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We prove new probabilistic upper bounds on generalization error
of complex classifiers that are combinations of simple classifiers. Such
combinations could be implemented by neural networks or by voting methods
of combining the classifiers, such as boosting and bagging. The bounds are in
terms of the empirical distribution of the margin of the combined classifier.
They are based on the methods of the theory of Gaussian and empirical
processes (comparison inequalities, symmetrization method, concentration
inequalities) and they improve previous results of Bartlett (1998) on bounding
the generalization error of neural networks in terms of ¢{-norms of the
weights of neurons and of Schapire, Freund, Bartlett and Lee (1998) on
bounding the generalization error of boosting. We also obtain rates of
convergence in Lévy distance of empirical margin distribution to the true
margin distribution uniformly over the classes of classifiers and prove the
optimality of these rates.

1. Introduction. Let (X, Y) be a random couple, where X is an instance in
aspace S and Y € {—1, 1} is a label. Let § be a set of functions from S into R.
For g € 4, sign(g(X)) will be used as a predictor (a classifier) of the unknown
label Y. If the distribution of (X, Y) is unknown, then the choice of the predictor
is based on the training data (X1, Y1), ..., (Xy, Y¥;) that consists of n i.i.d. copies
of (X, Y). The goal of learning is to find a predictor ¢ € § (based on the training
data) whose generalization (classification) error P{Y g(X) < 0} is small enough. In
this paper, our main concern is to find reasonably good probabilistic upper bounds
on the generalization error. The standard approach to this problem was developed
in seminal papers of Vapnik and Chervonenkis in the 70s and 80s [see Vapnik
(1998), Devroye, Gyorfi and Lugosi (1996), Vidyasagar (1997)] and it is based on
bounding the difference between the generalization error P{Y g(X) < 0} and the
training error
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2 V. KOLTCHINSKII AND D. PANCHENKO

uniformly over the whole class § of classifiers g. These bounds are expressed
in terms of data dependent entropy characteristics of the class of sets {{(x, y) :
yg(x) <0} : g € §} or, frequently, in terms of the so called VC-dimension of the
class. It happened, however, that in many important examples (for instance, in
neural network learning) the VC-dimension of the class can be very large, or even
infinite, and that makes impossible the direct application of Vapnik—Chervonenkis
type of bounds. Recently, several authors [see Bartlett (1998), Schapire, Freund,
Bartlett and Lee (1998), Anthony and Bartlett (1999)] suggested another class of
upper bounds on generalization error that are expressed in terms of the empirical
distribution of the margin of the predictor (the classifier). The margin is defined
as the product Y g(X). The bounds in question are especially useful in the case of
the classifiers that are combinations of simpler classifiers (that belong, say, to a
class #€). One of the examples of such classifiers is provided by neural networks.
Other examples are given by the classifiers obtained by boosting, bagging and
other voting methods of combining the classifiers. The bounds in terms of margins
are also of interest in application to generalization performance of support vector
machines, Cortes and Vapnik (1995), Vapnik (1998), Bartlett and Shawe-Taylor
(1999). The upper bounds have the form (up to some extra terms)

C(#)
Nk
where C(§) is a constant depending on the class § (in other words, on the
method of combining the simple classifiers), ¢ is a decreasing function such that
¢(8) = 0o as § — 0 [often, for instance, ¢ (5) = %], and C(J€) is a constant
depending on the class #f (in particular, on the VC-dimension, or some type of
entropy characteristics of the class).

It was observed in experiments that classifiers produced by such methods as
boosting tend to have rather large margin of correctly classified examples. This
allows one to choose a relatively large value of § in the above bound without
increasing substantially the value of the empirical distribution function of the
margin (which is the first term of the bound) comparing with the training error.
For large enough §, the second term becomes small, which ensures a reasonably
small value of the infimum. This allowed the above mentioned authors to explain
partially (at least at qualitative level) a very good generalization performance of
voting and some other methods of combining simple classifiers observed in many
experiments. This also motivated the development of the methods of combining the
classifiers based on explicit optimization of the penalized average cost function of
the margins; see Mason, Bartlett and Baxter (1999) and Mason, Baxter, Bartlett
and Frean (2000).

Despite the fact that previously developed bounds provide some explanations

of the generalization performance of complex classifiers, it was actually acknowl-
edged by Bartlett (1998) and Schapire, Freund, Bartlett and Lee (1998) that the
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bounds in question have not reached their final form yet and more research is
needed to understand better the probabilistic nature of these bounds. This becomes
especially important because of the growing number of boosting type methods [see
Friedman, Hastie and Tibshirani (2000) and Friedman (1999)] for which a compre-
hensive theory is yet to be developed. The methods of proof developed by Bartlett
(1998) are based on the so called fat-shattering dimensions of function classes and
on the extension of Vapnik—Chervonenkis type inequalities to such dimensions.
The method of Schapire, Freund, Bartlett and Lee (1998) exploits the fact that the
complex classifiers are convex combinations of base classifiers (these authors sug-
gest also an extension of their method to the classes of functions for which there
exist so called e-sloppy 6-covering). The use of these methods in the case of gen-
eral cost functions of the margins poses some difficulties [see Mason, Bartlett and
Baxter (1999)].

In this paper, we develop a new approach that allows us to improve and better
understand some of the previously known bounds. Our method is based on the
general results of the theory of Gaussian, Rademacher and empirical processes
[such as comparison inequalities, e.g., Slepian’s Lemma, symmetrization and
random multipliers inequalities, concentration inequalities, see Ledoux and
Talagrand (1991), van der Vaart and Wellner (1996) and Dudley (1999)]. We
give the bounds in terms of general functions of the margins, satisfying a
Lipschitz condition. They can be readily applied to the classifiers based on explicit
optimization of margin cost functions [such as in the paper of Mason, Bartlett and
Baxter (1999)]. In the case of Bartlett’s bounds for feedforward neural networks
in terms of the ¢;-norms of the weights of the neurons [see Bartlett (1998) and
also Fine (1999)], the improvement we got is substantial. In Bartlett’s bounds the
constant C (%) is of the order (ALY U+D/2 where A is an upper bound on the £1-
norms of the weights of neurons, L is the Lipschitz constant of the sigmoids, and /
is the number of layers of the network. Also, in his bound ¢ (§) = %. We obtained

in a similar context C(§) of the order (A L) with ¢(8) = %

Based on our bounds, we developed a method of complexity penalization of
the training error of neural network learning with penalties defined as functionals
of the weights of neurons and prove oracle inequalities showing some form of
optimality of this method.

We also obtained general rates of convergence of the empirical margin
distributions to the theoretical one in the Lévy distance. Namely, we proved that
the empirical margin distribution converges to the true margin distribution with
probability 1 uniformly over the class § of classifiers if and only if the class § is
Glivenko—Cantelli. Moreover, if § is a Donsker class, then the rate of convergence
in Lévy distance is O(n—1/%). Faster rates [up to O(n=1/2)] are possible under
some assumptions on random entropies of the class §. We give some examples,
showing the optimality of these rates.

We improved previously known bounds on generalization error of convex
combinations of classifiers. In particular, our results in Section 3 imply that
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if the random e-entropy of the class § grows as €% for o € (0, 2), then the
generalization error of any classifier from § with zero training error is bounded
from above with very high probability by the quantity
C
n2/Q+e) §2a/2+a)’

where § is the minimal classification margin of the training examples and C is
a constant. The previously known result of Schapire, Freund, Bartlett and Lee
(1998) gives [up to logarithmic factors, for § = conv(F#), # being a VC-class] the
bound O(ﬁ) which corresponds to the worst choice of « (o = 2). We introduce
in Section 3 more subtle notions of y-margin §,(y; g) and empirical y-margin
Sn(y; g) (parametrized by y € (0, 1]) of a classifier g. These quantities allow us to
obtain similar upper bounds on generalization error of the form

Cy
n'=r281 (y: 8)
in the case when the training error of the classifier g is not necessarily equal to 0.
We call the quantity

|
n1=v/28Y (y: g)

the y-bound of g. It follows from the definitions given in Section 3 that the
y-bounds decrease when y decreases from 1 to 0. We prove that for any y >
Z%F—“‘a with very high probability the y-bounds are indeed upper bounds on the
generalization error (up to a multiplicative constant C, ).

