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THE SCREENING EFFECT IN KRIGING1

BY MICHAEL L. STEIN

When predicting the value of a stationary random field at a location x
in some region in which one has a large number of observations, it may be
difficult to compute the optimal predictor. One simple way to reduce the
computational burden is to base the predictor only on those observations
nearest to x. As long as the number of observations used in the predictor
is sufficiently large, one might generally expect the best predictor based on
these observations to be nearly optimal relative to the best predictor using
all observations. Indeed, this phenomenon has been empirically observed
in numerous circumstances and is known as the screening effect in the
geostatistical literature. For linear predictors, when observations are on a
regular grid, this work proves that there generally is a screening effect
as the grid becomes increasingly dense. This result requires that, at high
frequencies, the spectral density of the random field not decay faster than
algebraically and not vary too quickly. Examples demonstrate that there may
be no screening effect if these conditions on the spectral density are violated.

1. Introduction. Kriging, which is effectively optimal linear prediction, is
a popular method for predicting random fields based on observations of the
random field at some set of locations. Geostatisticians have long noted that, when
predicting at a particular location x, it is often the case that those observations
nearest to x have the largest impact on the kriging predictor and that the kriging
predictor based on only these nearest observations is nearly optimal relative
to the kriging predictor based on all of the observations. This phenomenon is
known as the screen or screening effect in the geostatistical literature [Armstrong
(1998), Chilès and Delfiner (1999), Cressie (1993), Journel and Huijbregts (1978),
Wackernagel (1995)]. In addition to its theoretical interest, the screening effect is
of practical importance because it provides a justification of the common practice
of using only those observations nearest to x when predicting at x as a way of
reducing computations or because of concerns about the lack of validity of a
model over larger spatial scales. Except for some highly specific special cases in
which certain observations have no impact on the kriging predictor, the evidence
to date for the screening effect is empirical in the spatial setting [Chilès and
Delfiner (1999), Section 3.6] although results such as Theorem 10 in Chapter 3
and Theorem 12 in Chapter 4 of Stein (1999), which show that models with similar
local behavior commonly have similar optimal linear predictors, provide indirect
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evidence that only local observations should generally have a nonnegligible impact
on kriging predictions.

It is not clear how one could obtain useful and general results on the screening
effect for any fixed set of observations. As in many statistical problems, it will
prove helpful to consider an asymptotic approach to the problem. It will also prove
helpful to choose a scenario in which it is possible to do some exact analysis on the
behavior of kriging predictors. The following setup meets these criteria. For δ > 0,
suppose we observe a mean 0, weakly stationary and mean square continuous
random field Z at δj for all j ∈ Z

d , the d-dimensional integer lattice. For fixed x
in the unit cube [0,1]d but not a vertex of this cube, consider predicting Z(δx). It
turns out (see Section 2) that we can explicitly characterize the best linear predictor
of Z(δx) based on this infinite lattice of observations.

One possible mathematical embodiment of a screening effect would be to prove
that, if one uses only those locations δj in some fixed neighborhood of the origin
to predict at δx, as δ ↓ 0, the best linear predictor based on these observations is
asymptotically optimal relative to the best linear predictor based on the infinite
lattice. More specifically, for A⊆ R

d , define e(x,A) to be the error of the optimal
linear predictor of Z(x) when Z is observed at all y ∈A. If B ⊆ R

d contains some
neighborhood of the origin, then

lim
δ↓0

Ee(δx,B ∩ δZd)2

Ee(δx, δZd)2
= 1(1)

would be the asymptotic result we seek. In fact, since, for B bounded, the number
of observations in B ∩ δZd grows like δ−d as δ ↓ 0, we might hope for a stronger
result that restricts consideration to some large but fixed number of observations
near δx. Again consider B ⊆ R

d containing some neighborhood of the origin. The
idea now is that, if r is large, then limδ↓0{Ee(δx, δ(rB ∩ Z

d))2/Ee(δx, δZd)2}
should be near 1, or,

lim
r→∞ lim

δ↓0

Ee(δx, δ(rB ∩Z
d))2

Ee(δx, δZd)2
= 1.(2)

Of course, (2) implies (1). The main result of this paper, Theorem 1 in Section 2,
proves (2) under fairly general conditions on the spectral density for Z.

One might imagine that (2), or at least the weaker (1), is essentially always
true for stationary random fields. To see that this is not the case and to motivate the
assumptions on the spectral density in Theorem 1, let us consider several examples.
We first give some definitions. For two positive functions f and g on a domain D,
we will say f  g if f/g is bounded on D. Furthermore, we will say f (t) g(t)

as t → t0 if, for some neighborhood D′ of t0, f  g on D′. We will say that f � g

on D if f  g and g f on D and that f (t)� g(t) as t → t0 if f (t) g(t) as
t → t0 and g(t) f (t) as t → t0.

In the first example, suppose that Z is a weakly stationary process on R and, for
some β > 0, has spectral density f satisfying f (v)� e−β|v| on R. This condition
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implies thatZ has mean square derivatives of all orders. Consider predictingZ(1
2δ)

based on observing Z(δj) for all j ∈ Z. From results in 3.8 of Stein (1999) (see
also Section 2),

Ee
(1

2δ, δZ
d
)2 =

∫ π/δ

−π/δ

∣∣∣∣∣1 −
∑∞

j=−∞(−1)j f (v + 2πδ−1j)∑∞
j=−∞ f (v + 2πδ−1j)

∣∣∣∣∣
2

×
∞∑

j=−∞
f (v + 2πδ−1j) dv

(3)

= 4
∫ π/δ

−π/δ

{∑
j odd f (v + 2πδ−1j)

}2∑∞
j=−∞ f (v + 2πδ−1j)

dv

�
∫ π/δ

0
eβv

{
e−β(2πδ−1+v) + e−β(2πδ−1−v)}2

dv � e−πβ/δ

as δ ↓ 0. If, for some fixed m > 0, one considers using just those observations at
δj for j = −m + 1,−m + 2, . . . ,m, then the mean squared prediction error of∑m

j=−m+1 cj (δ)Z(δj) is

∫ ∞
−∞

∣∣∣∣eiδv/2 −
m∑

j=−m+1

cj (δ)e
iδjv

∣∣∣∣
2

f (v) dv.(4)

For any f bounded away from 0 in a neighborhood of the origin, it is possible
to show that (4) cannot tend to 0 faster than δ to a finite power (details available
from author). Comparing this result to (3), we see that, for any bounded set B ,
limr→∞ limδ↓0{Ee(1

2δ, δ(rB ∩ Z))2/Ee(1
2δ, δZ)

2} = ∞, so that (2) is false for
f (v)� e−β|v|. I do not know whether (1) is true in this case.

The “Cauchy” model for covariance functions [Chilès and Delfiner (1999),
page 86] has autocovariance function K(x) = cov{Z(y),Z(y + x)} ∝ (1 +
x2/β2)−1 and spectral density f (v) ∝ e−β|v| for a process on R and hence a
process with this autocovariance function will not satisfy (2). By an argument very
similar to the one leading to (3), it is possible to show that a process in one dimen-
sion with “Gaussian” autocovariance function will not satisfy (2). A Gaussian au-
tocovariance function is proportional to e−βx2

for some β > 0 and has correspond-
ing spectral density proportional to e−v2/(4β). Gaussian autocovariance functions
have been used in applications in various disciplines [Chilès and Delfiner (1999),
page 85], but Stein [(1999), pages 29 and 69] has argued against their practical use,
in part because of the pronounced lack of a screening effect found in a numerical
study.

One can get an even more extreme result by considering f with bounded
support. Specifically, according to the sampling theorem for random fields [Jerri
(1977)], if the support of f is contained in [−πT,πT ]d and δ ≤ T −1, then the
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random field can be perfectly predicted throughout R
d based on observations

on δZd . Furthermore, the fact that the process has a spectral density implies
that no finite set of distinct observations has a singular covariance matrix, so
that Ee(δx,B ∩ δZd)2 > 0 for all bounded B and δ > 0. Thus, Ee(δx,B ∩
δZd)2/Ee(δx, δZd)2 is a positive number over 0 for any bounded B and any
δ ∈ (0, T −1), so (1) is badly false.

