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ON WEAK BASE HYPOTHESES AND THEIR IMPLICATIONS FOR
BOOSTING REGRESSION AND CLASSIFICATION
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When studying the training error and the prediction error for boosting,
it is often assumed that the hypotheses returned by the base learner are
weakly accurate, or are able to beat a random guesser by a certain amount
of difference. It has been an open question how much this difference can be,
whether it will eventually disappear in the boosting process or be bounded
by a positive amount. This question is crucial for the behavior of both the
training error and the prediction error. In this paper we study this problem and
show affirmatively that the amount of improvement over the random guesser
will be at least a positive amount for almost all possible sample realizations
and for most of the commonly used base hypotheses. This has a number of
implications for the prediction error, including, for example, that boosting
forever may not be good and regularization may be necessary. The problem
is studied by first considering an analog of AdaBoost in regression, where we
study similar properties and find that, for good performance, one cannot hope
to avoid regularization by just adopting the boosting device to regression.

1. Introduction.

1.1. Background and problems. Boosting is a very useful tool for improving
the performance of classification procedures and was originally developed in the
field of machine learning [see, e.g., Schapire (1990) and Freund and Schapire
(1997)]. In classification, the basic task is to predict a sign-valued “label” (or
±1-valued response) Z based on the knowledge of a predictor X, with a
“hypothesis” (or prediction rule) Ẑ(·) being a sign-valued function on the
domain of X. The rule Ẑ is often chosen from a “hypothesis space” H (a set
of sign-valued functions), given the availability of “training data” [a set of (X,Z)

pairs]. The performance of Ẑ is often measured by the “training error” and the
“test (or prediction) error,” which are the misclassification probabilities on the
training data and on new observations, respectively. Instead of just using a single
member in H , a boosting algorithm, such as the widely used AdaBoost, uses a
(sequential) linear combination of members in H and uses a combined hypothesis
of the form Ẑt = sgn(

∑t
s=1 αsfs) as the prediction rule at “round” or time t . Here
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the αs ’s are coefficients and fs’s are “base hypotheses” in H chosen by some “base
learning algorithm.” In this context H is called a “base hypothesis space.” The
αt ’s are determined by the “weighted training error” εt ’s at each round, which are
misclassification probabilities on suitably reweighted training data. (For specific
formulas see Section 6.)

It is observed that during AdaBoost the training error (on the original training
data) of the combined rule Ẑt decreases very quickly, while the prediction error
(on new observations) sometimes does not significantly increase even after many
rounds. This latter phenomenon of “resistance to overfitting” is so intriguing that it
has become a serious question as to whether it is good to run boosting forever [see,
e.g., Grove and Schuurmans (1998), Mason, Baxter, Bartlett and Frean (1999) and
Friedman, Hastie and Tibshirani (2000)].

As Schapire (1999) pointed out, “The most basic theoretical property of
AdaBoost concerns its ability to reduce training error.” The training error was
shown to decrease exponentially fast subject to the major assumption of “weak
hypotheses” [Schapire (1999)], that the base hypotheses ft ’s used in AdaBoost are
“each. . .slightly better than random” guessing by a certain amount of difference,
when evaluated by error εt on the weighted training data (see Section 6.1).
However, is this assumption usually valid or not? What are some implications of
this assumption to the prediction error? These will be the main focus of this paper.

It is noted that there has been much uncertainty and controversy related to
this assumption of weak hypotheses. The assumption was originally justified
under the assumption that the base learning algorithm is weak PAC [probably
and approximately correct; see Freund and Schapire (1997)]. However, this PAC
framework was found to be restrictive and inappropriate for noisy data when
the Bayes error is nonzero [or when Z|X is nondeterministic; see, e.g., Breiman
(1998), Appendix and Discussions]. More recent work on AdaBoost therefore no
longer assumes a weak PAC base learning algorithm, but instead that the base
algorithm returns “weak hypotheses.” As Freund and Schapire commented in the
discussion of Breiman (1998), this is a very unsatisfactory characterization since it
does not really tell when the assumption will be satisfied. In fact, Schapire, Freund,
Bartlett and Lee (1998) were uncertain whether the weighted training error εt will
eventually increase to 0.5 and how slow this increase would be as t , the time or
number of rounds of boosting, increases. It was stated that “Characterizing the
conditions under which the increase is slow is an open problem.”

1.2. Results and approaches. This open problem of weak hypotheses will be
studied in this paper. We will show (in Section 6.1) that for most base hypothesis
spaces εt can be guaranteed to not deteriorate to 0.5 for almost all data realizations,
and we will provide a bound on the difference (εt − 0.5) based on a measure
of capacity of the base hypothesis space. [For example, due to Corollary 1 and
Lemma 8, if the base hypothesis space H is negation closed and contains the
family of step functions and if the observed x-values (predictors) are untied, then
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the weighted training error εt ’s, when optimized over H , can be made better than
random guessing for a positive amount throughout the process of AdaBoost; i.e.,
εt < 0.5− δ for some common δ > 0 for all t .]

We will see that the wide validity of the assumption not only is relevant to the
reduction of training error, but also has important consequences on the prediction
error for the boosted predictions at large time (or number of steps of boosting).
In particular, there will be important implications on whether or not it is good in
general to let boosting run forever and whether or not boosting overfits eventually,
which are very controversial topics [see, e.g., Grove and Schuurmans (1998),
Mason, Baxter, Bartlett and Frean (1999) and Friedman, Hastie and Tibshirani
(2000)]. Here overfitting refers to a prediction which is always perfect on the
training sample but is poor on new test cases. We define the amount of overfit as
the difference between the prediction error and the optimal Bayes error for large
sample sizes.

We approach the problem by first studying an analog of AdaBoost in the
context of regression. This was called matching pursuit by Mallat and Zhang
(1993) in signal processing for sequential combination of waveforms and later
recognized by Friedman, Hastie and Tibshirani (2000) as an analog of AdaBoost
for least squares regression. We will reformulate this algorithm in the framework
of boosting and introduce the concept of weak base hypotheses which will also
imply an exponential decrease in the training error. In this case we found that the
weak base hypotheses are guaranteed for most base hypothesis spaces, even for
very simple ones such as the family of step functions.

Therefore, in traditional nonparametric regression with fixed x-design, the
residual in fitting the y-values goes to 0 if boosting is run forever. This type of
exact fitting is what is not wanted—it would suggest overfitting if the unmodified
regression boosting were run forever; that is, the fit becomes perfect on the
sample but poor for predicting a new observation. Regularization is needed in this
case to enhance the performance. Therefore the assumption of weak hypotheses
does hold in most cases, and that is bad for running the unmodified regression
boosting forever—it overfits for traditional nonparametric regression. On the other
hand, in an example of orthogonal base hypotheses, regularization can lead to
provable improvement and avoid overfitting. Therefore one cannot hope to avoid
regularization (of some kind) just by adopting the boosting device to regression.

What will happen in the classification case? Will the assumption of weak
hypotheses be typically valid? What are some implications for the prediction error?
These will be considered in an analogous treatment of AdaBoost similar to its
regression analog and differences will also be discussed.