The proof of the bounds of this type is based on the powerful concentration
inequalities of Talagrand (1996a, b). For small «, the bound may become
arbitrarily close to the rate O(n~!), which is known to be the best possible
convergence rate in the zero error case. In the case of convex combinations of
classifiers from a VC-class #, one can choose o« = 2(V — 1)/V, where V is
the VC-dimension of the class #, which improves the previously known bounds
for convex combinations of classifiers. We believe that these results can be of
importance in some other learning problems [such as support vector learning, see
Vapnik (1998)].

Koltchinskii, Panchenko and Lozano (2000a, b) studied the behavior of the
y-bounds and some other bounds of similar type in a number of experiments with
AdaBoost and other methods of combining classifiers. We have run AdaBoost
for a number of rounds with a weak learner that outputs simple classifiers (e.g.,
decision stumps) from a small VC-class. In some of the experiments, we dealt with
a toy learning problem (“intervals problem”) for which it was easy to compute the
generalization error precisely. In other cases, we dealt with real data from UCI
Irvine repository [see Blake and Merz (1998)] and we estimated the generalization
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error based on test samples. In both cases, we computed the y-margins and the
corresponding y-bounds based on the training data and compared the bounds
with the generalization error (or with the test error). We give here only a short
summary of the results of these experiments (and some related theoretical results).
The details are given in Koltchinskii, Panchenko and Lozano (2000a, b).

One of the goals of the experiments was to determine the value of the constant
C, involved in the y-margin bounds on generalization error. The results of
Section 3 of this paper show that such a constant exists. Its size, however, is
related to a hard problem of optimizing the constants involved in Talagrand’s
concentration inequality for empirical processes that was used in the proofs. Our
experiments showed that the choice C,, = 1 worked rather well in the bounds of
this type. They also showed that the y-bounds did improve the previously known
bounds on generalization error of AdaBoost. The improvement was significant
when the VC-dimension of the base class was small and, hence, the parameter
y could be chosen much smaller than 1. Figure 1 shows a typical result of the
experiments.

We also observed that the ratios % of the empirical y-margins to the true

y-margins of classifiers g produced by AdaBoost were surprisingly close to 1
(at least for large sample sizes). The results of Section 3 imply that, with high
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probability, these ratios are bounded away from 0 and from oo uniformly in g € §

for any y > 22+—aa Recently, the first author proved that the ratios do converge to

2a
24«

the ratios do not necessarily converge to 1 and for

1 uniformly in g € § a.s. as n — oo for y > (the example was also given

_ 2
- 24«

y < 22+_aa they can tend to 0o). The closeness of the ratios to 1 explains why the
y-bounds are valid with C,, = 1.

In the case of the classifiers obtained in consecutive rounds of AdaBoost, the -
bounds hold even for values of y that are substantially smaller than the threshold
2%r—“a given by the theory. It might be related to the fact that the threshold is based
on the bounds on the entropy of the whole convex hull of the base class #.
On the other hand, AdaBoost and other algorithms of this type output classifiers
that belong to a subset § C conv(#) whose entropy might be much smaller than
the entropy of the whole convex hull. Because of this, it is important to develop
adaptive versions of the margin type bounds on generalization error that take into
account the complexity of the classifiers output by learning algorithms as well as
their empirical margins. A possible approach to this problem was developed in
Koltchinskii, Panchenko and Lozano (2000a).

It should be mentioned that this paper describes only one of a number of
growing areas of applications of probability to computer learning problems. Some
other important examples of such applications are given in Yukich, Stinchcombe
and White (1995), Barron (1991a, b), Barron, Birgé and Massart (1999), Talagrand
(1998) and Freund (1995, 1999).

showing that for y

2. Probabilistic bounds for general function classes in terms of Gaussian
and Rademacher complexities. Let (S, 4, P) be a probability space and let ¥
be a class of measurable functions from (S, +) into R. [Later, in Sections 5, 6 we
will replace S by § x {—1, 1}, considering labeled observations; at this point, it is
not important.] Let { X} be a sequence of i.i.d. random variables taking values in
(S, A) with common distribution P. We assume that this sequence is defined on a
probability space (€2, X, P). Let P, be the empirical measure based on the sample
(X1,..., Xn),

n
. —1
P, =n ZSXi,
i=1

where 3, denotes the probability distribution concentrated at the point x. We will
denote Pf := [g fdP, P,f := [ fd Py, etc.

In what follows, £°°(¥) denotes the Banach space of uniformly bounded real
valued functions on ¥ with the norm

1Y ll# := sup [Y(f)].
feF

We assume throughout the paper that F satisfies standard measurability
assumptions of the theory of empirical processes [see Dudley (1999) and van
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der Vaart and Wellner (1996)] (for simplicity, one can assume that ¥ is countable,
but this, of course, is not necessary).

Our goal in this section is to construct data dependent upper bounds on the
probability P{f < 0} and on the difference | P,{f <0} — P{f < 0}] that hold for
all f € ¥ with high probability. These inequalities will be used in the next sections
to upper bound the generalization error of combined classifiers. The bounds will
depend on some measures of “complexity” of the class £ which will be introduced
next.

Define

G,(F):=E

n

n”! Zgi x|

i=1 F
where {g;} is a sequence of i.i.d. standard normal random variables, independent
of {X;}. [Actually, it is common to assume that {g;} is defined on a separate
probability space (£2¢, g, P¢) and that the basic probability space is now (2 x
Qq, L X Xg, P xPy).] We will call n = G, (F) the Gaussian complexity function
of the class F .

Similarly, we define

R,(F):=E

’

F

n
—1
n ZSi(SXi
i=1

where {g;} is a sequence of i.i.d. Rademacher (taking values +1 and —1 with
probability 1/2 each) random variables, independent of {X;}. We will call n —
R, (F) the Rademacher complexity function of the class £ .

One can find in the literature [see, e.g., van der Vaart and Wellner (1996)]
various upper bounds on such quantities as G,(¥) and R,(F) in terms of
entropies, VC-dimensions, etc.

First, we give bounds on P{f < 0} in terms of a class of so called margin cost
functions. These bounds will be used in Section 5 in the context of classification
problems to improve recent results of Mason, Bartlett and Baxter (1999).

Consider a countable family of Lipschitz functions ® = {¢; : k > 1}, where
@r : R — R are such that I(_,0](x) < @k (x) for all k. For each ¢ € ®, L(p) will
denote its Lipschitz constant.

We assume that for any x € S the set of real numbers {f(x) : f € F} is
bounded.

THEOREM 1. Forallt >0,

) logk 172
Pi3feF:P{f <0} >Iir>lf1 Pk (f) + 4L (o) Rn(F) + <T>

+L}
Jn

<2exp{ — 2%}
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and

12
plafe s PIf<0)>jnf [ink<f>+mL<<pk>Gnm+ (%%5) }
r4+2
G

PROOF. Without loss of generality we can and do assume that each ¢ € ®
takes its values in [0, 1] (otherwise it can be redefined as ¢ A 1). Clearly, in this
case ¢(x) =1 for x <0. For a fixed ¢ € ® and for all f € ¥ we have

2.1 P{f =0} = Po(f) < Pap(f) + II1Pn — Pllg,,

where

<2exp| —2¢}.

Go:={pof—1:feF}.
By the exponential inequalities for martingale difference sequences [see Devroye,

Gyorfi and Lugosi (1996), pages 135-136], we have

t
2P, = Pllg, ZEIIP, - Pllg, + =] <exp(-2¢%)

7

Thus, with probablity at least 1 — exp{—2¢2} for all f € F

(22) P{st}sin<f>+E||Pn—P||g¢+ﬁ.