For a different kind of example of when (1) is false, suppose Z on R has
autocovariance function K(x) = cov{Z(y),Z(y + x)} = 1 − |x| for |x| < 1 and
0 otherwise, which is known as the triangle [Chilès and Delfiner (1999), page 61]
or triangular [Stein (1999), page 30] autocovariance function. From the example
on page 67 of Stein (1999), one should expect a problem with this autocovariance
function. When predicting Z(1

2δ) based on all Z(δj) in B = [−b, b] for b < 1, for
all δ sufficiently small, the best linear predictor of Z(1

2δ) is just 1
2{Z(0)+ Z(δ)}

and the mean squared error of this prediction is 1
2δ. Now suppose δ = 2

2n+1 for
some positive integer n. Then

Ee

(
1

2n+ 1
,

2

2n+ 1
Z

)2

≤E

[
Z

(
1

2n+ 1

)
− 1

2

{
Z

(
2

2n+ 1

)
+Z(0)

}

− 1

8

{
Z

(
2n

2n+ 1

)
+Z

(−2(n− 1)

2n+ 1

)
−Z

(
2(n+ 1)

2n+ 1

)
−Z

( −2n

2n+ 1

)}]2

= 7

8(2n+ 1)
,

so that limδ↓0{Ee(1
2δ,B ∩ δZ)2/Ee(1

2δ, δZ)
2} ≥ 8

7 and (1) is false. The problem
is caused by the lack of smoothness of the autocovariance function at ±1.
The corresponding spectral density is f (v) = (1 − cosv)/(πv2) [Stein (1999),
page 68], which has substantial oscillations at high frequencies.

The spherical autocovariance function, which Chilès and Delfiner [(1999), page
225] call “the geostatistician’s best friend,” also has a spectral density with
substantial oscillations at high frequencies when used as a model for a random
field in three dimensions. For this model, covariances only depend on the distance r
between observations and equal 0 beyond a range parameter a and are proportional

to 1 − 3
2
r
a
+ 1

2
r3

a3 for r < a. For d = 3, the corresponding spectral density depends

only on v = |v| and is proportional to cos2 ( 1
2av

)
/v4 plus a term of order v−5 as

v→∞. I would conjecture that (1) is false in this setting for any bounded set B ,
although I cannot prove it. However, Stein and Handcock (1989) demonstrate that
the spherical model lacks a screening effect when one observes averages of the
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random field over certain concentric spheres and wishes to predict the random
field at their common center.

These examples suggest that we will need to exclude at least some spectral
densities that either decay too fast at high frequencies or are too wiggly at high
frequencies. We can capture both of these characteristics by requiring that for
some constant α > d , the spectral density be what is known as regularly varying at
infinity with exponent−α as the frequency increases along any ray from the origin.
As an example, if f (v)∼ |Av|−α as |v|→∞ for some nonsingular matrix A, then
f is regularly varying at infinity with exponent −α along all rays from the origin.
If, in addition, f � 1 on bounded sets, then it satisfies the conditions of Theorem 1
in the next section and (2) holds. One way to think about the conditions on f

in Theorem 1 is that they require that the corresponding random field not be too
different from a self-affine random field. We will return to this issue in Section 5.

Another asymptotic formulation we could use to study the screening effect
would be to fix the observation grid by, for example, setting δ = 1, selecting x
and some bounded set B containing a neighborhood of the origin and looking at
how Ee(x, (rB) ∩ Z

d)2 behaves as r → ∞. We then trivially have a screening
effect of sorts for any mean 0 random field Z with finite second moments:
Ee(x, (rB) ∩ Z

d)2 → Ee(x,Zd)2 as r → ∞. It is exactly because such a result
holds so generally that it is not informative and that Theorem 1, which excludes
the counterexamples considered in this section, is.

Section 2 states and proves the main result of this paper on the screening effect.
A critical step in this proof is Theorem 2, which shows that predictions under
a presumed but incorrect spectral density can be asymptotically optimal even if
the presumed spectral density is not asymptotically proportional to the correct
spectral density as the norm of the frequency increases. Theorem 2 thus goes
beyond Theorem 10 in Stein [(1999), Chapter 3] which proves asymptotically
optimal prediction occurs when the ratio of the presumed to the true spectral
densities tends to a positive constant as the norm of the frequency increases. The
results in Section 2 all assume that the mean of the random field is known to be 0,
which corresponds to what is called simple kriging in the geostatistical literature
[Chilès and Delfiner (1999)]. It is common in practice to assume the mean is an
unknown constant and then predict the random field at unobserved locations using
what is known as ordinary kriging [Chilès and Delfiner (1999)], which is just a
special case of best linear unbiased prediction. Section 3 shows that Theorem 2
also applies to ordinary kriging. Section 4 provides numerical results quantifying
the screening effect in some limited circumstances, including a case in which the
process is observed with measurement error, which is not treated by the theoretical
results herein. Section 5 provides some discussion on the assumptions about the
spectral densities, the nature of the asymptotic regime in Theorems 1 and 2 and
some possible extensions of these results.
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2. Main result. Suppose ∠v = v/|v|, bd(r) is the d-dimensional ball of
radius r centered at the origin and ∂bd(r) is the ball’s surface. Throughout
this work, we will assume that the spectral density f possesses the following
properties:

(A1) f � 1 on bounded subsets of R
d .

(A2) There exists a positive function g on R
d such that f � g on R

d , f (v)∼ g(v)
as |v| →∞ and g(v)= g̃(|v|)θ(∠v) for some functions g̃ on [0,∞) and θ

on ∂bd(1), where θ � 1 on ∂bd(1) and, for some α > d ,

g̃(r)=
{
r−αL(r), for r ≥ 1,
L(1), for 0 ≤ r < 1,

where L is slowly varying at ∞.

A positive function L on [0,∞) is said to be slowly varying at ∞ if, for every
r > 0, L(tr)/L(t)→ 1 as t →∞. For example, logb t is slowly varying at infinity
for any value of b. The function g̃ given in (A2) is said to be regularly varying at
∞ with exponent −α. Everything we will need about slowly varying functions is
contained in Chapter 1 of Bingham, Goldie and Teugels (1987), to which we will
refer henceforth as BGT.

From the Representation Theorem for slowly varying functions (BGT, page 12),
the discussion on page 14 of BGT and the fact that we only require f (v)∼ g(v)
as |v|→∞ in (A2), we can assume without loss of generality that

L(r)=L1 exp
{∫ r

1

ξ(u)

u
du

}
(5)

for all r ≥ 1, where L1 > 0 and ξ is a bounded, measurable function on (0,∞)

satisfying ξ(u)→ 0 as u→∞. For definiteness, set L(r)= L1 for 0 ≤ r < 1, so
that L(1)= L1.

Suppose Z is a mean 0 weakly stationary random field on R
d with spectral

density f . For x ∈ R
d and A ⊆ R

d , let Ẑf (x,A) be the best linear predictor of
Z(x) based on observing Z(y) for all y ∈A under the spectral density f . The error
of this predictor is denoted by ef (x,A)= Z(x)− Ẑf (x,A) and write ef (x, δ) as
shorthand for ef (x, δZd). Denote expectations under the spectral density f by Ef .

THEOREM 1. Suppose f satisfies (A1) and (A2), x is a nonvertex of [0,1]d
and B ⊆ R

d contains some neighborhood of the origin. Then

lim
r→∞ lim

δ↓0

Ef ef
(
δx, δ(rB ∩Z

d)
)2

Ef ef (δx, δ)2
= 1.

Allowing the grid of observations to extend infinitely may appear unnatural for
practical applications. The following corollary, in which observations are restricted
to some bounded set, follows immediately from Theorem 1.
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COROLLARY 1. Suppose f satisfies (A1) and (A2), x is a nonvertex of [0,1]d
and A,B ⊆ R

d each contain some neighborhood of the origin. Then

lim
r→∞ lim

δ↓0

Ef ef
(
δx, δ(rB ∩Z

d)
)2

Ef ef (δx,A∩ δZd)2
= 1.