We will show that, for both regression and classification boosting, the assump-
tion of weak hypotheses as well as how fast the training errors reduce depends on
a measure of capacity of the base hypothesis space called the angular span. We
will introduce the concept and the relevant properties. The assumption of weak
hypotheses will be found to hold for all possible realizations of random responses
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(and with all possible reweighting of the data points) if and only if the base hy-
pothesis space has a nonzero angular span. Useful conditions for a nonzero angular
span will be provided, based on a notion of completeness, and shown to actually
hold for many commonly used base hypothesis spaces. We then derive bounds on
the prediction error that are tight in the large time limit for fixed predictors. The
bound can be easily adapted to allow for multiple response values and for random
discrete predictors and for proving that “quantization” as a method of regulariza-
tion can, at least theoretically, lead to optimal asymptotic performance, even for
continuous or sparse data [see Jiang (2000a)].

These implications of the assumption of weak hypotheses on the prediction
error are obtained by studying the assumption in a way to account for all possible
realizations of the random labels (or responses). Previously, this assumption was
studied by Goldmann, Hastad and Razborov (1992), Freund (1995), Freund and
Schapire (1996) and Breiman (1997a, 1997b), for example, but the characterization
depends on a given realization of the pattern or labels. In comparison, our approach
clarifies that the assumption holds for most common hypothesis spaces (e.g.,
anything that contains the family of step functions as a subset) and that it holds
for all possible realizations of the random labels, which leads to the implications
regarding the prediction error. On the other hand, since our formalism protects
against all possible labels, the rate we found for the training error reduction may be
slower than the actual reduction that one experiences for a given data realization.

We will formulate the main results from regression (Sections 2–4) to classifica-
tion (Sections 5–7). For both the regression and the classification sections, we first
introduce the concept of angular span (Sections 2 and 5) as a capacity measure of
the base hypothesis space. This concept is then used in Sections 3 and 6 to show
the wide validity of the assumption of weak hypotheses. Section 6.1 contains some
results related to the open problem of Schapire, Freund, Bartlett and Lee (1998).
These imply that even very simple base learners can reduce the training error for
a positive amount, and accumulating this over time in the unmodified boosting
process will unavoidably lead to a perfect fit on the training sample. Then Sec-
tions 4 and 7 discuss the implications on the prediction errors with Propositions 2
and 5. Bounds (4.1) and (7.1) there show that the prediction errors in fixed design
problems converge to suboptimal limits when boosting is run forever without reg-
ularization, under very common situations with a nonzero angular span (which can
also guarantee weak hypotheses).

Below we first describe the setup of statistical learning with noisy data and
define some relevant concepts and useful results. For convenience, we will
formulate everything for predictors valued in [0,1], since it is obvious that
most results can be easily extended to more general domains that may be
multidimensional. We also assume the predictor x’s to be untied. [The probability
of observing ties is 0 if x is continuous. See also Jiang (2000a) for a formulation
allowing ties.]
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2. Angular span for regression. In statistical learning, we are faced with
an observed data set (xi, yi)

m
1 , where xm

1 are predictors, which we assume, for
convenience, to be valued in [0,1] and untied. The locations of these m distinct
values will be called the predictor values. The yi’s are real for regression problems
and are {0,1} valued in the classification problem, where a useful transform
zi = 2yi − 1 valued in {−1,+1} is often used.

In learning, we usually have a hypothesis space of real regression functions Hr

or a hypothesis space of {±1}-valued classification functions Hc to fit the data.
A hypothesis space, called the base hypothesis space or base system Hr,c, can
be made more complex by linear combinations of t members as the t-combined
system or t-combined hypothesis space denoted as lint (Hr,c). Formally, lint (H)=
{∑t

1 αsfs : (αs, fs) ∈ ×H }. A regression space Hr is said to induce a classifier
space Hc if Hc = sgn(Hr )= {sgn(f ) :f ∈Hr}.

We now introduce a concept for describing the capacity of a hypothesis
space Hr , which we call the angular span or a-span and which is crucially related
to the assumption of weak hypotheses and training error reduction in the context
of regression boosting. We first define the angular span for a general set of nonzero
vectors A in an inner product space with inner product 〈 , 〉norm and squared norm
‖v‖2 = 〈v, v〉norm, which is denoted as

asp(A;norm)= inf
ε �=0

sup
v∈A
〈ε/‖ε‖, v/‖v‖〉2norm

and is a quantity valued in [0,1]. This is a measure of dispersion for the
directions of the vectors in A. The smaller this quantity, the less well distributed
the vectors in A. If A spans the vector space, then the asp is nonzero. Now
consider a regression hypothesis space Hr and an inner product space associated
with a set of distinct points xm

1 , with the inner product defined by 〈f,g〉xm
1
=

m−1 ∑m
1 f (xj )g(xj ) for f,g ∈ Hr . The regression a-span for Hr with this

particular norm is now defined as

asp(Hr ;xm
1 )= inf

ε∈m,‖ε‖=1
sup

f∈Hr ,‖f ‖>0
〈ε, f/‖f ‖〉2xm

1
,

with the obvious extension of the inner product acting on any two m-vectors am
1

and bm
1 : 〈a, b〉xm

1
= m−1 ∑m

1 ajbj , such that for a function f the corresponding
m-vector is f m

1 = f (xj )
m
1 . By definition, the regression a-span has the following

monotone properties with respect to the hypothesis space and with respect to the
number of predictor values: (i) Hr ⊂H ′

r implies that asp(Hr ;xm
1 )≤ asp(H ′

r ;xm
1 )

and (ii) asp(Hr ;xm+1
1 )≤ asp(Hr ;xm

1 ).
Some examples of the regression a-span are given below.

1. If the hypothesis space is the (p − 1)th-order regression H = {∑p−1
0 akx

k :

a
p−1
0 ∈ p}, then asp(H ;xm

1 ) = I {m ≤ p} (i.e., asp = 1 if m ≤ p and 0 if
m >p).
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2. If the hypothesis space contains m orthonormal basis vectors on xm
1 , that is,

H = {φk(·)m1 : [φk(xj )]m,m
1,1 } is an orthogonal matrix, then asp = 1/m. This

follows because in this case the asp is the squared cosine of the angle between
the major diagonal of an m-dimensional cube and any of its edges.

3. If H = {xk :k = 0, . . . ,m}, then 0 < asp≤ 1/m.
4. If H = {cos(ax) :a ∈ }, m= 2 and xm

1 = (0,1), then the asp is cos2(π/4), or
0.5.

5. If H = {sin(ax) :a ∈ }, m= 2 and xm
1 = (0,1), then the asp is 0.

The following two lemmas relate the condition of nonzero a-span to more
primitive conditions that are easy to validate.

LEMMA 1 (Completeness versus nonzero a-span). For any set of distinct
predictor values xm

1 , asp(Hr ;xm
1 ) > 0 if and only if we can find m functions f m

1
from a hypothesis space Hr which produce a nonsingular matrix [fk(xj )]m,m

1,1 .

PROOF. For the “only if” part, suppose no f m
1 ∈Hr can be found to produce a

nonsingular matrix [fk(xj )]m,m
1,1 . Then the set {f (xm

1 ) :f ∈Hr} does not span m,
and we can find a nonzero vector ψ = ψm

1 such that
∑m

j=1 f (xj )ψj = 0 for all f
in Hr . Take ε to have components proportional to ψj . Then 〈ε, f 〉 = 0 for all f in
Hr and the a-span must be 0. The “if” part follows from Mallat and Zhang (1993),
Lemma 1. �

LEMMA 2 (Approximation and completeness). Suppose the closure of Hr

contains the set of all sign functions. More formally, suppose Hr contains, for any
real number a, a sequence of functions {f (i),a}∞i=1 such that f (i),a converges to
the function sgn(x − a) at all points x �= a. Then, for any set of distinct predictor
values xm

1 , we can find m functions fm
1 from Hr or m functions f m

1 from sgn(Hr)

which produce a nonsingular matrix [fk(xj )]m,m
1,1 .