The symmetrization inequality gives [van der Vaart and Wellner (1996)]

n
n_l ZEiSXi

i=1

(2.3) E||P, — Plig, <2E

Go
Since a function (¢ — 1)/L(¢p) is a contraction and ¢(0) — 1 = 0, the Rademacher
comparison inequality [Ledoux and Talagrand (1991), Theorem 4.12, page 112]
implies

Ee <2L(p)E,
Go

n
-1
n 28i5xi
i=1

n
-1
n 28i5xi
i=1

F

It now follows from (2.2), (2.3) that with probability at least 1 — ¢=2" we have for
all fe¥F

(2.4) P{f <0} < Pag(f) +4L(@)Ry(F) + in

Jn
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We use now (2.4) with ¢ = ¢ and ¢ replaced by r + /logk to obtain

) logk 12
Pl3feF:P{f <0} >I§I>1€ [Pnsl?k(f) +4L(pe) Ry (F) + (T)

t
(2.5) + ﬁ}

2
< Z exp{—Z(t + logk)2] < 2:16_23_2’2 = %e_ztz < 2e=27,
k>1 k>1

The proof of the second bound is quite similar with the following changes. The
class G, is defined in this case as {gp o f : f € F}. Instead of (2.3), we have in this
case, by the symmetrization inequality and the Gaussian multiplier inequality [see
van der Vaart and Wellner (1996), pages 108-109, 177-179], that

n n
2.6) E[P,—Pllg, <2E|n"'> &dx,| =<~2rE[n"') " gidy,
i=1 i=1

G Go

Define Gaussian processes

Zi(f.o):=on"'2Y " gi(go f)(X))

i=1

and

n
Zy(f.0):=L@n~"*Y g f(X;) + 03,
i=1
where 0 = £1 and g is standard normal independent of the sequence {g;}. If we
denote by E, the expectation on the probability space (£2,, X, Pg) on which the
sequence {g;} and g are defined then we have

2.7) E,|Z1(f.0) — Zi(h. o) <Bg|Zs(f.0) — Za(h. o)

’

which is easy to observe if we consider separately the cases when oo’ is equal to 1
and to —1. Indeed, if oo’ = 1 then (2.7) is equivalent to

Y o(f (X)) — o (X < L)' S [F (X)) — h(Xn)]

i=1 i=1
which holds since ¢ satisfies the Lipschitz condition with constant L(¢). If
oo’ = —1 then since 0 < ¢ < 1 we have

Ee|Z1(f,0) = Zi(h, o) <207 3P (F (X)) + 207 @2 (h (X))
i=1 i=1

<EQg)? <E|Zs(f.0) — Za(h.o')|.
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A version of Slepian’s Lemma [see Ledoux and Talagrand (1991), pages 76-77]
implies that

Eosup{Zi(f,0): feF, o ==x1} <Egsup{Zy(f,0): f € F, o0 ==%1}.
We have

Eg

n
n12Y gidy,
i=1

n
=E, sup {n—l/ZZgih(Xi)}

G hegy i=1
=E,sup{Zi(f,0): feF,o==l},
where gl(,) =A{o(f),—e(f): f € F}, and similarly

n
L(p)E, n~1/? Z 8idx;
i=1

+E|gl > Egsup{Zs(f,0): f € F, o ==£1}.
F

This immediately gives us

n n
28)  Egln~'Y gidx,| <L@Eg|n'Y gidx,| +n '/ ’Elgl.
i=1 Gy i=1 F
It follows from (2.2), (2.6) and (2.8) that with probability at least 1 — e
t+2
(2.9) P{fSO}Sin(f)+«/2nL(<p)Gn(3’)+7-

The proof now can be completed the same way as in the case of the first
bound. U

Let us consider a special family of cost functions. Assume that ¢ is a fixed
nonincreasing function such that ¢(x) > I(_,0)(x) for x € R and ¢ satisfies the
Lipschitz condition with constant L(g). Let

@) :={p(-/8): 6 € (0, 1]}.

One can easily observe that L(g(-/8)) < L(go)é_l. For this family, Theorem
1 easily implies the following statement, which, in turn, implies the result of
Schapire, Freund, Bartlett and Lee (1998) for VC-classes of base classifiers (see
Section 5).

THEOREM 2. Forallt > 0,

Pi3f€F: P{f <0}> inf [P,, (£)+MR,,(}~)

i
€(0,1] 1) )

10g10g2(28_1)>1/2 o
+ <—n + NG

<2exp{—2¢%}
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and

| | f
P 3fe?.P{f§0}>8€1%’f'l][Pn <§>+

221 L(p)

5 Gn(¥)

loglog, 28~ \'/?] 142
+( n ) " vn

< 2exp{—2r*}.

PROOF. One has to apply the bounds of Theorem 1 for the sequence ¢ (-) :=
@(-/6x), where 8 = 2_", and then notice that for § € (8¢, §x_1], we have

L (D)< rld)

/ 1 / 2
J/9ogk = /loglog, 5 <,/loglog, 3 O
k

REMARK. The constant 8 in front of the Rademacher complexity and the
constant 2+4/27 in front of the Gaussian complexity can be replaced by 4c¢ and
V27 c, respectively, for any ¢ > 1 (with minor changes in the logarithmic term).
Also, one can choose ¢ = ¢(8), where ¢(§) =1+ 0(1) as § — 0.

and

In the next statements we use the Rademacher complexities, but Gaussian
complexities can be used similarly.

Assuming now that ¢ is a function from R into R such that ¢ (x) < I(_s 01(x)
for all x € R and ¢ still satisfies the Lipschitz condition with constant L(¢), one
can prove the following statement.

THEOREM 3. Forallt >0,

PiafeF : P{f <0} < sup (Pn (£>—MRH(?)
5€(0,1] ) s

<loglog2(28_1))1/2 t

n Jn
< Zexp{—2t2}.

Denote

8 logl 25—\ 1/2
Anw;a)::gze,,(rH(%()) '
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The bounds of Theorems 2 and 3 easily imply that for all # > 0

]P’{er?:P{ffO}> Pn{f50}+8i(r%)f1][Pn{O<f§8}+An(3~“;8)]

+ ﬁ} < 2exp{—2¢°}
and
Pl3f e F 5 PIF <0 < PulS =0) = inf, [Pu(=8 < £ 0]+ 8,(F:5)]

- ﬁ} <2exp{—2¢%}.

To prove this it’s enough to take ¢ equal to 1 for x <0, O for x > 1 and linear in
between in the case of the first bound; in the case of the second bound, the choice
of p is 1 for x < —1, 0 for x > 0 and linear in between. Similarly, it can be shown
that

P{er?:Pn{f§0}> P{f§0}+8i%f1][P{0<f§5}+An(5f;8)]

t
+ ﬁ} < 2exp{—2t?}
and

Plaf e F iR <01 < PLF =0 = inf [PI=5< <0)+ A,(F:9)

t
— —} <2exp{—2¢*}.

Jn
Combining the last bounds, we get the following result:

THEOREM 4. Forallt > 0,

P{af e F RS <0 = P <0) = inf [Pal1f] =)+ 8, (F59)]

t
+ ﬁ} < 4exp{—2t2}
and

nf [P{lf] <8} + Au(F:0)]

]P’{afe?i\Pn{fSO}_P{ffo}‘ >5ei(0,1]

+ L} <4dexp{—21%}.

N
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Denote
Hy(8) :=0P{|f| <68}, Hy 5 (8) :=08P,{|f] <6}.

Plugging in the second bound of Theorem 4 § := HJTI(R,, (F)) A1 (we use the

notation a A b := min(a, b)) easily gives us the following upper bound that holds

for any ¢ > 0 with probability at least 1 — 4e20%;

9R,(F) N <1oglog2(25—1))1/2+ t
b) n Jn

Similarly, the first bound of Theorem 4 gives that for any ¢ > 0 with probability at

least 1 — 4e=2;

Vie¥, |P{f =0} = P{f=<0}| <

—1\N 172
VieF, IPn{fSO}—P{fSO}ls9R”(?)+<loglog2(28 )) +-

8 n ﬁ
with 8 := H, L (Ry(F)) A 1.

The next example shows that, in general, the term %Rn (¥) of the bound
of Theorem 2 (and other similar results, in particular, Theorem 4) can not be
improved.

Let us consider a sequence {X,} of independent identically distributed random
variables in /o, defined by

_1
Xn={8,'{’(210g(k+1)) 2]k>1, n>1,

where ¢ are ii.d. Rademacher random variables (P (e} = £1) = 1/2). We
consider a class of functions that consists of canonical projections on each
coordinate

F ={fi: fr(x) = xi}.

Let ¢(x) be an increasing function such that ¢ (0) = 0. Then the following
proposition holds.

PROPOSITION 1.

8 t
P{3 F:P{f<0}> inf | P{f <é}4+ —R,(F — 1
FeF P00z inf [ Pif =)+ ok |+ o) -
when n — oo uniformly for all t < 270129 ((4n)~12) — ¢, where ¢ > 0 is some
fixed constant.