The proof of Theorem 1 is rather roundabout and some of the intermediate
steps are of independent interest, so it is worthwhile to outline the argument before
giving details. The first step is to show that, asymptotically, there is no difference
between using f and g to do the prediction and to evaluate their mean squared
errors. This step is easy, since f and g satisfy all the conditions of Theorem 10 in
Stein [(1999), page 102], so that, as δ ↓ 0,

Ef ef (δx, δ)2 ∼Ef eg(δx, δ)2 ∼Egeg(δx, δ)2.(6)

The next step, proven later in this section, is to evaluate the order of magnitude of
Egeg(δx, δ)2 as δ ↓ 0.

LEMMA 1. Under the conditions of Theorem 1, as δ ↓ 0, Egeg(δx, δ)2 �
δα−dL(δ−1).

Now consider the function γ (v)= |v|−αθ(∠v). Although γ is not integrable in
a neighborhood of the origin, as we will describe later in this section, it can be
thought of as the spectral “density” for a nonstationary random field. Furthermore,
as we will show in Section 5, this random field is self-affine in a well-defined
sense, so that (A2) can be thought of as saying that Z is approximately self-affine.
Despite the fact that γ is not integrable, it is possible to give a sensible definition
to Ẑγ (δx, δ), the “best” linear predictor of Z(δx) under γ , and we will do so later
in this section. Under this definition, we will prove the following result.

THEOREM 2. Under the conditions of Theorem 1, as δ ↓ 0, Eg{Ẑg(δx, δ)−
Ẑγ (δx, δ)}2 = o(Egeg(δx, δ)2).

Theorem 2 is equivalent to Egeγ (δx, δ)2 − Egeg(δx, δ)2 = o(Egeg(δx, δ)2) as
δ ↓ 0, so it implies that Ẑγ (δx, δ) is an asymptotically optimal linear predictor
under g. We also have that predictions under γ are asymptotically optimal when
f is true:

COROLLARY 2. Under the conditions of Theorem 1, as δ ↓ 0, Ef {Ẑf (δx, δ)−
Ẑγ (δx, δ)}2 = o(Ef ef (δx, δ)2).

PROOF. This result follows readily from Theorem 2, (6), f � g and

Ef

{
Ẑf (δx, δ)− Ẑγ (δx, δ)

}2 ≤ 2Ef

{
Ẑf (δx, δ)− Ẑg(δx, δ)

}2

+ 2Ef

{
Ẑg(δx, δ)− Ẑγ (δx, δ)

}2
. �
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The advantage of considering γ is that the form of the optimal predictor of
Z(δx) based on observing Z(δj) for j ∈ Z

d under γ is independent of δ, which
essentially follows from the fact that γ (δv)= δ−αγ (v) for all v ∈ R

d and all δ > 0,
although some care is needed since γ is not integrable. When L� 1, this lack of
dependence on δ, combined with Theorem 2, yields Theorem 1 rather directly.
A somewhat more involved argument is needed to handle more general slowly
varying L.

Corollary 2 provides a nontrivial advance over results in Stein [(1999),
Chapter 3] on the asymptotic optimality of predictions based on a misspecified
spectral density. In that work, it is always assumed that the ratio of the misspecified
spectral density to the correct spectral density tends to a positive constant as the
norm of the frequency tends to ∞, but here we allow this ratio to be a slowly
varying function, which is not necessarily bounded away from either 0 or ∞.

Before we can proceed with the proofs, we need some definitions. Let H0 be
the real linear hull of the random variables Z(x) for x ∈ R

d . The spectral density
f defines an inner product on H0: for h1, h2 ∈ H0, 〈h1, h2〉f = Ef (h1h2). Let
H(f ) be the closure of H0 with respect to this inner product, so that H(f ) is
a Hilbert space. Now let L0 be the real linear hull of functions on R

d of the
form eiv

T x for x ∈ R
d . For +1, +2 ∈ L0, define the inner product 〈+1, +2〉f =∫

Rd +1(v)+2(v)f (v) dv and let L(f ) be the closure of L0 with respect to this

inner product. Identifying Z(x) with eiv
T x and extending this identification to all

elements in H(f ) and L(f ), we see that any statement we wish to make about
the covariances of random variables in H(f ) can be restated in terms of the inner
products of functions in L(f ).

Write Hδ(f ) for the subspace of H(f ) generated by Z(δj) for j ∈ Z
d , and let

Lδ(f ) be the corresponding subspace of L(f ). The best linear predictor Ẑf (δx, δ)
is in Hδ(f ) and the corresponding element in Lδ(f ) is [Stein (1999), page 99]

Ĥf (v; δx, δ)= ∑
j∈Zd

ei(v+2πδ−1j)T xf (v + 2πδ−1j)
fδ(v)

,(7)

where fδ(v)= ∑
j∈Zd f (v + 2πδ−1j). As a function of v, Ĥf (v; δx, δ) has period

2πδ−1 in each coordinate. Thus, defining Ad(t) = (−πt,πt]d and writing
∑′

j to

indicate summation over all j ∈ Z
d except the origin, we have, for example,

Ef eg(δx, δ)2 =
∫
Ad(δ

−1)

∣∣∣∣∑′

j

(1 − e2πijT x)g(v + 2πδ−1j)
∣∣∣∣
2
fδ(v)
gδ(v)2

dv.(8)

PROOF OF LEMMA 1. Let e+ ∈ R
d be the unit vector along the +th coordinate

axis. Now, as δ ↓ 0,
∑′

j g(v+ 2πδ−1j)≥ g(v+ 2πδ−1e1)� δαL(δ−1). Define Qd

to be the subset of R × R
d given by {(δ,v) : 0 < δ < 1,v ∈ Ad(δ

−1)}. Since L is
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slowly varying, g(v + 2πδ−1j)� δαj−αL(δ−1|j|) for (δ,v, j) ∈Qd × (Zd \ {0}),
so that

∑′

j

g(v + 2πδ−1j) δα
∑′

j

|j|−αL(δ−1|j|) δα
∫ ∞

1
r−α+d−1L(δ−1r) dr

(9)

= δd
∫ ∞
δ−1

r−α+d−1L(r) dr  δαL(δ−1)

for (δ,v) ∈Qd by 1.5.10 in BGT. Thus, for (δ,v) ∈Qd ,
∑′

j

g(v + 2πδ−1j)� δαL(δ−1)(10)

and g(v) � gδ(v). Since fδ(v) � gδ(v) for (δ,v) ∈ Qd and
∣∣1 − e2πijT x∣∣ ≤ 2,

from (8) (with f = g) and (10), Egeg(δx, δ)2  δ2αL(δ−1)2
∫
Ad(δ

−1) g(v)
−1 dv

as δ ↓ 0. By Proposition 1.5.8 in BGT, as δ ↓ 0,

∫
Ad(δ

−1)

1

g(v)
dv � 1 +

∫ δ−1

1

rd−1

r−αL(r)
dr � δ−α−d

L(δ−1)
,(11)

so Egeg(δx, δ)2  δα−dL(δ−1) as δ ↓ 0.
To complete the proof, we need to show δα−dL(δ−1) Egeg(δx, δ)2 as δ ↓ 0.