PROOF. Consider any set of distinct predictor values xm
1 ∈ [0,1]m and assume

for convenience that they are ordered increasingly. Find f
(i)
k ∈ Hr such that

limi→∞ f
(i)
k (x) = sgn{x − (xk + xk−1)/2}, k = 1, . . . ,m and x0 ≡ −0.5, for

all x that are the continuous points of the limiting functions. Then the matrix
[f (i)

k (xj )]m,m
1,1 (as well as [sgn◦f (i)

k (xj )]m,m
1,1 ) as i increases converges to a matrix

with +1’s in the diagonal as well as in the upper-right triangle, while with −1’s in
the lower-left triangle; and therefore has determinant 2m−1. Therefore there must
be a q large enough such that [f (q)

k (xj )]m,m
1,1 (or [sgn◦f (q)

k (xj )]m,m
1,1 ) is nonsingular,

where f
(q)
k ∈Hr for k = 1, . . . ,m. �

REMARK 1. The condition of this last lemma is satisfied by many base
hypothesis spaces. They include all base systems that contain a family of “shifted”
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cumulative distributing functions (cdf’s) {2F {(· − µ)/σ } − 1 :σ > 0, µ ∈ }.
Examples include the case when F is the logistic cdf, when the q-combined system
is the usual neural net with q (tanh) nodes; the case when F is the Gaussian cdf;
the threshold base system with a Heaviside cdf; the base system of mixtures of two
experts [Jacobs, Jordan, Nowlan and Hinton (1991)]; and any more complicated
base systems that include these base systems as submodels—for example, the base
system of a neural net or the base system of a CART tree [Breiman, Friedman,
Olshen and Stone (1984)]. By the consequences of the previous lemmas and the
later ones, we will see that all these base systems accommodate “weak learners,”
which always return weak hypotheses in boosting, due to the nonzero angular span
of the base systems.

Now we describe the setup for boosting least squares regression sequentially.

3. Boosting regression base learners. The training error for f in a re-
gression hypothesis space Hr with respect to a data set (xi, yi)

m
1 is given by

m−1 ∑m
i=1{yi − f (xi)}2 or ‖y − f ‖2

xm
1

—we will suppress the subscripts of the
norm or inner product here.

We now consider a hypothesis space Hr to be the base hypothesis space. We first
build onto it by attaching a coefficient, αf ∈  ×Hr , and then later sequentially
add up such terms to form

∑t
1 αsfs ∈ lint (Hr). A base learner or base learning

algorithm is defined to be an algorithm which is capable of mapping any set of
responses (such as ym

1 ) to ×Hr , which can be written as α̂f̂ : m �→  ×Hr .
When the fit is obtained by the least squares procedure, it is typically assumed that
α̂f̂ = arg minαf∈×Hr ‖y − αf ‖2 achieves the infimum of the objective function.
We slightly relax this assumption and allow an approximate fit, by introducing a
concept called the precision of α̂f̂ , denoted as

prec(α̂f̂ )= sup
ε∈m, ε �=0

(
‖ε − α̂f̂ε‖2/‖ε‖2 − inf

αf∈×Hr

‖ε − αf ‖2/‖ε‖2
)
.

Similar to the tolerance level used in programming, this precision measures how
complete the minimization one requires the base learner to achieve, relative to
the best objective function achievable in ×Hr . (The typical approaches assume
prec= 0 and that the minimizations are fully completed.)

Now we introduce the concept of “weak learner” similar to Schapire (1999),
which will always return “weak hypotheses” that will reduce the training error by
a positive amount. A base learner α̂f̂ is δ-weak (δ > 0) with respect to the set of
predictor values xm

1 if the following condition holds for some δ > 0:

sup
ε∈m, ε �=0

‖ε− α̂f̂ε‖2/‖ε‖2 ≤ 1− δ.

This condition requires that the percentage reduction in the training error achieved
by the base learner be bounded away from 0. We will see (in Lemma 4 and
Remark 2) that the condition is widely valid (for some δ > 0).
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The following sequential algorithm LSBoost.Reg is essentially the matching
pursuit algorithm of Mallat and Zhang (1993) and was recognized by Friedman,
Hastie and Tibshirani (2000) as an analog to AdaBoost in the regression context.
It performs sequential minimization of the square cost C(F ) = m−1 ∑m

j=1{yj −
F(xj )}2 over linear combination F of functions in Hr .

Algorithm LSBoost.Reg.

1. Let F̂0 = 0.
2. For all t = 1,2, . . .:

a. Find α̂t f̂t which exactly or approximately minimizes C(F̂t−1 + αf ) over
αf ∈  × Hr . (Or, equivalently, let α̂t f̂t = α̂f̂ |εt−1 be a base hypothesis
chosen by a base learner α̂f̂ minimizing a cost function ‖εt−1 − αf ‖2 over
×Hr , with perhaps an imperfect precision, where εt−1 = y − F̂t−1.)

b. Let F̂t = F̂t−1 + α̂t f̂t .

The following lemmas and proposition reformulate the convergence properties
of matching pursuit in the language of AdaBoost. The proofs for Lemma 4 and
Proposition 1 are omitted since they are analogous to the corresponding results in
classification boosting.

LEMMA 3 (Weakness and exponential rate). If the base learner α̂f̂ used in
Step 2a of LSBoost.Reg is δ-weak, then, for any nonzero y, ‖y − F̂t‖2/‖y‖2 ≤
(1− δ)t ≤ e−δt .

PROOF. The δ-weak base learner ensures that ‖εt‖2/‖εt−1‖2 ≤ 1− δ for all t .
Then ‖εt‖2/‖ε0‖2 ≤ (1− δ)t . �

LEMMA 4 (“Weakness” versus a-span, part I). Suppose asp(Hr) > prec(α̂f̂ )

≥ 0. Then α̂f̂ : m �→ ×Hr is δ-weak with δ = asp(Hr)− prec(α̂f̂ ) > 0.

PROPOSITION 1 (“Weakness” versus a-span, part II). Consider any specified
set of predictor values xm

1 . A base learner α̂f̂ valued in  × Hr can be made
δ-weak for some positive δ, by achieving a sufficiently good precision, if and only
if the base hypothesis space Hr has a nonzero a-span.

Lemma 3 shows that the assumption of a weak base learner implies a combined
learner that reduces the training error at an exponential rate. Lemma 4 implies
that this exponential rate can be characterized by the a-span. Then Proposition 1
says that the weak learner assumption is in some sense equivalent to requiring a
nonzero a-span (or, roughly speaking, that the hypotheses in the base hypothesis
space “span a nonzero angle”).
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REMARK 2. More primitive conditions given in the previous section show that
a large class of base systems (e.g., CART or even simple step functions) do have
nonzero a-spans and accommodate δ-weak base learners. Then Lemma 3 implies
that these base learners can generate a perfect fit by boosting in the large time limit,
which may correspond to bad prediction errors. This implies that boosting forever
may not be good in some situations and regularization may be needed—these will
be discussed in later sections.