PROOF. Itis well known that  is a bounded CLT class for the distribution P
of the sequence {X,} [see Ledoux and Talagrand (1991), pages 276-277]. Notice
that P(f; <0) =1/2 for all k and E”l’l_l Yeidx g < cn~ Y2 for some constant



14 V. KOLTCHINSKII AND D. PANCHENKO

¢ > 0. Let us denote by ' = ¢ + 2+/27¢. The infimum inside the probability is less
than or equal to the value of the expression at any fixed point. Therefore, for each
k we will choose § to be equal to a §; > (2log(k + 12 1ts easy to see that for
this value of §,

1 & .
Pl fi <6k} = ;Zl(gllc =-1).

i=1

Combining these estimates we get that the probability defined in the statement of
the proposition is greater than or equal to

1 1 i t
P{Hk.iz;ZI(sk_ 1)+7¢(5k)\/ﬁ}

i<n
=1 —l_[]P’{l < lZ:I(d;:—l)%—ti/}.
s 2T RN
In the product above factors are possibly not equal to 1 only for k in the set of
indices
K:{k:yk=t7/§l}.
P(G)v/n ~ 2
Clearly,
]P’{I/Z <n! gl(s’i =—1) +5} <1- (:0>2—",

where kg = [n/2 — én] — 1. For simplicity of calculations we will set kg =
n/2 — én. Utilizing the following estimates in Stirling’s formula for the factorial
[see Feller (1950)],

(2.10) Q)i+ _ oy oy dpntd gt/

it is straightforward to check that for some constant ¢ > 0,

(Sl

2.11) (: )2—" > cn~2((1—26) "2 (1 +26)172) 72 > en 3 exp(—4ns?).
0

The last inequality is due to the fact that

exp(x?) < (1 — )7 (1 + x)'™ < exp(2x?)

for x <2712 Tt follows from (2.11) that

1 .
P{% <Yl =-1)+ Vk} <1—cnexp(—dnyp).

i<n
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Since yx < 1/2 for k € KX, we can continue and come to the lower bound
1= [T (1 —en2exp(—4ny)) = 1 - exp(— > en™!/? exp(—4nyk2)>
keX ke X
> 1 —exp(—card(K)enV2e™) — 1,
uniformly in ¢, if we check that card(K)en~ V2™ — oo. Indeed, if
' <271 2¢((4n)~1/?)
then for n large enough,
<2701 2 ((4n)~1/2) <2710 Py ((21og([cne"] + 1)) ).
This means that [cne"] € KX, and, therefore,

1
12 —n 1/2
card(K)cn e ">=n'"— e yey — 0.

The proposition is proven. [

REMARKS. If ¢(x) = x'~¢ for some positive « then the convergence in the
proposition holds for t < cn®/?. Also, if @ — oo as 6 — 0, then the convergence
in the proposition holds uniformly in ¢ € [0, T'] for any 7 > 0. It means that
the bound of Theorem 2 does not hold with %Rn(? ) replaced by ﬁRn(? ).
Similarly, one can show that

. 8
]P’{Hf eF:Rf <0 - P/ <0) = inf [Pn{m <5+ mmm}

when n — oo uniformly for all # < 2_1n1/2¢)((4n)_1/2) —c.
3. Conditions on random entropies and y-margins. Given a metric space
(T,d), we denote by H;(T'; ¢) the e-entropy of T with respect to d, that is,
Hy(T; ¢) :=1log Na(T; ¢),

where Ny(T'; ¢) is the minimal number of balls of radius ¢ covering T'. Let dp, »
denote the metric of the space L, (S; d P,):

dp,2(f. 8) = (Pulf — )

The next theorems improve the bounds of the previous section under some
assumptions on the growth of random entropies Hg, ,(F; -). We will use these
results in Section 5 to obtain an improvement of the bound of Schapire, Freund,

1/2
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Bartlett and Lee (1998) on generalization error of boosting. The method of proof is

similar to the one developed in Koltchinskii and Panchenko (2000) and is based on

powerful concentration inequalities of Talagrand (1996) [see also Massart (2000)].
Define for y € (0, 1]

8a (v f) :=sup{5 € (0.1): 87 P{f <) sn‘“%}

and

bay: ) :=supls € (0,1): 8" Py(f <o} <n™'FE].

We call §,(y; f) and Sn(y; f), respectively, the y-margin and the empirical y -
margin of f.

The main result of this section is Theorem 5 which gives the condition on the
random entropy Hg, ,(¥; -) under which the true y-margin of any f € F is with
probability very close to 1 within a multiplicative constant from its empirical y -
margin. This implies that with high probability for all f € F,

const
n'=v28,(y; v
The bounds of the previous section correspond to the case of y = 1. Itis easy to see
from the definitions of y —margins that the quantity (n'~7/25,(y; £)¥)~! (called

in the introduction the y-bound) increases in y € (0, 1]. This shows that the bound
in the case of y < 1 is tighter than the bounds of Section 2.

P{f=<0}=<

THEOREM 5. Suppose that for some o € (0, 2) and for some constant D > 0,
(3.1 Hyp o(F;u) < Du™*, u>0a.s.

2a

Then for any y = 575

, for some constants A, B > 0 and for all large enough n

PIVf e F : A78,(y; £) <8uly; ) < Abu(y; )}

>1— Blog,log,n exp{—n%/Z}.
The proof is based on the following result.

THEOREM 6. Suppose that for some o € (0, 2) and for some constant D > 0
condition (3.1) holds. Then for some constants A, B > 0, for all § > 0 and

2
1\ 21
(3.2) e> (—> v 2o8n

né“ n

and for all large enough n, the following bounds hold.:

)
Pi3f e ¥ P{f <é}<eand P{fg E}zAs}SBlogzlogze_lexp{—%}



EMPIRICAL MARGINS AND GENERALIZATION ERROR 17

and

)
Py3feF P{f <d6}<eand Pn{ff E}EAS}§Blog210g28_1exp{—%}.

PROOF. Define recursively

ro:=1, rkt1 =C/re A 1

with some sufficiently large constant C > 1 (the choice of C will be explained
later). By a simple induction argument we have either C/e > 1 and ry = 1, or
C./¢ < 1 and in this case

-1 ... —(k—1) -1 ... —k _n—k _n—k _n—k
rk:C1+2 442 82 442 :C2(1 2 )81 2 :(C«/E)Z(l 2 )

Without loss of generality we can assume that C /e < 1. Let
& —k —k—1
V= |—=C2 g2
\ 7k

So=8, & :=8(1—yo—-—vk-1), 81 =5+, k=1

For a fixed § > 0, define

(S]]

WARNING. In what follows in the proof “c” denotes a constant; its values can
be different in different places.

Define ¥y := ¥, and further recursively

Firr:=|f e Fi: PUF =8, ) < rin/2).

For k > 0, let ¢ be a continuous function from R into [0, 1] such that ¢ (1) = 1
foru < 8, 1 ¢ (u) = 0 for u > i, and linear for 8, 1 <u <. Fork>1 letgo,/( be

a continuous function from R into [0, 1] such that ¢; () =1 for u <&, ¢, (u) =0
foru>46,_, 1, and linear for 8y <u <§, _,; 1. We have

k | )
Yov=CcTcVE+(CVe) +H(CVE) ]
i=0

<ci(eve) (1-(eve) ) <1y,

fore <C™*, C>202"*—1)landk < log, log, e~1. Hence, for small enough &
(note that our choice of ¢ < C~* implies C/¢ < 1), we have

o+t < 1, k>1.



18 V. KOLTCHINSKII AND D. PANCHENKO

Therefore, for all k > 1, we get &; € (6/2, §). Note also that below our choice of k
will be such that the restriction k£ < log, log, ¢! for any fixed & > 0 will always
be fulfilled.