Since x = (x1, . . . , xd)
T is a nonvertex of [0,1]d , it has a component, say the +th,

with x+ ∈ (0,1). As δ ↓ 0, just taking the term j = e+ in the sum over j on the right
side of (8),

Egeg(δx, δ)2 ≥ {
1 − cos(2πx+)

}2
∫
Ad(δ

−1)

g(v + 2πδ−1e+)2

gδ(v)
dv

� δ2αL(δ−1)2
∫
Ad(δ

−1)

1

g(v)
dv � δα−dL(δ−1)

and Lemma 1 follows. �

The following lemma is helpful in proving Theorems 1 and 2:

LEMMA 2. If ξ : (1,∞)→ R is bounded and measurable, ξ(u)→ 0 as u→
∞ and, for some C > 0, L(r)= C exp

{∫ r
1
ξ(u)
u

du
}

for all r ≥ 1, then there exists
a positive increasing function σ on (0,∞) such that σ(r)→∞, r/σ (r)→∞ as
r →∞ and

lim
r→∞

sup
x,y∈[r/σ (r),rσ (r)]

∣∣∣∣log
L(x)

L(y)

∣∣∣∣ = 0.
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PROOF. For r ≥ 1, define η(r) = sups>r |ξ(s)|, so that η is decreasing on
[1,∞) and η(r) ↓ 0 as r →∞. Suppose, without loss of generality, that x > y > 1.
Then ∣∣∣∣log

L(x)

L(y)

∣∣∣∣ ≤
∫ x

y

|ξ(u)|
u

du≤ η(y) log
x

y
.(12)

It is possible to find a continuous strictly increasing function τ on (0,∞) that
increases sufficiently rapidly to make τ (x)/x →∞ as x →∞ and

lim
x→∞η

(
τ (x)/x

)
logx = 0.

Let σ be the inverse of τ , so that σ(r)→∞ as r →∞ as required.
Setting s = σ(r), we see that r/σ (r) = τ (s)/s, so limr→∞ r/σ (r)=

lims→∞ τ (s)/s =∞ as required. In addition, by (12),

lim
r→∞

sup
x,y∈[r/σ (r),rσ (r)]

∣∣∣∣log
L(x)

L(y)

∣∣∣∣ ≤ lim
r→∞2η

(
r/σ (r)

)
log

{
σ(r)

}

= lim
s→∞2η

(
τ (s)/s

)
log s = 0,

proving the lemma. �

PROOF OF THEOREM 2. We have∣∣Ĥg(v; δx, δ)− Ĥγ (v; δx, δ)
∣∣

=
∣∣∣∣∑

j

e2πiδ−1jT x

{
g(v + 2πδ−1j)

gδ(v)
− γ (v + 2πδ−1j)

γδ(v)

}∣∣∣∣
≤∑

j

∣∣∣∣∣g(v + 2πδ−1j)γδ(v)− γ (v + 2πδ−1j)gδ(v)
gδ(v)γδ(v)

∣∣∣∣∣(13)

≤ 1

gδ(v)γδ(v)

∑
j =k

∣∣γ (v+ 2πδ−1k)g(v + 2πδ−1j)

− γ (v + 2πδ−1j)g(v + 2πδ−1k)
∣∣.

Now, for (δ,v) ∈Qd ,∑
j =k

∣∣γ (v + 2πδ−1k)g(v + 2πδ−1j)− γ (v + 2πδ−1j)g(v + 2πδ−1k)
∣∣

≤ 2
∑
j =k

γ (v + 2πδ−1k)g(v + 2πδ−1j)

≤ 2γ (v)
∑′

j

g(v + 2πδ−1j)+ 2g(v)
∑′

j

γ (v + 2πδ−1j)
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+ 2
∑′

j

γ (v + 2πδ−1j)
∑′

j

g(v + 2πδ−1j)

 |v|−αδαL(δ−1)+ |v|−αL(|v|)δα + δ2αL(δ−1)

 |v|−αδα{
L(δ−1)+L(|v|)}.

It follows that, for (δ,v) ∈Qd ,

∣∣Ĥg(v; δx, δ)− Ĥγ (v; δx, δ)
∣∣2gδ(v) δ2α

{
L(δ−1)2

L(|v|) +L(|v|)
}

max(1, |v|α).

Define µ(δ)= δ−1/σ (δ−1). Then as δ ↓ 0,∫
bd(µ(δ))\bd(1)

∣∣Ĥg(v; δx, δ)− Ĥγ (v; δx, δ)
∣∣2gδ(v) dv

 δ2α
∫ µ(δ)

1

{
L(δ−1)2

L(r)
+L(r)

}
rα+d−1 dr

(14)

 δα−d

σ (δ−1)α+d

{
L(δ−1)2

L(µ(δ))
+L(µ(δ))

}

 δα−dL(δ−1)

σ (δ−1)α+d

using 1.5.10 in BGT and Lemma 2. Furthermore,∫
bd(1)

∣∣Ĥg(v; δx, δ)− Ĥγ (v; δx, δ)
∣∣2gδ(v) dv  δ2α{1 +L(δ−1)2}

(15)
= o

(
δα−dL(δ−1)

)
as δ ↓ 0.

Next, define

φδ(v; j,k)= |v + 2πδ−1j|−α|v + 2πδ−1k|−α∣∣L(|v + 2πδ−1j|)
−L(|v + 2πδ−1k|)∣∣.

From (13), for v ∈Ad(δ
−1) \ bd(1),

∣∣Ĥg(v; δx, δ)− Ĥγ (v; δx, δ)
∣∣ 1

gδ(v)γδ(v)

∑
j =k

φδ(v; j,k)(16)

as δ ↓ 0, and, for any j0 > 0, using φδ(v; j,k)= φδ(v;k, j),∑
j =k

φδ(v; j,k)≤ 2
∑
|j|>j0

∑
k∈Zd

φδ(v; j,k)+ 2
∑

0<|j|≤j0

∑
|k|≤j0

φδ(v; j,k).(17)
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Now, for any v ∈Ad(δ
−1) \ bd(1),∑

|j|>σ(δ−1)

∑
k∈Zd

φδ(v; j,k)

≤ ∑
|j|>σ(δ−1)

|v + 2πδ−1j|−αL(|v + 2πδ−1j|) ∑
k∈Zd

|v + 2πδ−1k|−α(18)

+ ∑
|j|>σ(δ−1)

|v + 2πδ−1j|−α ∑
k∈Zd

|v + 2πδ−1k|−αL(|v + 2πδ−1k|).

Define Q′
d = {(δ,v) : 0 < δ < 1,v ∈Ad(δ

−1)\bd(1)}. Refining the analysis in (9),
for (δ,v) ∈Q′

d ,
∑

|j|>σ(δ−1)

|v + 2πδ−1j|−αL(|v + 2πδ−1j|)

(19)

 δd
∫ ∞
σ(δ−1)δ−1

r−α+d−1L(r) dr  δαL(δ−1)

σ (δ−1)α−d

and

∑
|j|>σ(δ−1)

|v + 2πδ−1j|−α  δα

σ (δ−1)α−d
.(20)

From (18)–(20), we see that, for (δ,v) ∈Q′
d ,

∑
|j|>σ(δ−1)

∑
k∈Zd

φδ(v; j,k) δα|v|−α
σ (δ−1)α−d

{
L(|v|)+L(δ−1)

}
.

It follows that

∫
Ad(δ

−1)\bd(µ(δ))

∣∣∣∣∣
∑

|j|>σ(δ−1)

∑
k∈Zd

φδ(v; j,k)

∣∣∣∣∣
2

1

gδ(v)γδ(v)2
dv

 δ2α

σ (δ−1)2(α−d)
∫ δ−1

1

{
L(r)2 +L(δ−1)2

}rα+d−1

L(r)
dr(21)

 δα−dL(δ−1)

σ (δ−1)2(α−d)

as δ ↓ 0. Next, define

C(δ)= sup
v∈Ad(δ

−1)\bd(µ(δ))
max

|j|,|k|≤σ(δ−1)

∣∣L(|v + 2πδ−1j|)−L(|v + 2πδ−1k|)∣∣.
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Lemma 2 implies that limδ↓0C(δ)/L(δ
−1)= 0. Thus,

∫
Ad(δ

−1)\bd(µ(δ))

{ ∑
0<|j|≤σ(δ−1)

∑
|k|≤σ(δ−1)

φδ(v; j,k)

}2
1

gδ(v)γδ(v)2
dv

 C(δ)2
∫
Ad(δ

−1)\bd(1)

{∑′

j

|v + 2πδ−1j|−α ∑
k∈Zd

|v + 2πδ−1k|−α
}2

(22)