4. Overfitting behavior for regression boosting. It is interesting to see what
happens to the regression boosting algorithm in the unmodified version, that is,
without any regularization method. How does the prediction error behave? Is it
resistant to overfitting when run forever?

We consider the case of traditional nonparametric regression when xm
1 are

fixed design points [e.g., (i/m)mi=1]. Suppose the prediction is based on a data
set (xi,Yi)

m
1 = {xi, Y (xi)}m1 , where the Y (xj )’s are independent random variables

with mean µj and variance σ 2. Consider a generic prediction {Ŷ (x) :x ∈ }. The
goodness is measured by the predictive mean square error or prediction error,
defined by L = m−1 ∑m

j=1 E{Ynew(xj ) − Ŷ (xj )}2 ≡ E‖Ynew − Ŷ‖2. Here the
Ynew(xj )’s are assumed to be independent new observations, which are also inde-
pendent of the observed data Y (xi)’s, with mean µj and variance σ 2 for each xj .

The following is a bound for the prediction error for the prediction F̂t obtained
from t rounds of LSBoost.Reg. It is tight in the large time limit t →∞. We
have seen in the previous sections that most commonly the assumption of weak
hypotheses is valid and the base hypothesis space has a nonzero a-span asp(Hr). In
these cases, (4.1) of the proposition obviously suggests that running LSBoost.Reg
forever will let the prediction error Lt converge to a (generally) suboptimal limit
L∞ = 2σ 2 [assume, e.g., prec(α̂f̂ )= 0 as in the usual approaches].

PROPOSITION 2 (Prediction error). Suppose asp(Hr) > prec(α̂f̂ ) ≥ 0.
Consider the prediction error for F̂t obtained from t rounds of LSBoost.Reg:
Lt =E‖Ynew− F̂t‖2. Then we have

∣∣√Lt −
√

2σ 2
∣∣≤

√√√√m−1
m∑

j=1

(µ2
j + σ 2) exp

(−{
asp(Hr)− prec(α̂f̂ )

}
t/2

)
.(4.1)

PROOF. Use the triangle inequality,∣∣‖Ynew − F̂t‖E − ‖Ynew − Y‖E
∣∣≤ ‖F̂t − Y‖E,

where ‖F(·)−G(·)‖E ≡
√
m−1 ∑m

j=1 E{F(xj)−G(xj )}2. The proof is immedi-
ate by noting that the right-hand side of this inequality is bounded above by the
right-hand side of the inequality in the proposition, due to the lemmas in the pre-
vious section which bound the training error. �
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REMARK 3. (a) As a consequence of the previous section, the assumption of
weak hypotheses is typically valid, and the boosting process eventually fits the data
Y (xj ) perfectly at each design point. The limiting prediction simply uses the data
points themselves. This is clearly not what we want and severe overfit can occur:
L∞ = limt→∞Lt = 2σ 2, while the optimal Bayes prediction YB(xj ) = µj has a
prediction error L∗ = σ 2. The difference L∞ − L∗ is equal to σ 2, which can be
large for noisy data and does not disappear as the sample size m increases. Note
that this can be guaranteed to happen even for very simple base hypothesis spaces
as we have commented earlier, since base spaces as simple as the step functions
can have nonzero a-span and can be boosted to give a perfect sample fit eventually.
Therefore we conclude that, in most cases, the unmodified regression boosting
is not resistant to overfitting in the large time limit for traditional nonparametric
regression.

(b) There is a very simple example to illustrate how these results work. Consider
the situation xm

1 = (j/m)m1 . The Yj ’s are assumed to be independent Gaussian with
mean µj and constant variance σ 2. The base learner is a set of m functions φm

1 such
that {φk(1/m), . . . , φk(m/m)}, k = 1, . . . ,m, form an orthonormal basis for m.
This system has a-span 1/m. We use LSBoost.Reg to fit a linear combination of
these base functions to the data Ym

1 . At each round, suppose the maximization is
completed (prec = 0). Then the training error drops from ‖Ym

1 ‖2 to 0 in exactly
m steps, since LSBoost.Reg each time reduces the squared length ‖Ym

1 ‖2 by
iteratively removing the largest projection of Ym

1 on a base function. The prediction
error Lt , however, reaches its limit point 2σ 2 at step m and shows an overfit of
amount σ 2 as compared to the best possible prediction error σ 2.

Therefore the assumption of weak hypotheses does hold in most cases, and
that is bad for running regression boosting forever. However, we conjecture that
the validity of the assumption is good for “boosting in the process.” That is, the
validity of the assumption implies a “complete spectrum of predictions” with
varying degrees of complexity—it “traces the dots” at large time, while it uses the
dumbest fit 0 at the beginning. One naturally guesses that there will be an optimal
time at which the boosted prediction will have a good performance in prediction
error.

Indeed, this can be rigorously stated and proved in the setup of item (b) of the
remark preceding where orthogonal base hypotheses are used. For this system, it
is straightforward to show the following:

1. The boosted prediction at any time t is exactly solvable and basically retains
the t (≤ m) largest (in magnitude) sample Fourier coefficient 〈Y,φk〉’s in the
orthogonal expansion

∑m
k=1〈Y,φk〉φk.

2. There is a boosted prediction at some time which is at least as good as the
orthogonal series estimator with any hard thresholding. As a corollary, and uti-
lizing the results of Donoho and Johnstone (1994), we then see that the boosted
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prediction at some time is asymptotically minimax in reducing the prediction
error in the family of all possible signals µm

1 . In other words, no measurable
estimator can beat all boosted predictions simultaneously for all signals.

The main point of the above results is that for this exactly solvable boosting
system one boosting prediction at some time is essentially optimal (in the sense
of asymptotic minimax) among all possible estimators. But, in practice, how can
one construct the boosted prediction at an optimal time, knowing that neither the
“unboosted” nor the “boost-forever” predictions are good in general? This can
be done by a method that is similar to hard thresholding, that is, retaining only
the coefficients obtained in boosting that are larger (in magnitude) than a certain
threshold.

Such an algorithm can be run forever without overfitting by using a suitably
chosen threshold (the prediction will stabilize after a certain time):

3. If the threshold is chosen to estimate the universal threshold σ
√

2 logm/m [see,
e.g., Donoho and Johnstone (1994)], then the boosted prediction after a certain
time becomes the same as the orthogonal series estimator with the universal
hard thresholding. Consequently, the resulting estimator is asymptotically
(minimax-)optimal among all possible estimators when protecting against all
possible signals.

Presumably, some thresholding techniques could be applied to boosting with
other base hypothesis spaces and be adapted to the classification context. However,
analytic results would be harder to obtain and this is currently under investigation.

The main message here is that, in most cases in standard nonparametric
regression with fixed x, the assumption of weak hypotheses does hold and implies
overfit in the large time limit and that it is not good to run the unmodified regression
boosting forever. Regularization is not unnecessary but potentially beneficial.
A natural question is: what happens in the case of classification?