Define

Gce={exof:feF}, k=0

and

G :={grof:feFih k>1.
Clearly, by these definitions, for £ > 1,
sup Pg’ < sup P{f <&} < sup P{f <8 ,1}<n/2=<n
8€Gk feF feFr 12
and
sup Pg® < sup P{f <8, , 1} <r/2<rw.
g€g), feFi 2

Since rg = 1, for k = 0O the first inequality becomes trivial. If now we introduce the
following events:

E® :={|P, - Pllg,_, < K\EllP, — Pllg,_, + Ko/ri_12 + K3¢}
N{lI Py — Pllg, < KiEI Py — Pllg; + Ko/ree + Kze}, k=1,
then it follows from the concentration inequalities of Talagrand (1996a, b) [see

also Massart (2000)] that with some numerical constants K1, K, K3 > 0,

ne

P((EW)*) <2e7 2.
Denote Ey = €2,

N
Ey=(E®, N=>1
k=1

Then

P(ES) <2Ne 2.
In what follows we can and do assume without loss of generality that ¢ < C~* and
therefore, ry4+1 < r¢ and & € (6/2,68], k <log,log, e~ l. (If e > C™*, then the
bounds of the theorem obviously hold with any constant A > C*.) The following
lemma holds.

LEMMA 1. Let N be such that

1

3.3) N <log,logy,e™" and ry>e.
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Let § = {inf ey P,{f <8} < €}. Then the following properties hold on the event
ExMg:
i) VfeF Pff<dlse= feFn
and

(i) sup P,{f <8} <rx, 0<k<N.

fEFk

PROOF. We will use induction with respect to N. For N = 0, the statement
is obvious. Suppose it holds for some N > 0, such that N + 1 still satisfies
condition (3.3) of the lemma. Then on the event Ex N § we have

sup Pp{f <8k} <rx, 0<k<N
feFi

and
VfeF P{f<él<e—=— feFn.

Suppose now that f € ¥ 1is such that P,{f < 6} < e. By the induction
assumptions, on the event Ey, we have f € Fy. Because of this, we obtain on
the event En 4|

P{f =8y 1} = Pulf =N} + 1P — Pligy
(3.4
<e+ K\E|P, — P”9N + K>\ /rye + Kze.

For a class §, define

ﬁn(g) =

’

n
—1
n ZEiSXi
i=1 9

where {g;} is a sequence of i.i.d. Rademacher random variables. By the sym-
metrization inequality,

(3.5) EllPy — Pllgy <2EIg,EcRy () + 2l g B Ry (§n).

Next, by the well known entropy inequalities for subgaussian processes [see van
der Vaart and Wellner (1996), Corollary 2.2.8], we have

n'y ejg(X))

EcR,(Gn) < inf E,
8EGN =

(3.6)

dp, 2

C (2SUP €4 Pngz)l/z
+ﬁ/0 = H)'* (Gy;u)du.
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By the induction assumption, on the event Ex N ¢,

inf E
8EGN

n 2
'Y eig(X))

J=1

| I .
< NG flenffN\/Pn{f <én} < 7 flen;N\/Pn{f <6}

&
<,/ — =&
n

We also have on the event Ey N &,

1
< — inf /P,g?
= ﬁgGQN n8

'Y eig(X))

< inf E!/?
= 8EGN

sup Pyg* < sup P,{f <8y} <rn.
8EGN feFN

The Lipschitz norm of ¢;_; and ¢; is bounded by

_ - 2 [r—1
L=201—8) =268 1yk_11:g -

which implies the following bound on the distance:

d} S (ono fionog)=n"" Y lon(F(X)) — on(g(X )]
j=1

) 2
(EE ) d3,000)

1 [@supgegy Pag'? s
ﬁ/o Hy? (Gv: u)du

IA

Therefore, on the event Ey N &,

Pn

1 rerm'? S
B (7 )

3.7 < — ;
( ) _\/ﬁ 0 dp, 2 2 /—rN
a/4 1/2—a/4 1/2
N rN rN 24a i
SC(?) Jgel? = Coua® T T OVINE:

where we used the fact that condition (3.2) of the theorem implies

1 24+«
2saa =&t

It follows from (3.6), (3.7) that on the event Ex4+1 N &,

(3.8) EeRy(§n) < c/TNE.
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Since we also have

Esﬁn(gN—H) = 1,
(3.5) and (3.8) yield

E|| Py — Pllgy < c/rne +2P(EY) < c/rye +4Ne /2,
Since 4Ne™"¢/2 < ¢ [it holds due to the conditions (3.2) and (3.3), for all large
enough n] we conclude that with some constant ¢ > 0,

E|| P, — Pllgy <ci/rne.
Now we use (3.4) and see that on the event Ex1 N G

3.9 P{ffSN’%}fc(S-i-«/rNé‘).

Therefore, it follows that with a proper choice of constant C > 0 in the recurrence
relationship defining the sequence {r;}, we have on the event Ey41 N &

P{f < SN,%} < 3CJrNe=Tyn41/2.
This means that f € Fy1 and the induction step for (i) is proved. This will now
imply (ii). We have on the event E 4|

sup  P{f <01} < sup P{f <8y 1) +Py—Plg,
fEFN+1 fE€FN+1 2

(3.10) <rn+1/2+ KiE[|Py — Pllgr,
+ Ko /rn+1€ + Kze.
By the symmetrization inequality,
B3.11)  E|Py— Pllg,,, <2EleyEeRu(§y41) + 2B L5y Ee Ry (G 41)-
As above, we have

n~'Y eje(X))

E:Ry(§y41) = inf E,
8<% j=1

N+1

(3.12)
¢ [Cpgeg  PagH?
+ ﬁfo " Hy (§n1s u)du.

Since we already proved (i) it implies that on the event En+1 N G
2

n_l ZSjg(Xj)

j=1

n'Y eig(X))

j=1

inf E,

< inf E!/?
i !/ &
g€ N1

N+1

1
<— inf /P,g?
NZFE
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1
<— inf \/W
_\/ﬁfel%vﬂ ntf = N%}
1
5— 1nf VP {f <6}
n feFn+i
&
<, —=<e&.
=y, =

By the induction assumption, we also have on the event Ex 1N ¢,

sup P,g> < sup P{f<8 }<rN
8€G N 41 feFN

The bound for the Lipschitz norm of ¢ gives the following bound on the distance

2
dp, »(Oyi10 fi@h108)=n" Z“PNHOf(X) On+108(X))|
j=1

o) 2
< (52 ) a0,

Therefore, on the event Ey41 N &, we get quite similarly to (3.7)

1 (ZSungQ/ P,,gz)l/2 1
N+1 2 (a1 .
NI /0 HipyrGnsri ) du

<L (ZrN)l/zHl/z (?’ 8\/_14)
=il ar o \"7 3 e

a4l /2—a/4

N
§c<?> T S VTNE:

We collect all bounds to see that on the event Ey11 N ¢,

(3.13)

(3.14) sup  Polf <dns1} < 4o rve.

feFns1 2
Therefore, it follows that with a proper choice of constant C > 0 in the recurrence
relationship defining the sequence {ry}, we have on the event Ey4+1 N &

sup Pu{f <dnt1} = Crne=rn41,

SEFN+I

which proves the induction step for (ii) and, therefore, the lemma is proved. [J

To complete the proof of the theorem, we have to note that the choice of
N =[log, log, e~ 1] implies that ry,| < ce for some ¢ > 0. The second inequality
of the theorem can be proved similarly with some minor modifications. [
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_i2
PROOF OF THEOREM 5. Consider sequences §; :=2 Iy,

< 1 )2-501/ >0
Ej =\ — ) - Y,
! nSj.‘ /

where o := =, Z o The first inequality of Theorem 6 implies

P{3j>03feF P{f <8} <ejand P{f <§;/2} > Ae}
(3.15) . -
< B'log, logznzjzoexp{—72 J} < Blog, logznexp{—T}

with some B, B’, A’ > 0. If for some j > 1, we have
Su(ys £) € 8,81,
then by the definition of Sn v D,
P{f =6} =¢j.

Suppose that for some f € ¥ the inequality A~1S, (v f) <6,(y; f) fails. Then,
it follows from the definition of 6, (y; f) that

2

1 24a’ 2d/

> A2+d > Ale;

- 8a/ - J°
n j—1

PUf<8,/2) = P{f - 5,7_1

where the last inequality holds for the proper choice of a constant A. Hence,
(3.15) guarantees the probability bound for the left side inequality of the theorem.
The right side inequality is proved similarly utilizing the second inequality of
Theorem 6. [

4. Convergence rates of empirical margin distributions. As we defined in
Section 2, ¥ is a class of measurable functions from S into R. For f € ¥, let

Fr(y):=P{f =y}, Fay):=Pff =y}, yek
Let L denote the Lévy distance between the distribution functions in R :
L(F,G):=inf{§ >0: F(t) <Gt +8)+3
and G(t) < F(t+68)+34, forallr € R}.