× 1

gδ(v)γδ(v)2
dv

 C(δ)2

L(δ−1)
δα−d = o

(
L(δ−1)δα−d

)
as δ ↓ 0. From (16), (17), (21) and (22), we get∫

Ad(δ
−1)\bd(µ(δ))

∣∣Ĥg(v; δx, δ)− Ĥγ (v; δx, δ)
∣∣2gδ(v) dv = o

(
δα−dL(δ−1)

)

as δ ↓ 0, which, together with (14), (15) and Lemma 1, implies Theorem 2. �

PROOF OF THEOREM 1. To prove that Theorem 1 follows from Theorem 2,
we need to consider in what sense Ĥγ (·; δx, δ) corresponds to an optimal linear
predictor of Z(δx) based on observing Z(δj) for j ∈ Z

d under the model γ . Set
p = ⌊1

2 (α − d)
⌋
, where "·# is the greatest integer function. Although γ is not

integrable, we see that
∫
Rd |v|2p+2(1 + |v|)−(2p+2)γ (v) dv < ∞, which implies

that γ is the spectral “density” of what is known as an intrinsic random function of
order p, or IRF-p [Chilès and Delfiner (1999), Stein (1999)]. Define an authorized
linear combination of order p, or ALC-p, to be a random variable of the form∑n

j=1 λjZ(xj ) for which
∑n

j=1 λjP (xj )= 0 for all polynomials P (x) of order at
most p. If

∑n
j=1 λjZ(xj ) is an ALC-p, then γ defines its second moment through

Eγ

{
n∑

j=1

λjZ(xj )

}2

=
∫

Rd

∣∣∣∣∣
n∑

j=1

λj e
ivT xj

∣∣∣∣∣
2

γ (v) dv,

which is finite. If
∑n

j=1 λjZ(xj ) is not an ALC-p, then

∫
Rd

∣∣∣∣∣
n∑

j=1

λje
ivT xj

∣∣∣∣∣
2

γ (v) dv =∞

and γ does not define the second moment of
∑n

j=1 λjZ(xj ).
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Fixing x ∈ [0,1]d , define the linear manifold L0
δ to be the class of functions of

the form
∑

j∈B βjeiδvT j for which the βj s are real, B ⊆ Z
d is finite and

∫
Rd

∣∣∣∣∣eiδvT x − ∑
j∈B

eiδvT j

∣∣∣∣∣
2

γ (v) dv<∞.

For every x ∈ [0,1]d and γ satisfying
∫
Rd |v|2p+2(1 + |v|)−(2p+2)γ (v) dv <∞,

it is possible to show that L0
δ is not empty. For any two functions Ĥ1, Ĥ2 in

L0
δ , define ‖Ĥ1 − Ĥ2‖2

γ = ∫
Rd

∣∣Ĥ1(v) − Ĥ2(v)
∣∣2γ (v) dv and let Lδ(γ ) be the

completion of L0
δ with respect to the metric ‖ ·− ·‖γ . By an easy generalization of

the argument leading to (7) [Stein (1999), page 99], we can show that Ĥγ (·; δx, δ)
as defined in (7) minimizes ‖eiδ·T x − Ĥ‖γ among all Ĥ ∈ Lδ(γ ). Defining
Ẑγ (δx, δ) to be the random variable corresponding to Ĥγ (·; δx, δ), we then have
that Ẑγ (δx, δ) is an optimal linear predictor of Z(x) in the sense that it minimizes
the mean squared prediction error among all linear predictors of Z(δx) whose
prediction errors are ALC-ps.

Let us now consider approximating Ĥγ = Ĥγ (·;x,1) by an element of L0
1.

Specifically, given ε > 0, there is a function Ĥ ε
γ of the form

Ĥ ε
γ (v)=

∑
j∈Bε

cj(ε)e
ivT j,

where Bε ⊆ Z
d is finite and

‖Ĥ ε
γ − Ĥγ ‖2

γ < ε‖Ĥγ − ei·T x‖2
γ .(23)

Define

Ĥ ε
γ (v; δx, δ)= ∑

j∈Bε

cj(ε)e
iδvT j,

so that Ĥ ε
γ (·;x,1)= Ĥ ε

γ . If
∑n

j=1 λjZ(xj ) is an ALC-p, then
∑n

j=1 λjZ(δxj ) is
also an ALC-p for any δ > 0 and, furthermore,

Eγ

{
n∑

j=1

λjZ(δxj )

}2

= δα−dEγ

{
n∑

j=1

λjZ(xj )

}2

.

Thus, letting Ẑε
γ (δx, δ) be the random variable corresponding to Ĥ ε

γ (·; δx, δ), (23)
implies

Eγ

{
Ẑε
γ (δx, δ)− Ẑγ (δx, δ)

}2
< εEγ

{
Ẑγ (δx, δ)−Z(δx)

}2
,(24)

so that Ẑε
γ (δx, δ) is a nearly optimal predictor of Z(δx) under γ .
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The last major hurdle in proving Theorem 1 is to show that something like (24)
holds for δ sufficiently small when the Eγ s are replaced by Egs. Specifically, we
seek to prove that there exists a C <∞ independent of ε and a δ(ε) > 0 such that

Eg

{
Ẑε
γ (δx, δ)− Ẑγ (δx, δ)

}2
<CεEg

{
Ẑγ (δx, δ)−Z(δx)

}2
(25)

for all δ < δ(ε). Now

Ĥγ (v; δx, δ)= Ĥγ (δv;x,1)
and

Ĥ ε
γ (v; δx, δ)= Ĥ ε

γ (δv;x,1),

so, defining θ0 = supv θ(∠v) and recalling that L(r)=L(1) for 0 < r < 1,

Eg

{
Ẑε
γ (δx, δ)− Ẑγ (δx, δ)

}2 =
∫

Rd

∣∣Ĥγ (v; δx, δ)− Ĥ ε
γ (v; δx, δ)

∣∣2g(v) dv

≤ θ0δ
α−d

∫
Rd

∣∣Ĥγ (v)− Ĥ ε
γ (v)

∣∣2|v|−αL(δ−1|v|) dv.

From Theorem 2, we see that (25) follows if there exists a C <∞ independent of
ε and a δ(ε) > 0 [not necessarily the same C and δ(ε) as in (25)] such that∫

Rd

∣∣Ĥγ (v)− Ĥ ε
γ (v)

∣∣2|v|−αL(δ−1|v|) dv

=
∫
Ad(1)

|Ĥγ (v)− Ĥ ε
γ (v)|2

∑
j∈Zd

|v + 2πδ−1j|−αL(δ−1|v + 2π j|) dv(26)

<CεL(δ−1)

for all δ < δ(ε). Along the lines of (9), it is possible to show that, for (δ,v) ∈Qd ,∑
j

|v + 2π j|−αL(δ−1|v + 2π j|) |v|−αL(δ−1|v|),

so, to prove (26), and hence (25), it suffices to show there exists a C < ∞
independent of ε and a δ(ε) > 0 such that∫

Ad(1)

∣∣Ĥγ (v)− Ĥ ε
γ (v)

∣∣2|v|−αL(δ−1|v|) dv <CεL(δ−1)(27)

for all δ < δ(ε). If L� 1, then (27) is a trivial consequence of (23).
The general case needs greater care. For any ε > 0, by Lemma 2,∫

Ad(1)\bd(1/σ(δ−1))

∣∣Ĥγ (v)− Ĥ ε
γ (v)

∣∣2|v|−αL(δ−1|v|) dv

≤ 2L(δ−1)

∫
Ad(1)\bd(1/σ(δ−1))

∣∣Ĥγ (v)− Ĥ ε
γ (v)

∣∣2|v|−α dv(28)

< 2θ0L(δ
−1)ε‖Ĥγ − Ĥ ε

γ ‖2
γ
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for all δ sufficiently small. Now∣∣Ĥγ (v)− Ĥ ε
γ (v)