5. Angular span for classification. The response or label yi’s are {0,1}
valued in the classification problem, where a useful transform zi = 2yi − 1 valued
in {−1,+1} is often used. A hypothesis space Hc is a set of functions f : [0,1] �→
{±1}. It can often be induced by a regression space Hr by Hc = sgn(Hr ). The
space Hc is said to be negation closed if f ∈ Hc whenever −f ∈ Hc. For
measuring the capacity of Hc , we define the classification angular span related
to a set of predictor values xm

1 . Denoting Pm = {wm
1 :wj ≥ 0,

∑m
1 wj = 1}, we

define

aspc(Hc;xm
1 )= inf

wm
1 ∈Pm, zm1 ∈{±1}m

sup
f∈Hc

∣∣∣∣∣
m∑

j=1

wjzjf (xj )

∣∣∣∣∣.
This quantity obviously lies in [0,1] as the regression a-span. It also has similar
monotone properties: (i) Hc ⊂H ′

c implies that aspc(Hc;xm
1 )≤ aspc(H

′
c;xm

1 ) and
(ii) aspc(Hc;xm+1

1 )≤ aspc(Hc;xm
1 ).
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Some simple examples are:

1. For the hypothesis space of delta-functions [Schapire, Freund, Bartlett and Lee
(1998)] Hc = {s · δa : s ∈ {±1}, a ∈ }, where δa(x)= 2I {x = a} − 1, we have
3/m≥ aspc(Hc)≥ 1/m for any set of m predictor values.

2. For the hypothesis space of threshold functions (or “stumps”) Hc = {s · sgna :
s ∈ {±1}, a ∈ }, where sgna(x)= 2I {x ≥ a}−1, we have 2/m≥ aspc(Hc)≥
1/m for any set of m predictor values.

3. Suppose xm
1 = {0,1}, Hc = {sgn[cos{a(x−1/2)}] :a ∈}. Then aspc(Hc)= 0,

which is easily proved by applying the definition and taking wm
1 = {1/2,1/2}

and zm1 = {−1,1}.
Some results that are useful in obtaining upper bounds for the classification

a-span are included in the Appendix.
Sufficient conditions for aspc > 0 are summarized in the following lemma and

proposition.

LEMMA 5 (Completeness versus nonzero a-span). aspc(Hc;xm
1 ) > 0 if and

only if there exist f m
1 ∈Hc such that the matrix [fk(xj )]m,m

1,1 is nonsingular.

PROOF. First prove “if.” Suppose there exist f1, . . . , fm in Hc such that the
matrix [fk(xj )]m,m

1,1 is nonsingular. If the a-span were 0, then, by its definition,
there would exist wm

1 ∈ Pm and zm1 ∈ {±1}m such that
∑m

j=1 wjzjf (xj ) = 0
for all f ∈ Hc . Then the set of linear equations

∑m
j=1 wjzjfk(xj ) = 0 for all

k = 1, . . . ,m would imply that (wjzj )
m
1 is a zero vector. This contradicts the fact

that (wjzj )
m
1 has to be a nonzero vector (otherwise,

∑m
j=1 |wjzj | =∑m

1 wj = 1
would be violated). Therefore the a-span cannot be 0.

Now the “only if” part. Suppose no f m
1 ∈ Hc can be found to produce a

nonsingular matrix [fk(xj )]m,m
1,1 . Then the set {f (xm

1 ) :f ∈Hc} does not span m,
and we can find a nonzero vector ψm

1 such that
∑m

j=1 f (xj )ψj = 0 for all f in Hc.
Take wj = |ψj |/∑m

1 |ψk| and zi = sgn(ψi). Then
∑m

j=1 f (xj )wjzj = 0 for all f
in Hc and the a-span must be 0. �

By Lemma 2, we therefore also have:

PROPOSITION 3 (Approximation and a-span). Hc = sgn(Hr) and Hr can
approximate any sign function (see Lemma 2) imply that aspc(Hc;xm

1 ) > 0 for any
set of (distinct) predictor values xm

1 .

(That is, the classification a-span is nonzero if the classifier space Hc is induced
by a regression space Hr which can approximate any sign function.)

Now we show that a nonzero a-span of the classification base system Hc implies
that the training error can be made arbitrarily small by applying the base learners
sequentially and that the usual assumption of weak hypotheses is valid. Due to
Remark 1 and Proposition 3, the assumption is actually valid for most situations.
We now introduce the setup.
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6. Boosting classification base learners. Let S = (xi, zi)
m
1 , zi ∈ {−1,+1},

be the observed data. Let ẑ(·) ∈Hc be a prediction based on the observed data,
also taking values from {−1,+1}. Then the training error can be denoted as
L̂=m−1 ∑m

j=1 I {zi �= ẑ(xi)}.
Suppose the sign-valued prediction ẑ is induced by a real hypothesis: ẑ =

sgn◦F for some F ∈Hr . Then we have the following inequality:

L̂=m−1
m∑

j=1

I
{
zi �= ẑ(xi)

}≤D(F)≡m−1
m∑

j=1

e−F(xj )zj .

AdaBoost can be regarded as sequentially minimizing this upper bound D(F) as
a cost function [see, e.g., Breiman (1997a), Mason, Baxter, Bartlett and Frean
(1999) and Friedman, Hastie and Tibshirani (2000)]. The hypothesis space Hr

of the F ’s is the space of linear combinations of t base hypotheses: Hr = lint (Hc)

at round t .
Algorithm AdaBoost:

1. Set F̂0 = 0.
2. For t = 1,2, . . .:

a. Find α̂t f̂t which exactly or approximately minimizes D(F̂t−1 + αf ) over
αf ∈×Hc.

b. Set F̂t = F̂t−1 + α̂t f̂t , ẑt = sgn◦F̂t .

This algorithm is obviously similar to the LSBoost.Reg algorithm, except that
the cost function is the exponential cost D(F) and a sign transform of F̂t is applied
to produce a sign-valued prediction ẑt . With a minimization partially completed on
the coefficient of the linear combination, Step 2a is equivalent to the more familiar
formulation 2a′ of “training on a reweighted data set”:

2a′. Find some f = f̂t ∈Hc which exactly or approximately minimizes

inf
α∈

{
D(F̂t−1 + αf )/D(F̂t−1)

}= 2

√
1
4 −

(
εt − 1

2

)2
.

Then set α̂t = 1
2 ln((1− ε̂t )/ε̂t ). [When Hc is negation closed, the mini-

mization step is equivalent to finding f̂t to (approximately) minimize the
weighted training error εt .] Here we denote the weighted training errors εt =∑m

j=1 w
(t)
j I {f (xj ) �= zj )} and ε̂t = ∑m

j=1 w
(t)
j I {f̂t (xj ) �= zj }, with

weights w
(t)
j = e−F̂t−1(xj )zj /

∑m
k=1 e−F̂t−1(xk)zk .

In this case, f̂t is generated by a classification base learner. A classification
base learner is, in general, a mapping f̂ from PM × {±1}m to Hc; that is,
when input with a set of weights and labels (wm

1 , zm1 ) ∈ PM × {±1}m, the base
learner f̂ outputs a base hypothesis in Hc. We sometimes also denote by f̂ the
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function in Hc that is selected by the base learner, which should be clear from
the context. Note that the weighted training error of a base hypothesis f ∈ Hc is
ε =∑m

j=1 wjI {zj �= f (xj )}, and (ε−1/2)2 = (1/4)|∑m
j=1 wjzjf (xj )|2, which is

the type of quantity that Step 2a′ of AdaBoost maximizes. It is therefore reasonable
to define the precision for a base learner f̂ to measure how completely it performs
the maximization, by

1
4 prec(f̂ )2

= sup
(wm

1 ,zm1 )∈Pm×{±1}m

{
sup
f∈Hc

1
4

∣∣∣∣∣
m∑

j=1

wjzjf (xj )

∣∣∣∣∣
2

− 1
4

∣∣∣∣∣
m∑

j=1

wjzj f̂ (xj )

∣∣∣∣∣
2}

.