In what follows, for a function f from § into R and M > 0, we denote by fu
the function that is equal to f if | f| < M, is equal to M if f > M and is equal to
—M if f <—M. We set

"'FMZ={fMZf€.77}.
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As always, a function F from § into [0, +00) is called an envelope of ¥ iff
|[f(x)|< F(x)forall f € ¥ andall x € S.

We write ¥ € GC(P) iff ¥ is a Glivenko—Cantelli class with respect to P
(.e., ||P, — Pllg > 0asn — oo a.s.). We write ¥ € BCLT (P) and say that &
satisfies the Bounded Central Limit Theorem for P iff

E|P, — Pllg = O(n~1/?).

In particular, this holds if # is a P-Donsker class [see Dudley (1999) and van der
Vaart and Wellner (1996) for precise definitions].
Our main goal in this section is to prove the following results.

THEOREM 7. Suppose that

4.1 sup P{|f|=M}— 0 as M — o0.
feF

Then, the following two statements are equivalent:

@) Fu e GC(P) forall M >0
and
(i1) sup L(Fy, 7, Fy)— 0 a.s.asn — oo.
feF

THEOREM 8. The following two statements are equivalent:

(1) F e GC(P);

(ii) there exists a P-integrable envelope for the class F© ={f — Pf: f € ¥}
and

sup L(Fy, f, Fr) —> 0 a.s.asn — 0.
feF
THEOREM 9. Suppose that the class ¥ is uniformly bounded. If ¥ €
BCLT(P), then

sup L(Fy, f, Fy) = Op(n_1/4) asn — o0.
feF

Moreover, if for some o € (0, 2) and for some D >0
4.2) Hyp ,(F;u) < Du™*, u>0a.s.,
then

1
sup L(Fy f, Fr) = O(n™ ) asn — oo a.s.
feF

The following theorem gives the bound that plays an important role in the
proofs.
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THEOREM 10. Let M > 0 and let ¥ be a class of measurable functions from
S into [—-M,M]. Forall t > 0,

n
-1
n ZSi(SXi
i=1

1/2

P sup L(F, r, Fr) =2 E
feF

?4—%) —i—ﬁ}fexp{—%z}.

PROOF. Leté > 0. Let p(x) be equal to 1 for x <0, O for x > 1 and linear in
between. One can get the following bounds:

Fr(y)=P{f <y} < Pw(f y) < in(%) +IP - Pl
< Fup (v +8) + 1Py — Pllg,

and

Ry =Bals <3 = P52 < po(52) 41 - P,

< Fy(y+8) + 1Py — Plg,.

where

§5::{goo(%)_l:fef,ye[—M,M]}.

Similarly to the proof of Theorem 1 we get that with probability at least 1 —2¢ > 2,

ZS,(SX

t

(4.3) 1Pn — Pllg, < [ NG

n
8 ::2<E n'> eidx,
i=1 F

we get that with probablity at least 1 — exp{—272},

n
-1
n ZS,‘(SXi
i=1 F

+Mn_1/2i| +

Setting
1/2

1/2

t
R A

sup L(Fy, 7, Fy) < Z(E
n

feF

which completes the proof. [J

PROOF OF THEOREM 7. First we prove that (i) implies (ii). Since Fys €
GC(P), we have

E|P, — Pllg, — 0 asn — 0o,
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which, by symmetrization inequality, implies

n
Eln~"Y ey, ls, =0  asn— oo.
i=1

Plugging in the bound of Theorem 10 ¢ = lognr and using the Borel-Cantelli
Lemma proves that for all M > 0

sup L(Fy, 1y, Fryy) = sup L(F, ¢, Fr)— 0 asn — 00 a.s.
feF feFm

The following bounds easily follow from the definition of Lévy distance:

sup L(Fy, Fpy,) < sup P{lf| > M}
feF fe¥

and

sup L(Fy,f, Fu, fyy) < sup Po{lfI = M}.
feF feF

By condition (4.1) of the theorem,

sup L(Fy¢, Ff,) — 0 as M — oo.
feF

To prove that also

lim limsup sup L(Fy, ¢, Fp 1)) = a.s.,

M—o00 np—oo feF
it is enough to show that

4.4) hm limsup sup P, {|f|> M} = a.s.

M—0o0 p—oo feF
To this end, consider the function ¢ from R into [0, 1] that is equal to O for
lu| <M —1,isequal to 1 for |u| > M and is linear in between. We have

sup Pp{|f| = M} = sup P,{|f]= M}

feF feFu

< sup Ppo(lf])
feFm
4.5)

< sup Po(|fD)+ 1P, —Plig

feFu

< sup P{{f|=M —1}+ [P, — Pllg,

feFu

where

§:=lpof:feFul
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Since ¢ satisfies the Lipschitz condition with constant 1, the argument based
on symmetrization inequality and comparison inequalities (see the proofs above)
allows one to show that the condition (i) implies that

E|| P, — Pllg — 0 asn — o0.
Then, the standard use of concentration inequality implies that
| Py — Pllg —> 0 asn — o0 a.s.

Therefore, (4.4) immediately follows from condition (4.1) and (4.5). Now, the
triangle inequality for the Lévy distance allows one easily to complete the proof
of (ii).

To prove that (ii) implies (i), we use the bound

M
‘ / td(F — G)(r)‘ <cL(F,G),
-M

which holds with some constant ¢ = ¢(M) for any two distribution functions on
[—M, M]. The bound implies that

M
1Py — Pllg, = sup |Pof — Pfl= sup /_Mrdwn,f—Ff)(z)

fE?M fEfFM

(4.6)
<c sup L(Fy r; Fy).
feFm
Since for all M > 0 and for all f € ¥ it is easily proved that
4.7) L(Fy, fy> Fpy) < L(Fy 7, Fy),

the bound (4.6) and condition (ii) imply (i), which completes the proof of the
second statement. [

PROOF OF THEOREM 8. Since centering does not change Lévy distance and
does not change Glivenko—Cantelli property we can start by assuming that ¥ is
centered, that is, ¥ = F©. To prove that (i) implies (ii), note first of all that the
condition ¥ € GC(P) yields that F = F © has a P-integrable envelope [see van
der Vaart and Wellner (1996), page 125]. Also, the existence of a P-integrable
envelope implies (4.1). Finally, if # € GC(P), then for all M > 0 F3y € GC(P).
[To prove this claim note that f3; = ¢ o f, where ¢,y is the function from R into
[—M, M] that is equal to u for |u| < M, is equal to M for u > M and is equal to
—M for u < —M. The function ¢y, is Lipschitz with constant 1 which allows one
to prove the claim by the argument based on the comparison inequality and used
many times above.] We can use Theorem 7 to conclude that (i) implies (ii). On the
other hand, if (ii) holds then by the inequality (4.7) we get that

sup L(F, ¢, Ff)—0 asn — oo a.s.
feFu
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As we pointed out above, (4.1) holds so, by Theorem 7, we have 3y € GC(P) for
all M > 0. The integrability of the envelope of the class ¥ allows us to conclude
the proof of (i) by a standard truncation argument. [

PROOF OF THEOREM 9. Since ¥ is uniformly bounded, we can choose
M > 0 such that F); = F. To prove the first statement note that ¥ € BCLT(P)
means that

E||P, — Pllg = O(n~'/?),

which implies

—0(n '),

n
-1
n ZSi(SXi
i=1

Thus, the bound of Theorem 10 implies that with some constant C > 0,

F

IP’{ L(F, ¢, F )><—+4—)1/2+—t }< {—2¢%)
su ) = <expi— .