∣∣2 ≤ 2
∣∣Ĥγ (v)− eiv

T x∣∣2 + 2
∣∣Ĥ ε

γ (v)− eiv
T x∣∣2(29)

and there exists C1 <∞ such that∣∣Ĥγ (v)− eiv
T x∣∣2 ≤ C1|v|2α(30)

for all v. In addition, I claim that, given ε > 0, there exists Kε <∞ such that∣∣Ĥ ε
γ (v)− eiv

T x∣∣2 ≤Kε|v|2p+2.(31)

To prove (31), notice that, if it is false, then it is false in a neighborhood of the
origin and, by considering a Taylor series in v about the origin for

Ĥ ε
γ (v)=

∑
j∈Bε

cj(ε)e
ivT j,

we see that, for some + ∈ {1, . . . , d} and some C2 > 0, |Ĥ ε
γ (v)− eiv

T x|2 ≥ C2v
2p
+

for all v in some neighborhood of the origin. However, this lower bound, together
with the equality p = " 1

2(α − d)#, contradicts the finiteness of
∫
Rd |Ĥ ε

γ (v) −
eiv

T x|2|v|−αdv, so (31) must be true. Define Sd to be the surface area of bd(1)
and apply (29)–(31) and Lemma 2 to obtain, for all δ sufficiently small,∫

bd(1/σ(δ−1))

∣∣Ĥγ (v)− Ĥ ε
γ (v)

∣∣2|v|−αL(δ−1|v|) dv

≤ 2
∫
bd(1/σ(δ−1))

{
C1|v|2α +Kε|v|2p+2}|v|−αL(δ−1|v|) dv

= 2Sdδ
d

∫ µ(δ)

0

{
C1δ

αrα+d−1 +Kεδ
2p−α+2r2p−α+d+1}L(r) dr

≤ 4Sdδ
d

{
C1δ

α µ(δ)
α+d

α + d
+Kεδ

2p−α+2 µ(δ)2p−α+d+2

2p− α+ d + 2

}
L

(
1

δσ (δ−1)

)

≤ 8SdL(δ
−1)

{
C1

(α + d)σ (δ−1)α+d
+ Kε

(2p− α+ d + 2)σ (δ−1)2p−α+d+2

}
.

Since σ(δ−1)→ 0 as δ ↓ 0 and 2p+ 2 > α − d ,

lim
δ↓0

1

L(δ−1)

∫
bd(1/σ(δ−1))

∣∣Ĥγ (v)− Ĥ ε
γ (v)

∣∣2|v|−αL(δ−1|v|) dv = 0,

which, together with (28), implies (27) and hence (25).
From Lemma 1 and (25) we can choose a C <∞ such that, given ε > 0,

lim
δ↓0

Eg

{
Ẑε
γ (δx, δ)−Z(δx)

}2

Egeg(δx, δ)2
≤ 1 +Cε,
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or equivalently,

lim
δ↓0

Eg

{
Ẑε
γ (δx, δ)− Ẑg(δx, δ)

}2

Egeg(δx, δ)2
≤ Cε.(32)

Now

Eg

{
Ẑε
γ (δx, δ)− Ẑf (δx, δ)

}2

Egeg(δx, δ)2
≤ 2

Eg

{
Ẑε
γ (δx, δ)− Ẑg(δx, δ)

}2

Egeg(δx, δ)2

+ 2
Eg

{
Ẑg(δx, δ)− Ẑf (δx, δ)

}2

Egeg(δx, δ)2

and the second term on the right side tends to 0 as δ ↓ 0 by Theorem 10 in [Stein
(1999), Chapter 3], so by (32), there exists C <∞ independent of ε such that

lim
δ↓0

Eg

{
Ẑε
γ (δx, δ)− Ẑf (δx, δ)

}2

Egeg(δx, δ)2
≤Cε.

Using (6) and the fact that f � g on R
d , we can thus choose a C <∞ independent

of ε such that

lim
δ↓0

Ef

{
Ẑε
γ (δx, δ)−Z(δx)

}2

Ef ef (δx, δ)2
(33)

= 1 + lim
δ↓0

Ef

{
Ẑε
γ (δx, δ)− Ẑf (δx, δ)

}2

Ef ef (δx, δ)2
≤ 1 +Cε.

The set B in the statement of Theorem 1 contains a neighborhood of the origin,
so one can choose rε < ∞ so that Bε ⊆ rB for all r ≥ rε. We then have
Ef ef

(
δx, δ(rB ∩ Z

d)
)2 ≤ Ef

{
Z(δx)− Ẑε

γ (δx, δ)
}2

for all r ≥ rε, so there exists
a C <∞ independent of ε such that

lim
δ↓0

Ef ef
(
δx, δ(rB ∩Z

d)
)2

Ef ef (δx, δ)2
≤ 1 +Cε

for all r ≥ rε. Since ε is arbitrary, Theorem 1 follows. �

3. Ordinary kriging. Until now, we have assumed the mean of Z is known to
be 0. It is common in the geostatistical literature to assume the mean of a random
field is of the form EZ(x)= ∑q

j=1 βjmj (x) for known functions m1, . . . ,mq and
unknown coefficients β1, . . . , βq . Prediction is then done using using what is called
universal kriging [Chilès and Delfiner (1999), Cressie (1993)] which reduces to
ordinary kriging when the mean is an unknown constant. The universal kriging
predictor is just the best linear unbiased predictor; that is, it is the linear predictor
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that minimizes the prediction variance among all linear predictors whose error
has mean 0 regardless of the values of the βj s. Let Z̃f (x,A) be the best linear
unbiased predictor of Z(x) based on observingZ on A under the spectral density f
and with mean function of the form

∑q
j=1 βjmj (x); Z̃f (x,A) exists whenever

any linear unbiased predictor exists. If f satisfies the conditions of Theorem 1,
p = ⌊ 1

2(α − d)
⌋

and m1, . . . ,mq are all monomials of degree at most p, then

Ẑε
γ (δx, δ) is a linear unbiased predictor. Hence, Z̃f (x, δBε) exists and it is a better

predictor than Ẑε
γ (δx, δ) under f , so under the conditions of Theorem 1, following

the argument from (33) to the end of the proof of Theorem 1,

lim
r→∞ lim

δ↓0

Ef

{
Z̃f

(
δx, δ(rB ∩Z

d)
)−Z(δx)

}2

Ef ef (δx, δ)2
= 1.

Since p ≥ 0 whenever α > d , we get that there is an asymptotic screening effect
for ordinary kriging predictors under the conditions of Theorem 1.

I believe a screening effect holds for best linear unbiased predictors whenever
the mj s are sufficiently smooth. Such a result should follow from the asymptotic
optimality of best linear unbiased predictors relative to best linear predictors [see
Theorem 5.2 in Stein (1999)].

4. Numerical results. Theorem 1 provides no indication as to how fast the
limit in (2) is approached as r →∞. Furthermore, the method of proof used here
does not appear to be amenable to obtaining such results. There is a limitless array
of possibilities one could examine to see how strong the screening effect is in
particular situations and here we choose to examine only a small number of one-
dimensional settings. Specifically, we consider stationary processes Z on R with
covariance function in the Matérn class [Stein (1999), page 31]: cov(Z(x),Z(y +
x)) ∝ (θ |y|)νKν(θ |y|) for positive constants θ and ν, where Kν is a modified
Bessel function of order ν [Abramowitz and Stegun (1992)]. For a process on
R, the corresponding spectral density is proportional to (θ2 + v2)−ν−1/2, which
is a regularly varying function with exponent −2ν − 1. In the present setting,
α = 2ν + 1 is more pertinent than ν, so we will report all results in terms of α.
Furthermore, we will set θ = 4ν, which has the effect of approximately fixing
the rate of decay of the covariance function at larger distances as ν varies [Stein
(1999), page 49]. Defining An = {−n + 1,−n + 2, . . . , n}, we will compare
predictions of Z(0.5δ) based on observing Z at δAn to predictions based on
observing Z at δZ for various n and δ.