(Typically, optimization is assumed to be complete and prec= 0.)
Regarding the open problem of Schapire, Freund, Bartlett and Lee (1998), we

note that the weighted training error ε̂t will be bounded away from 0.5 if the base
learner f̂ can differ from random guessing by a positive amount, uniformly for all
weights and labels. That it, we will be guaranteed that |ε̂t − 0.5|> δ for all t for
some δ > 0 (or ε̂t < 0.5− δ ∀t when Hc is negation closed) if

inf
(wm

1 ,zm1 )∈Pm×{±1}m

∣∣∣∣∣
m∑

j=1

wjI
{
zj �= f̂ (xj )

}− 1
2

∣∣∣∣∣≥ δ,

in which case we say that the base learner f̂ is δ-weak (δ > 0). We will comment
on this more in Section 6.1.

Similar to the regression case, it is easy to prove that (i) AdaBoost reduces the
reducible training error exponentially fast if the base learner is δ-weak, (ii) the base

learner is δ-weak for δ = (1/2)
√

aspc(Hc)2 − prec(f̂ )2 if aspc(Hc)
2 > prec(f̂ )2

≥ 0 and (iii) the base learner f̂ is δ-weak for some positive δ by choosing a
sufficiently small prec(f̂ ) if and only if the base hypothesis space Hc has a nonzero
a-span (which holds very commonly; see Proposition 3 or Section 6.1).

LEMMA 6 (Weakness and exponential rate). Suppose f̂t = f̂ |
(w

(t)
j )mj=1,z

m
1

used

in Step 2a of AdaBoost is generated by a base learner f̂ that is δ-weak. Then the
training error of the boosted prediction satisfies, for all t = 1,2, . . . ,

L̂t ≡m−1
m∑

j=1

I
{
ẑt (xj ) �= zj

}≤ (1− 4δ2)t/2 ≤ e−2δ2t .

PROOF. This basically follows from the techniques of, for example, Schapire
(1999). �
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LEMMA 7 (“Weakness” versus a-span, part I). Suppose aspc(Hc)
2 > prec(f̂ )2

≥ 0. Then the base learner f̂ : Pm × {±1}m �→Hc is δ-weak for δ =
1
2

√
aspc(Hc)

2 − prec(f̂ )2, and therefore we have, for all t ,

m−1
m∑

j=1

I
{
ẑt (xj ) �= zj

}≤ {
1− aspc(Hc)

2 + prec(f̂ )2}t/2

≤ exp
(−(t/2)

{
aspc(Hc)

2 − prec(f̂ )2})
.

PROOF. Fix xm
1 for all (wm

1 , zm1 ) ∈ Pm × {±1}m. Due to the definition of
prec(f̂ ), we have

1
4

∣∣∣∣∣
m∑

j=1

wjzj f̂ (xj )

∣∣∣∣∣
2

≥ sup
f∈Hc

1
4

∣∣∣∣∣
m∑

j=1

wjzjf (xj )

∣∣∣∣∣
2

− 1
4 prec(f̂ )2.

Hence

inf
(wm

1 ,zm1 )∈Pm×{±1}m
1
4

∣∣∣∣∣
m∑

j=1

wjzj f̂ (xj )

∣∣∣∣∣
2

≥ 1
4 aspc(Hc)

2− 1
4 prec(f̂ )2.

Taking square roots of both sides shows the lemma. [Note that

1
2

∣∣∣∣∣
m∑
1

wjzj f̂ (xj )

∣∣∣∣∣=
∣∣∣∣∣

m∑
j=1

wjI
{
zj �= f̂ (xj )

}− 1
2

∣∣∣∣∣.] �(∗)

Similar to the regression case (Proposition 1), we again have a two-sided
relationship between the existence of δ-weak base learners and the nonzero
capacity (as measured by a-span) of the base hypothesis space:

PROPOSITION 4 (“Weakness” versus a-span, part II). The base learner f̂ :
Pm × {±1}m �→Hc is δ-weak for some positive δ by choosing a sufficiently small
prec(f̂ ) if and only if the base hypothesis space Hc has a nonzero a-span.

PROOF. “If” is obvious from the proof of Lemma 7. For proving
“only if,” fix xm

1 and consider any (wm
1 , zm1 ) ∈ Pm × {±1}m. Note that

supf∈Hc

1
4

∣∣∑m
j=1 wjzjf (xj )

∣∣2 ≥ 1
4

∣∣∑m
j=1 wjzj f̂ (xj )

∣∣2. Taking inf over (wm
1 , zm1 )

∈ Pm × {±1}m for both sides of the inequality leads to the proof. Note that
inf(left-hand side)= 1

4 aspc(Hc)
2, and inf(right-hand side)≥ δ2 > 0, which is im-

plied by f̂ being δ-weak and the equation (∗) in the proof of Lemma 7. �
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6.1. Weak hypotheses and related problems. As discussed in the Introduction,
the assumption of weak hypotheses, useful for proving the exponential reduction of
training error in AdaBoost, assumes that the weighted training error ε̂t < 0.5− δ

for all t for some common δ > 0. However, Schapire, Freund, Bartlett and Lee
(1998) were uncertain whether ε̂t increases as a function of t , “possibly even
converging to 1/2,” and raised the open problem on “conditions under which the
increase is slow.”

As a corollary to Lemmas 5 and 7, we obtain:

COROLLARY 1 (“Weak edges”). The weighted training error ε̂t in AdaBoost
satisfies |ε̂t − 0.5|> δ for all t (or ε̂t < 0.5− δ ∀t when Hc is negation closed),

where the constant δ can be taken as (1/2)
√

aspc(Hc)2 − prec(f̂ )2 and can be
made positive by achieving a relatively precise optimization in Step 2a′, if the
base hypothesis space Hc has a nonzero a-span, or if Hc(x

m
1 )≡ {f (xj )

m
1 :f ∈Hc}

spans m.

For simplicity, from now on we suppose that the optimization steps are ideally
carried out [prec(f̂ ) = 0]. The most important condition of the corollary is the
“completeness condition” that Hc(x

m
1 ) spans m, which is satisfied in most

common situations due to the following lemma:

LEMMA 8 (Sufficient conditions for completeness). Hc(x
m
1 ) spans m if xm

1
are mutually distinct and Hc contains one of the following sets of functions:

(i) the set of sign functions SGN= {sgn(· − a) :a ∈ }; or
(ii) the set of delta functions DLT= {I (· = a)− I (· �= a) :a ∈}; or

(iii) the set of disks with any radius r ≥ 0:

DSK(r)≡ {
I
(· ∈ [a − r, a + r])− I

(· �∈ [a − r, a+ r]) :a ∈}
.

PROOF. Result (i) is a corollary to Lemma 2 and the other two results can be
similarly proved by finding m functions f m

1 from Hc to form a nonsingular matrix
[fk(xj )]m,m

1,1 . �

REMARK 4. (a) Very commonly, xm
1 are distinct with probability 1 (e.g.,

when xm
1 are realizations of continuous random variables) and Hc ⊃ SGN (e.g.,

when Hc is the set of CART trees). So, regarding the open problem of Schapire,
Freund, Bartlett and Lee (1998), the corollary and the lemma guarantee that ε̂t
will not deteriorate to 1/2 for almost all data realizations and even for Hc as
simple as the “stumps” (or the set of threshold functions defined in Example 2 of
Section 5). Therefore the assumption of weak base hypotheses is not restrictive but
widely valid instead; that is, in most common situations the corresponding base
hypotheses f̂t will be “better than random guessing” by a positive amount and



BOOSTING REGRESSION AND CLASSIFICATION 67

the training error drops exponentially fast. [Breiman has also reached a similar
conclusion independently (private communication).]