It follows that

lim hmsup]P’{ sup L(Fn,f,Ff)zu}=0.
U=>0 n—oo feF

To prove the second statement, we follow the proof of Theorem 10. We use
Rademacher symmetrization inequality to get the bound

E| P, — Plg, < 2ER,($s)

and then use the entropy inequalities for subgaussian processes [see van der Vaart
and Wellner (1996), Corollary 2.2.8] to show that
~ o~ . n c 2sup c P, g2 ~
EeRy(§s) < inf Bejn™'Y eg(X)) +—/” e
8€Gs j=1 vn

b—— + 7/ (}1{,12 9’5’ )
To bound the random entropy Hg, ,, we use the Lipschitz condition for the
function ¢. It yields (via a standard argument based on constructing minimal
covering of the class & with respect to the metric dp, > and of the interval
[—M, M] with respect to the usual distance on the real line and “combining” the
coverings properly) the following bound:

dP 2(9& )

; aM
Hay, > (§a: ) < Hay, » (F:8u/2) +log .
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Therefore, we get (with a proper constant ¢ > 0)

B (G ¢ V2 172 ) 4M
EeRn(%)fﬁ[/o Hy,” (F: 8u) du + logT—H],

which, under condition (4.2), is bounded from above by W. Thus, we have
proved the bound
c
EllP, — P”% = W-
Arguing now the same way as in the proof of Theorem 10, we can show that with
probability at least 1 — exp{—2¢2},
t

c
L(Fy ¢, Fr) <6V ——— .
pep e ED =0V et

Plugging in the last inequality

we get

c t

Py sup L(F,, ¢, Fr) > +—}§exp—2t2.
fer 7o nrte AN { |

By choosing ¢ := logn and using the Borel-Cantelli Lemma, we complete the

proof of the second statement. [

REMARK. Itis interesting to mention that the condition & € GC(P) does not

imply that

sup sup |F,, ¢ (t) — Fr(t)| = 0

feF teR
with probability 1, which is equivalent to saying that the class of sets {I(f <) :
feF,teR}is GC(P). As an example, consider the case where S is a unit ball
in an infinite-dimensional separable Banach space. Let £ be the restriction of the
unit ball in the dual space on S. For i.i.d. random variables {X,} in S, we have, by
the LLN in separable Banach spaces,

n
n 'Y (X; —EX)
j=1

| P, — Pllg := -0 a.s.,

so ¥ € GC(P). On the other hand, there exists an example of a distribution P
such that # ¢ GC(P), where # is the class of all halfspaces [see Sazonov (1963)
and also Topsge, Dudley and Hoffmann-Jgrgensen (1976)]. Hence,

sup sup | Fy, r(t) — Fp(0)| = [|Pa — Pl
feF teR

does not converge to 0 a.s.
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In the next proposition, we are again considering the class ¥ used already in
Proposition 1 and the sequence of observations {X,,} defined by
1
X, ={ef @loglk+1)72 7}, n=1,
where 8 := é — %, a € (0,2] and ¢ are i.i.d. Rademacher random variables.
The proposition shows the optimality of the rates of convergence obtained in
Theorem 9.

PROPOSITION 2. Consider the sequence 8, such that

sup L(F, 5, Fr) = 0p(8,).
feF

Then
&y > cn_l’%«%
(When a =2, we have §,, > cn_1/4). On the other hand, for a € (0,2), we have
Hyp o (F;u) < Du™%, u>0
and

sup L(Fy, 7, Fy) = O(n_ﬁ) a.s.;
feF

for a =2 we have ¥ € BCLT(P) and

_1
sup L(Fy s, Ff) = Op(n™%).
feF

PROOF. We can assume without loss of generality that with probability more
than 1/2 forall k > 1, y € [—1, 1] and n large enough we have
(4.8) P(fi=y)=Pu(fi=y+d)+34.

If we take y = 0 and consider only such k that satisfy the inequality (2log(k +
1))A+1/2 < 5~ then (4.8) becomes equivalent to

1/2<n7 "y I(ef =—1)+36.

i<n

2
The inequality (21log(k+1))#T1/2 < 571 holds for k < v (8) = 1/2exp(8” 728 /2).
Therefore, for large n

1/251}»{ N {1/25n—121(s;;=—1)+5”

k=y1(8) i<n
4.9)

. V1 (8) n V1 (8)
:P{1/2§n_121(s’1:—1)+8} 5(1—<k )2‘”) ,
0

i<n
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where kg = [1n/2 — én] — 1. Using (2.11), we get

1
2D < | — cn~2 exp(—4ns?).
Taking logarithms of both sides and taking into account that log(1 — x) < —x we
2
get [recall that ¥ (8) = 1/2exp(8” 28 /2)]

exp(—Z_IS_ﬁ) >cn? exp(—4ns?).
Therefore,
1/(28%/0720)) < 4ns% + clogn
and
1/2 < dns* 1B/ 142) 1 052/0428) o0
This finally implies that

_ 1428 i
§>cn M+ = cn T,

The second statement follows from Theorem 9. To check condition (4.2), note that
in this case, as soon as 2log N > (u/2)™%, we have | fx (X,)| <u/2 forallk > N
and n > 1. Hence,
dp, 2(fr, fn) Zu, k>N
and we have
Hg,, ,(F;u) <logN,

which implies (4.2). For « = 2, we also have ¥ € BCLT(P) [see Ledoux
and Talagrand (1991), pages 276-277]. Theorem 9 allows one to complete the
proof. [

5. Bounding the generalization error of convex combinations of classifiers.
In this and in the next section we consider applications of the bounds of Section 2
to various learning (classification) problems. We start with an application of the
inequalities of Section 2 to bounding the generalization error in general multiclass
problems. Namely, we assume that the labels take values in a finite set Y with
card(Y) = M. Consider a class F of functions from § := § x Y into R. A func-
tion f € ¥ predicts a label y € Y for an example x € § iff

Fx,y) > max f(x, y).
y'#y
The margin of a labeled example (x, y) is defined as
myp(x,y) = f(x,y) —max f(x, '),
y'#y
so f misclassifies the labeled example (x, y) iff m ¢ (x, y) <0. Let
Fi={fC.y):yeY, feF}

The proof of the next result is based on the application of Theorem 2.
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THEOREM 11. Forallt >0,

SMQ2M — 1)
Pl3fe Plmy <0} > inf [Pn{mf§5}+fRn(?)

+<loglogz(28_1)>l/2]+%}

To prove the theorem, we use the following lemma.
For a class of functions #¢, we will denote

HO = max(hy,....h) hy, ... 0 € H).

<2exp{—2%}.

LEMMA 2. The following bound holds:

n
> &by,

i=1

<2IE
FD

8,

H

PROOF. Let x™ := x Vv 0. Obviously x — xT is a nondecreasing convex
function such that (a + b)* <a™ + b™*. We will first prove that

+ " +
(5.1) (susz,h(X )) 51E<sup28,~h(X,~)> :
HO =1 H =1
Let us consider classes of functions 7, 3 and
F = {max(fl, fz) : f1 e ¥, fz € ?'2}.

Since

max(f1, f2) = %((fl + f2) + 1 f1 = fal).

we have
" +
E(Sup Zgif(Xi))
Foi=1

_l’_
sE( thzﬂad+ﬁ@> pZ}&ﬂ@»—ﬁ@m)
F1.%2; Fr i

su
F

+
s%GwZamm+mm0

F1,¥2 =1

+
+ §E< sup Zé‘i’fl(Xi) — fz(Xi)‘>

F1,¥2 =1
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+ +
<3E (suszlfl(X)> + E(SupZaﬁ(X))

Fi =1 Fa =1

" +
+%E< sup Zsi|f1(Xi)—f2(Xi)|> :

F1.¥72 i1

The proof of Theorem 4.12 in Ledoux and Talagrand (1991) contains the following
statement. If 7 is a bounded subset of R”, functions ¢;, i = 1,...,n, are
contractions such that ¢;(0) = 0 and a function G : R — R is convex and
nondecreasing then

n n
EG supZei(pi(ti) <EG supZeiti .
teT i=1 teT i=1

If we take G(x) =x7, ¢i(x) = |x| and T = {(f1(X;) — LX)}, : f1 € F1,
f2 € #2} we get [first conditionally on (X;)?_; and then taking expectations]

+ +
( sup Ze,|f1<X>—fz<X>|) ( sup sl (fiXi) — (X >)>
F1,%> F1,

Fai

_l’_
(supZe, Si(Xi >)

F1 =1

+
+E(suszlfz<X >) ,

F2 =1

where in the last inequality we used the fact that the sequence (—¢;);_, is equal in
distribution to (¢;)7_,. Combining the bounds gives

+ n + n +
(supZa,f(X )) §E<sup28,~f1(Xi)> —i—E(suszifg(Xi)) .