We first consider how the mean squared error of the simple kriging predictor
of Z(0.5δ) changes with n and δ for various values of α. Define R(n, δ,α) =
Ee(0.5δ, δAn)

2/Ee(0.5δ, δZ)2 − 1. Numerical results suggest that replacing
Ee(0.5δ, δZ)2 by Ee(0.5δ, δA200)

2 in R(n, δ,α) provides an excellent approxi-
mation to R(n, δ,α) for the values of n, δ and α considered here. This approxima-
tion is used in Figure 1, which plots R(n, δ,α) for n = 1, . . . ,12, δ = 0.1, 0.05,
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FIG. 1. Plot of R(n, δ,α) versus n. For α = 2.5 and 3, both axes are on the log scale. For α = 4,
only the vertical axis is on the log scale. R(n, δ,α) is the relative increase in mean squared error
when using simple kriging to predict at 0.5δ due to using observations at δ{−n+ 1,−n+ 2, . . . , n}
versus at δZ. The covariance functions for the process are all from the Matérn class; the
corresponding spectral densities decay like |v|−α at high frequencies v (see text for details). The
symbols +, ×, ◦ and � correspond to δ = 0.1,0.05,0.02 and 0.01, respectively.

0.02 and 0.01 and α = 2.5, 3 and 4. We see that even for n quite small, R(n, δ,α)
is very close to 0. Indeed, R(3, δ, α) < 0.005 for all α and δ values considered
here.

For most practical purposes, being within 0.5% of optimal would be sufficient.
Nevertheless, there are at least theoretically interesting differences between how
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R(n, δ,α) decreases as n increases for the various α values. For α = 2.5 or 3,
the screening effect substantially weakens as δ decreases. Note that the theoretical
results in Section 2 do not say anything about how R(n, δ,α) should behave for
fixed n as δ decreases. For α = 2.5 or 3, the plot of R(n, δ,α) versus n with
both axes on the log scale is fairly linear for n sufficiently large, particularly for
smaller δ. Based on a purely empirical analysis of the cases considered in Figure 1
and other values for α and δ, I would make the following conjecture: R(n,α) =
limδ↓0R(n, δ,α) exists for all α > 1 and n > 1

2(α − 1) and R(n,α)� n−α−1 as
n→∞ for any fixed α not an even integer.

For α = 4, R(n, δ,α) behaves qualitatively differently than for α = 2.5 or 3.
First, R(n, δ,4) depends only weakly on δ. Furthermore, the plot of logR(n, δ,4)
versus n is very nearly linear for all δ, suggesting that R(n, δ,4) decays
exponentially as n increases. When α = 2, Z is a continuous time AR(1) process
and R(n, δ,2) = 0 for all positive n and δ and there is “perfect” screening.
These examples and others not reported on here suggest that there is something
dramatically different about the screening effect when α is or is not an even
integer, at least for Matérn models. Under the Matérn model, when α = 2m for a
positive integer m, Z is a continuous time AR(m) process and hence has a second-
order Markov property: conditional on knowing Z,Z′, . . .Z(m−1) at the present
time, the past and the future of Z are uncorrelated. Using the close connection
between kriging and splines [Wahba (1990)] and results from spline theory [see,
e.g., Schoenberg (1969)], I believe it should be possible to prove that, when α is
an even integer, for any given δ, R(n, δ,α) decays to 0 exponentially fast in n and,
furthermore, R(n,α) exists for n > 1

2 (α − 1) and decays exponentially in n.
Let us consider further why R(n,α) might decay only algebraically when α

is not an even integer. The idea behind Theorems 1 and 2 is that as δ ↓ 0,
the prediction problem under a spectral density f satisfying the conditions of
Theorem 1 becomes asymptotically indistinguishable from predicting under the
IRF with spectral density proportional to |v|−α . The singularity at the origin
in |v|−α for all α > 1 implies that an IRF with such a spectral density has
dependence over large scales. However, when α is an even integer, this large-
scale dependence can be removed by taking a simple linear transformation of
the process. Specifically, defining = to be the forward difference operator, so that
=Z(x) = Z(x + 1)− Z(x), then if α = 2m for a positive integer m, the process
=mZ is stationary with a spectral density that is bounded away from 0 and ∞ in
a neighborhood of the origin. When α is not an even integer, there is no linear
transformation of Z of the form

∑N
j=1 λjZ(· − xj ) with N finite that has spectral

density bounded away from 0 and ∞ in a neighborhood of the origin. Thus, one
can argue that the large-scale dependence of Z is of a different and more intrinsic
nature when α is not an even integer, so that a greater dependence of the optimal
linear predictor on distant observations is natural.

Let us next consider ordinary kriging. Using ē to indicate the error of an or-
dinary kriging predictor, define R̄(n, δ,α)= Eē(0.5δ, δAn)

2/Eē(0.5δ, δZ)2 − 1.
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FIG. 2. Plot of R̄(n, δ,3) versus n; both axes are on the log scale. R̄(n, δ,α) is the relative increase
in mean squared error when using ordinary kriging to predict at 0.5δ due to using observations at
δ{−n+ 1,−n+ 2, . . . , n} versus at δZ. The covariance function for the process is the same as in the
middle panel of Figure 1. The symbols +, ×, ◦ and � correspond to δ = 0.1,0.05,0.02 and 0.01,
respectively.

For larger δ, n= 200 may not be sufficiently large for Eē(0.5δ, δAn)
2 to provide

an adequate approximation to Eē(0.5δ, δZ)2 for our purposes. Since the mean of
Z can be estimated exactly with probability 1 from observations on δZ whenever
Z has a spectral density, we have Eē(0.5δ, δZ)2 = Ee(0.5δ, δZ)2. Furthermore,
Ee(0.5δ, δAn′)2 monotonically decreases to Eē(0.5δ, δZ)2 as n′ → ∞ and nu-
merical evidence indicates that Ee(0.5δ, δA200)

2 provides an excellent approx-
imation to Eē(0.5δ, δZ)2 for all situations considered here. This approximation
is used in Figure 2, which plots R̄(n, δ,3) for the same δ values as in Figure 1.
These results should be compared to the middle panel in Figure 1, which plots
R(n, δ,3). For larger n, the screening effect now gets stronger as δ increases,
which is the opposite of what occurred for simple kriging. For larger δ and n,
R̄(n, δ,3)/R(n, δ,3) can be very large; for example, R̄(12,0.1,3)/R(12,0.1,3)=
1.55 × 107. For smaller δ, R̄(n, δ,3) is much closer to R(n, δ,3). Indeed,
R̄(n,0.01,3)/R(n,0.01,3) is between 1 and 1.1 for n= 1,2, . . . ,12. Apparently,
the effect of having to estimate the mean on prediction is greater for larger δ, which
is consistent with theoretical results in Stein (1999), page 107.

Finally, we briefly examine the impact of measurement errors on the screening
effect. Let us suppose that the measurement errors are independent with mean
0 and common variance σ 2. One might expect that the presence of measurement
errors weakens the screening effect, since the observations nearest to the prediction
location are no longer as strongly correlated with the predictand. This belief is
part of the conventional geostatistical wisdom: an often quoted aphorism in the
geostatistical literature due to Matheron (1968) is “the nugget effect lifts the
screening effect” [Chilès and Delfiner (1999), page 204] (the nugget effect is a
geostatistical term for process variation on scales much smaller than the distances
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FIG. 3. Plot of S(n,0.01, σ 2) versus n; vertical axis on the log scale. S(n,0.01, σ 2) is the relative
increase in mean squared error when using ordinary kriging to predict at 0.005 due to using
observations at 0.01{−n + 1,−n + 2, . . . , n} versus at 0.01Z for a stationary process on R with
covariance function e−6|y|(1+6|y|) observed with measurement errors of variance σ 2. The symbols
+, ×, ◦ and � correspond to σ 2 = 0,10−6,10−5 and 10−4, respectively.

