � � 2 2 Ž .2 �1 � � � �ii t � log n,  � s 	 log n n ,  � � , s � � ;

'Ž . � � � � � �iii log n � t � n �M, s � � and  � � ;
5�2'Ž . Ž . � � � � � �iv n �M � t � cn , s � � and  � � .

j Ž . Ž . Ž .We expand nD f r, s,  in region i and estimate the integral in A.12n
Ž .as in the proof of Theorem 9.9 of Bhattacharya and Ranga Rao 1986 .

Ž . Ž .Lemma 6 is used for region ii , Lemma 5 is used for region iii and Lemmas
Ž .3 and 4 are used for region iv to estimate the integral. These estimates lead

Ž �3�2 . Ž .to a bound of 0 n for A.12 , completing the proof. �
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