(b) Originally, the “weak edges” (|ε̂t − 0.5|> δ > 0 ∀t) required in the theory
of training error reduction were guaranteed by a base learning algorithm that is
weak PAC (probably and approximately correct); see Freund and Schapire (1997).
Soon it was realized that the notion of weak PAC is restrictive and not appropriate
for noisy data [see, e.g., Breiman (1998), Appendix and Discussions]. In the
PAC framework, the label z is assumed to follow a deterministic function of the
predictor x called a “concept.” This framework is not suitable for noisy data where
z given x is random and is no longer used in more recent papers on AdaBoost [e.g.,
Schapire, Freund, Bartlett and Lee (1998), Schapire (1999)].

(c) Even though the weak PAC framework is not appropriate for guaranteeing
the nonzero weak edges for training error reduction when data are noisy, our
results show that the differences (ε̂t − 0.5) on the weighted training sets are
still guaranteed to be bounded away from 0 in most common situations, which
suffice for obtaining an exponential rate of training error reduction. These have
been obtained under a different framework of “δ-weak” base learner to guarantee
the weak edges: we require that the weighted training errors for the base learner
be different from 0.5 for a positive amount uniformly for all weights and labels.
This notion of “δ-weak” does not depend on the “underlying concept,” is suitable
for noisy data and is found to be valid for most common situations. [Due to
Proposition 4 and Lemmas 5 and 8, a base learner f̂ can be made δ-weak on
almost all training sets (with xm

1 untied) with a relatively precise optimization if
the corresponding base hypothesis space Hc ⊃ SGN. Then, for example, the CART
system (or even the stumps) are typically δ-weak.]

In summary, in this part of the paper we show that the assumption of weak
hypotheses typically holds (even for very simple base systems such as the stumps).
The training error will therefore be guaranteed to drop to 0. Now the question is,
what do these results imply for the prediction error? An important implication is
that boosting forever can eventually generate a perfect fit on almost all training
samples (in fact, after some finite time, see Proposition 7 in the Appendix), which
may not be good for the prediction error in some situations, as we will discuss in
the later sections.

7. Overfitting behavior for classification boosting. Results on the large time
behavior of the prediction error can be derived similar to the regression case.
Suppose the prediction is based on a data set (xi,Zi)

m
1 = {xj ,Z(xj )}m1 with

fixed xm
1 , where Z(xj )’s are random and independent sign-valued ({−1,+1}-

valued) variables with “signal” P {Z(xj) = 1} = µj . The prediction error is
defined as Lt =m−1 ∑m

j=1 I {Znew(xj ) �= Ẑt (xj )} for the prediction Ẑt ≡ sgn◦F̂t

obtained from t rounds of AdaBoost. Here Znew(xj )’s are assumed to be random
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and independent new observations that are also independent of the observed data,
with “signal” µj for each xj .

The following is a bound for the prediction error Lt which is tight in the large
time limit t →∞. We have seen in the previous sections that most commonly
the assumption of weak hypotheses is valid and the base hypothesis space has a
nonzero a-span asp. In these cases, (7.1) of the proposition obviously suggests that
running AdaBoost forever would let the prediction error Lt converge to a generally
suboptimal limit L∞ (assume, e.g., prec= 0 as in the usual approaches).

PROPOSITION 5 (Prediction error). Denote asp = aspc(Hc) as the angular
span of the base hypothesis space, prec = prec(f̂ ) as the precision of the base
learner. Suppose asp > prec≥ 0. Then we have

Lt ≤ L∞ + e−t (asp2−prec2)/2 and
√
Lt ≥

√
L∞ −

√
e−t (asp2−prec2)/2.(7.1)

Here L∞ = m−1 ∑m
j=1 2µj(1− µj) ≡ L∗ +4, where L∗ = m−1 ∑m

j=1 min(µj ,

1 − µj ) is the Bayes error and 4 = m−1 ∑m
j=1 2|µj − 1/2|min(µj ,1 − µj)

measures the difference L∞ −L∗.

See Jiang (2000a) for the proof and a more general formulation allowing
multiple responses at the x-locations.

REMARK 5. (a) The large time limit L∞ of the prediction error is the same
as that of the nearest neighbor rule LNN =m−1 ∑m

1 2µj(1− µj), which exceeds
the Bayes error L∗ by at most min(0.125,L∗). So there is, in general, an overfit
as compared to the Bayes rule. [It is noted, however, that the amount of overfit is
usually small for data with little noise (i.e., when L∗ is small) and cannot exceed
12.5%. This is in sharp contrast to the case of regression boosting. That is, although
there can be a nonzero overfit, the amount of overfit L∞−L∗ cannot be arbitrarily
large.]

(b) The typical time used to approach this overfitting limit may be of order
1/ asp2, as suggested by the exponential rate of the bound when taking a perfect
precision prec= 0. This typical time has the order of squared sample size and can
be therefore quite long according to the example computations of asp in the earlier
sections, for example, for decision stumps (step functions). It is unclear whether
this is related to the empirical evidence that boosting often overfits only after tens
of thousands of rounds [see, e.g., Grove and Schuurmans (1998)].

(c) What about the situation when the x’s are random? In fact, with random
continuous predictors on [0,1], in the case of boosting the decision stumps or
CART systems, limiting the cuts of the step functions to be located at the mid-data
points will also generate the nearest neighbor rule for all sufficiently large time.
Therefore similar overfitting behavior can occur for noisy data.
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(d) What about boosting forever with a higher dimensional random continuous
predictor x with dim(x) > 1? We do not have theoretical results on this so far.
However, recent empirical studies also confirm that even for high dimensional
data “boosting forever” is still suboptimal, when compared to predictions obtained
from somewhere earlier in the boosting process [Grove and Schuurmans (1998),
Mason, Baxter, Bartlett and Frean (1999) and Friedman, Hastie and Tibshirani
(2000), among others].

Even though running the unmodified AdaBoost forever can lead to a suboptimal
prediction error, we expect that [see Jiang (2000b)], as in the case of regression
boosting, somewhere in the process of boosting a prediction rule is nearly
asymptotically optimal, in the sense that the prediction error is close to the
optimal Bayes error when the size of the training sample is large. Jiang (2000a),
Remark 6b, also discussed a quantization method for regularizing AdaBoost to
avoid overfitting.

8. Conclusions. This paper investigates when the assumption of weak base
hypotheses used in boosting is valid and discusses its implications for the
prediction error in the large time limit. Most of the commonly used base hypothesis
spaces (even very simple ones as the decision stumps) are shown capable of
generating weak hypotheses and can eventually generate a perfect fit when there
are no ties in the data. An implication is that both the unmodified regression and
the classification boosting algorithms will likely overfit when run forever. The
amount of overfit is typically smaller for classification boosting and is related
to the noise level (which may be small when the Bayes error is low); the time
needed for approaching the limiting fit may also be longer and may have the
order of the squared sample size. This may be part of the reason why overfitting
has not been noticed until recently. However, we conjecture that regularization
of the boosting processes, whether to stop at some finite time, or to shrink the
coefficients or to quantize the predictor space, may still lead to better performance
for noisy data (this is provable at least in some examples). Therefore the emerging
literature on regularized variants of boosting may not be unnecessary, despite the
fact that the unmodified AdaBoost is often resistant to overfitting after hundreds of
runs. For some work on regularization, see, for example, Friedman (1999a, 1999b)
(empirical work with shrinkage and randomization), Mason, Baxter, Bartlett and
Frean (1999) (complexity penalty) and Breiman (1996, 1999) and Bühlmann and
Yu (2000) (bagged versions of boosting).