between neighboring observations and, for purposes of the discussion here, is
indistinguishable from measurement error). When using ordinary kriging, one
should expect the screening effect to be reduced for sufficiently large σ 2, since
the ordinary kriging predictor can be easily shown to converge to the sample mean
of the observations as σ 2 → ∞. However, I know of no argument that shows it
should, by some measure, monotonically decrease as σ 2 increases. Indeed, the
following example shows this is not always the case, at least if one measures
the strength of the screening effect by the relative difference between the mean
squared error of the ordinary kriging predictor based on some set of observations
near to the predictand and the mean squared error of the ordinary kriging predictor
based on all of the available observations. Suppose Z has covariance function
e−6|y|(1 + 6|y|), which is just the case α = 4 used in Figure 1. Observe Z

with independent measurement errors of variance σ 2 and define S(n, δ, σ 2) =
Eē(0.5δ, δAn)

2/Eē(0.5δ, δZ)2−1. Figure 3 plots S(n,0.01, σ 2) for n= 1, . . . ,10
and σ 2 = 0,10−6,10−5 and 10−4 and shows that for n≤ 8, the screening effect is
actually stronger (S(n,0.01, σ 2) is smaller) for σ 2 = 10−6 and 10−5 than when
it is 0, substantially so when σ 2 = 10−5. Although these measurement error
variances may seem small, they are large enough to have a substantial impact on
Eē(0.005,0.01Z)2, which has values 9.44× 10−6, 1.12× 10−5, 2.65× 10−5 and
1.63 × 10−4 for σ 2 = 0, 10−6, 10−5 and 10−4, respectively.

5. Discussion. This section briefly discusses the conditions on the spectral
density and the nature of the limiting operation in Theorems 1 and 2. In particular,
the sense in which these theorems require that the random field not be too
different from a self-affine random field is addressed. We also discuss two possible



320 M. L. STEIN

extensions of the results in this work: uniformity in the predictand location x in
Theorem 1 and a screening effect when the observations are not restricted to a
cubic lattice.

Let us first examine the slowly varying aspect of assumption (A2). If we assume
that L in (A2) is a positive constant, then it is possible to give a much shorter proof
of Theorem 1. Furthermore, among models for spectral densities that are used in
practice, any spectral density f satisfying (A1) and (A2) would also satisfy (A1)
and (A2) with L constant. For example, all spectral densities in the Matérn class
satisfy (A1) and (A2) with L constant. Thus, it is worthwhile to consider what is
gained by allowing L in (A2) to be slowly varying.

First, the fact that spectral densities with nontrivial slowly varying components
are not used in practice is not, by itself, a reason for dismissing such models.
Indeed, I am unaware of any previous theoretical or empirical basis for excluding,
for example, a spectral density of the form f (v) ∼ |v|−α log |v| as |v| → ∞.
Theorem 2 and Corollary 2 prove that predictions under the simpler model γ are
asymptotically optimal when the more complex models g or f are correct, and
thus provide a theoretical argument against including nontrivial slowly varying
components in models for spectral densities when one is only interested in
prediction.

A second advantage of including the slowly varying component in (A2) is the
insight it provides about the prediction process. The proofs of Theorems 1 and 2
effectively work by showing that for a stationary random field on a grid with
spacing δ, the frequencies of the spectral density f that matter for prediction
are those that are of the order of magnitude δ−1. On this range of frequencies,
if f satisfies (A2), then, roughly speaking, f (v)≈ L(|v|)γ (v)≈ L(δ−1)γ (v) for
δ small, since L(|v|) hardly varies for |v| � δ−1. This is the essential reason
optimal predictions under γ are nearly the same as optimal predictions under f .
Furthermore, since the screening effect holds trivially for γ , it is also the essential
reason the screening effect holds under f .

Next we consider the sense in which (A2) implies that Z is nearly self-affine.
Assumption (A2) says that Z has spectral density whose high frequency behavior
is not too different from a function of the form γ (v)= θ(v)|v|−α . As already noted,
γ can be thought of as the spectral density of an IRF-p with p = " 1

2(α − d)#. An
IRF-p Y with γ as its spectral density has the following self-affinity property: for
c > 0, define the random field Yc by Yc(x)= c−(α−d)/2Y (cx); then for any ALC-p∑n

j=1 λjY (xj ),

E

{
n∑

j=1

λjYc(xj )

}2

=E

{
n∑

j=1

λjY (xj )

}2

.

A random field whose properties are invariant after rescaling in both the the x
and Y directions is often called self-similar [Mandelbrot and Van Ness (1968),
Kent and Wood (1997), Chan and Wood (2000)]. However, since at least the early
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1980’s, Mandelbrot has called such a random field self-affine and reserved the term
self-similar for processes whose law is invariant after rescaling just x [Mandelbrot
(1982)] and we follow this usage of terminology here.

A Gaussian random field on R
d with spectral density proportional to |v|−α and

α ∈ (d, d + 2) is often called a fractional Brownian motion [Molz, Liu and Szulga
(1997)], although perhaps fractional Brownian field would be a better name when
d > 1. In this case, the corresponding random field Z satisfies E{Z(x)−Z(y)}2 ∝
|x − y|α−d . Fractional Brownian motions and fields have found wide application
in image modeling [Saupe (1988)], hydrology [Molz, Liu and Szulga (1997)] and
throughout geophysics [Malamud and Turcotte (1999)]. Theorem 2 provides some
theoretical backing for using this model for prediction purposes whenever one
is willing to assume that Z is an isotropic random field whose actual spectral
density f satisfies f (|v|)|v|α is slowly varying at infinity.

Let us now consider two possible extensions of the results in this work. The first
would be to obtain some sort of uniformity in x in Theorems 1 and 2. The results
in Section 2 all consider x to be a fixed nonvertex of [0,1]d . In contrast, results in
Stein (1999) on asymptotically optimal predictions (e.g., Theorem 10 in Chapter 3
and Theorem 12 in Chapter 4) show that predictions based on a spectral density
that is asymptotically correct at high frequencies are uniformly asymptotically op-
timal over the region of observation. Thus, one might expect some sort of uniform
asymptotic optimality holds in Theorems 1 and 2 here and their corollaries. For
example, I conjecture that under the conditions in Theorem 1 on f , if for some
ε > 0 and all x in a set A, the ball of radius ε centered at x is contained in B ,
then

lim
r→∞ lim

δ↓0
sup

x∈δA
Ef ef

(
x, δ(rB ∩Z

d)
)2

Ef ef (x, δ)2
= 1,(34)

as long as we define 0/0 = 1. The obstacle in proving this result is that Lemma 1,
which gives the order of magnitude of the mean square prediction error, does not
necessarily hold uniformly on δA.

If (34) were true, then under the conditions of Theorem 1 on f , we could
immediately obtain a limit theorem analogous to (1) when predicting at a fixed x,
rather than letting the place at which we predict change with δ. Specifically, as
long as we define 0/0 = 1, (34) implies for any fixed x in the interior of B ,

lim
δ↓0

Ef ef
(
x,B ∩ δZd)

)2

Ef ef (x, δ)2
= 1.

A more ambitious extension of Theorem 1 would be to observations other
than on a cubic lattice. First, if (A1) and (A2) hold for some spectral density
f , they still hold after a nonsingular linear transformation of the coordinates, so
all of the results in Section 2 hold for observations on any lattice. Extensions
to observations not on a lattice are more difficult but perhaps not out of reach.
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In particular, if X is a measurable subset of R
d and B is some set containing

a neighborhood of the origin, then γ (c|v|) ∝ γ (|v|) as a function of v implies
Eγ eγ

(
δx, δ(rB ∩X)

)2
/Eγ eγ (δx, δX)2 is independent of δ, so that as long as we

define 0/0 = 1, we trivially have

lim
r→∞ lim

δ↓0

Eγ eγ
(
δx, δ(rB ∩X)

)2

Eγ eγ (δx, δX)2
= 1.

That is, the screening effect holds for γ with essentially any arrangement of
observations. To prove that a screening effect holds for other spectral densities,
one would need some analog to Theorem 2 or Corollary 2. If f (v) ∼ γ (v) as
|v| → ∞, such a result might be obtainable by an extension of Theorem 12 in
Chapter 4 of Stein (1999).
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