The current method does not provide a general result for the most realistic case
with sparse data (with high-dimensional random continuous predictors). It is only
for the case of sparse data, where it is possible that the prediction error of AdaBoost
continues to decrease after a perfect fit on the training sample. It is important to
note that the results of this paper cannot explain this observed mystery. In most
of the cases considered, the prediction error stabilizes simultaneously with the
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training error. The best explanations so far for this mystery seem to be the margin
approach of Schapire, Freund, Bartlett and Lee (1998) and the top approach of
Breiman (1997a), which are still semiempirical in nature. It is, however, plausible
to conjecture that even in the case of sparse data running AdaBoost forever can
still lead to a suboptimal prediction in the sense defined in this paper, since our
results imply that the fit will be perfect for all sample realizations and agree
with the nearest neighbor rule at all the data points as well as in some of their
neighborhoods. The limiting prediction presumably cannot perform much better
than the nearest neighbor rule. Recent empirical studies also confirm that even for
high-dimensional sparse data AdaBoost may deteriorate after running for a very
long time [e.g., Grove and Schuurmans (1998), Mason, Baxter, Bartlett and Frean
(1999) and Friedman, Hastie and Tibshirani (2000)].

One may wonder why the validity of the assumption of weak hypotheses was
probably perceived as a positive thing. One possible reason is that boosting was
originally derived in the PAC framework with data with noiseless labels, where a
perfect sample fit implied by the assumption is typically good for the prediction
error also. An algorithm that fits the data perfectly is said to be “consistent” in the
PAC framework and is an important condition to prove good performance in the
prediction error [see, e.g., Anthony and Biggs (1992), Chapter 4]. Another possible
reason is that originally the inventors of AdaBoost may not have intended to let the
algorithm run forever, but rather to truncate the process (which is a regularization
method!) [see Freund and Schapire (1997)]. For such an approach of “boosting in
the process” the validity of the assumption may not have negative implications.

Although we argue that the assumption of weak hypotheses typically holds and
this can be problematic for the approach of “boosting forever” with noisy data, we
suspect that in the process of boosting a prediction rule can still achieve a very
good prediction error at some time. This is illustrated in an example at the end of
the sections on regression boosting. See also Jiang (2000b) for some results on the
performance of “AdaBoost in the process.”

Our approach is based on an analog of AdaBoost in the regression context.
The analogous treatment has been helpful in understanding the weak hypotheses
and their implications on prediction error, whether or not the boosting algorithms
will eventually overfit and by what amount, whether regularization is needed at all
or potentially beneficial and what are some possible approaches. We believe that
further studies of the analogy still have a lot more to tell.

APPENDIX

Some results related to the classification angular span. Upper bounds of
the classification angular span may be obtained from the following two results.

LEMMA 9 (Sign change). Suppose all the hypotheses in Hc change signs K

times or less. More formally, let Kf be the number of connected components of
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the positive support {x :f (x) = 1} plus the number of connected components of
the negative support {x :f (x)=−1} and suppose that supf∈Hc

Kf ≤K . Then we
have aspc(Hc :xm

1 )≤K/m for any set of (distinct) predictor values xm
1 .

PROOF. Without loss of generality, assume xm
1 to be ordered increasingly.

Let zm1 = (−1,1,−1,1, . . .) alternating the signs and wm
1 = 1/m. Then, for any

f ∈ Hc, there exists
⋃K

k=1 Rk a partition of the set of integers {1, . . . ,m} such
that Rk either is empty or contains consecutive integers such that {f (xj )}j∈Rk

carry the same sign. Then (treating the empty summands to be 0) we have∣∣∣∣∣
m∑

j=1

wjzjf (xj )

∣∣∣∣∣=
∣∣∣∣∣

K∑
k=1

∑
j∈Rk

wjzjf (xj )

∣∣∣∣∣

≤
K∑

k=1

∣∣∣∣ ∑
j∈Rk

wjzj

∣∣∣∣|f (xj )|=
K∑

k=1

∣∣∣∣ ∑
j∈Rk

wjzj

∣∣∣∣= (1/m)

K∑
k=1

∣∣∣∣ ∑
j∈Rk

zj

∣∣∣∣
≤K/m,

since |∑j∈Rk
zj | ≤ 1, due to the alternating signs of (zj )j∈Rk

.
Therefore aspc(Hc;xm

1 )≤ supf∈Hc
|∑m

j=1 wjzjf (xj )| ≤K/m. �

The following relationship holds between the classification a-span and a more
commonly used measure of capacity, the VC dimension [for the concept of the VC
dimension, see, e.g., Anthony and Biggs (1992), Chapter 7]:

PROPOSITION 6 (A-span and VC dimension). aspc(Hc;xm
1 ) ≤√

(2VC(Hc) logm+ 4)/m if VC(Hc) > 2, or ≤√(2 log card(Hc)+ 4)/m if Hc

is finite and nonempty.

PROOF. Due to the definition of a-span,

aspc(Hc;xm
1 )≤E(Q)≡E sup

f∈Hc

∣∣∣∣∣m−1
m∑

j=1

Zjf (xj )

∣∣∣∣∣,
where the Zj ’s are i.i.d. sign-valued zero-mean random variables. Apply the
Hoeffding bound and the union bound on the probability of a large deviation of

Q, we get the following bound for its expectation: E(Q) ≤
√

2m−1 log(2e|Hc|),
where |Hc| is the number of distinct vectors f (xm

1 ) when f varies in Hc. Apply
the VC bound to this number and we get the proof. �

In Section 6 we showed that a nonzero a-span of the base hypothesis space
implies an exponential reduction in the training error. In fact, we will also show
that the training error is guaranteed to become exactly 0 after some finite time
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for any data set, provided that the base hypothesis space has a nonzero a-span.
[Assume prec(f̂ )= 0 for convenience.]

PROPOSITION 7 (Time needed for a perfect fit). Let τ be the smallest time
beyond which the training error is always 0 regardless of how the data set is
labeled. Then there exists the following relationship between this time τ , and the
VC dimension and the a-span of the base hypothesis space, given xm

1 :

2m(L∗/8)2 − 4

VC(H) logm
≤ τ ≤ 2 log(m+ 1)

aspc(H ;xm
1 )2 ,

where L∗ =m−1 ∑m
j=1 min{p(Y = 1|xj ), and p(Y = 0|xj )} is the Bayes error.

PROOF. The lower bound is obtained by observing that, while the training
error is 0, the prediction error is at least L∗. Then a VC bound over the combined
hypothesis space for the difference of the training and prediction errors, which

is 8
√
(2m)−1(4+ τVC(H) logm), should be at least L∗. The upper bound is

obtained by setting the upper bound of the training error to be 1/(m + 1) and
noting that at this time the training error actually needs to be exactly 0 since it
values in {i/m}m1 . �
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