i=1 F1 =1 Fa =1

Now by induction we easily get (5.1). Finally, again using the fact that (—¢;)!_, is
equal in distribution to (&;)?_,, we conclude the proof:

n
E ZS,‘(SXi
i=1

§E<suszih(Xi)> +IE<— supZe,h(X,))
70

HO =1 HDO 1
n + n +
= 2E<sup Zs,h(X,)) < 21E<sup28,~h(X,~)>
HO =1 H =1

n
28,'5;(1.

i=1

<2IE

H
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PROOF OF THEOREM 11. We have the following bounds:

n
n_l ZSjmf(Xj, Yj)

E sup
fe¥F j=1
n
=Esup |n~' 3 ey D my (X M iy;=y)
fe¥ j=1  yey
n
< Z E sup n! Zejmf(Xj, y)I{Yj:y}
yey feF j=1
n
< % Z E sup n! Zsjmf(Xj, VQCly=y — 1
yey [feF j=1
n
+3 > E sup n! > eimp(X;,y)|.
yey feF j=1

Denote o (y) :=2I{y;=y} — 1. Given {(X}, ¥j) : 1 < j < n}, the random variables
{ejoj(y): 1< j <n}areiid. Rademacher. Hence, we have

n
n' Y eimp(Xj, )Rl =y — 1)‘
j=1

E sup
fe:f‘?’

n
ntY ejoi(ymp(X;.y)
j=1

=E sup
fef

n
n'> ejoi(mp(X),y)
j=1

= EE; sup
feF

n
n~t Y eimp(X;,y)
j=1

=EE; sup
fef“

n
n~'Yy eimp(X,y)
j=1

=E sup
feF

Therefore, we have

n
n~'Yy eimp(X;,y)
=1

§ZEsuE

n
l’l_1 Zgjmf(xjv YJ')
yey fG?

j=1

E sup
fef
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Next, using Lemma 2, we get for all y € Y,

n' Y e f(X.y)

J=l1

n
Esup n_IZa‘jmf(Xj,y)
feF j=1

<E sup
feF

n
n! Zsj max f (X, y")
= YAy

+ E sup
fef

n_l Z ij(Xj)

j=l1

<2M — 1)E sup
feF

This implies

'Y e f(X))

j=1

n
E sup n! Zejmf(xj, Y;)
feF j=I1

< Z(ZM — DE sup
yey fex

n' Y e f(X)

j=l1

=MQ2M — 1)E sup
feF

’

and the result follows from Theorem 2 (one can use in this theorem the continuous
function ¢ that is equal to 1 on (—o0, 0], is equal to O on [1, +00) and is linear in
between). [

In the rest of the paper, we assume that the set of labels is {—1, 1}, so that
S:=8x{—1,1}and F := (f:fe€F}, where f(x,y):=yf(x). P will denote
the distribution of (X, Y), P, the empirical distribution based on the observations
(X1, Y1),...,(Xn, Yy)). Clearly, we have

R,(F)=E sup
feF

’

nt Y & F(XD)

i=1

nt> &Y f(X0)

i=1

=EE; sup
feF

where &; := Y;je;. Since, for given {(X;,Y;)}, {¢;} and {e;} have the same
distribution, we get

nY e f(X0)

i=1

n~t Y & f(XD)

i=1

E. sup
feF

=E, sup
feF

’

which immediately implies R, (3? )= R, (F).
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The results of Section 2 now give some useful bounds for boosting and other
methods of combining the classifiers. Namely, we get in this case the following
theorem [compare with the recent result of Schapire, Freund, Bartlett and Lee
(1998)].

Given a class #€ of measurable functions from S into R, we denote by conv(#)
the closed convex hull of ¢, that is, conv(J) consists of all functions on S that
are pointwise limits of convex combinations of functions from #:

conv(#):=1{ f: Vx €S f(x)=lim fn(x),
N N
fN=Zw§Vh§V,w§VZO, Zw?’:l, h?’ee}f’ NZI}.
j=1

j=1

Let ¢ be a function such that ¢ (x) > I(_,0)(x) for all x € R and ¢ satisfies the
Lipschitz condition with constant L(¢p).

THEOREM 12. Let ¥ := conv(JH), where H is a class of measurable
functions from (S, A) into R. Forall t > 0,

f.  8L(p)
g) + TRn(e%)

10g10g2(28_1)>1/2 o
+ <—n + NG

PROOF. Since F := conv(#), where # is a class of measurable functions
from (S, A) into R, we have

n
—1
n ZS,‘(SXi
i=1

PlafeF:P{f<0 inf | P,
fe {f =< }>6€1g)’1][ o(

<2exp{—2¢*}.

R,(F)=E

F

n' e fn(X0)

i=1

N
=Esup{ :szZ:w;yh;V,w;VzO,
j=1

N
Yw¥=1hlexn N>1
j=1

=E = R, (¥).

H

n
-1
n ZSi(SXi
i=1

It follows that R, (}N“ ) = R, (#), and Theorem 2 implies the result. [
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In the voting methods of combining the classifiers (such as boosting, bagging
[Breiman (1996)], etc.), a classifier produced at each iteration is a convex
combination fg € conv(#) of simple base classifiers from the class # [fs
depends on the training sample & := ((X1, Y1), ..., (Xn, ¥»))]. The bound of
Theorem 12 implies that for a given o € (0, 1) with probability at least 1 — «,

(1oglog2(25—1)>1/2 L fa
n Jn'

where t, := ,/%log%. In particular, if #¢ is a VC-class of classifiers & : S —
{—1, 1} (which means that the class of sets {{x : h(x) = +1}: h € #} is a Vapnik—
Chervonenkis class) with VC-dimension V (J), we have, with some constant
C >0,

~ ~ 8
P 0 inf | P, S+ =R, (H
{f)Sf }5361(%,1]|: n{fs < }+5 n(F) +

S )

This implies that with probability at least 1 — o

i _ i c [v <1oglog2(25‘1))”2
P <0} < f P, <é ry
{fs < }_8613)’1][ (fs=d)+ 5\ ——+ "
N [1 og 2
_ 0 —’
2n ga

which slightly improves the main bound of the paper of Schapire, Freund,
Bartlett and Lee (1998), which has a factor log(n/V (#)) in front of the term
Cs~ V() /)12,

EXAMPLE. In this example we consider a popular boosting algorithm called
AdaBoost. At the beginning (at the first iteration) AdaBoost assigns uniform

weights w'D = n~1 to the labeled observations (X1,Y1),...,(X,,Y,). At each

J
iteration the algorithm updates the weights. Let w® = (wik), s w,(,k)) denote the

vector of weights at kth iteration. Let P, ,,« be the weighted empirical measure
on the kth iteration:

n
k
P, 0=y w¥8x,.v,).
i=1

AdaBoost calls iteratively a base learning algorithm (called “weak learner”) that
returns at kth iteration a classifier hy € # and computes the weighted training
error of hy:

e = Py, o {y # hi}.
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(In fact, the weak learner attempts to find a classifier with small enough weighted
training error, at least such that e; < 1/2.) Then the weights are updated according
to the rule

k
w§ )exp{—onzkhk(Xj)}

WD ;
J Zy
where
LI
7 = Z w; )exp{—YjOlkhk(Xj)}
j=1
and
1 ) 1 —ex
o == =10 .
k 2 g ek

After N iterations AdaBoost outputs a classifier

S akhi(x)
211(\121 (073

The above bounds, of course, apply to this classifier since fs € conv(J). Another
way to use Theorem 12 in the case of this example is to choose a decreasing
function ¢, satisfying all the conditions of Theorem 12 with L(¢) = 1 and such
that (1) <e™* for all u € R. It is easy to see that such a choice is possible. Let us
also set

fs(x) =

1
5

= A L.
>V ay

Then it is not hard to check that

N h N al
o(PELEED) < o (S ) < expf -y S enhio)
1) Zl o 1 1

Therefore

/s al
Pn@(?) = Pnexp{_y E akhk(x)}-
1

A simple [and well known in the literature on boosting; see, e.g., Schapire, Freund,
Bartlett and Lee (1998)] computation shows that

N N
P, exp{—y Z(xkhk(x)} = l_[ 2V e (1 —ep).
1 k=1
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We also have
N

N — ek
Z o = log l_[ .
k=1V €k

It follows now from the bound of Theorem 12 that with probability at least 1 — «

P{fs <0} ]‘[ 2Ver(1 —ex) +8<logn

1>Rn(,}€)

loglog2(2(log]_[,12’:1 1;:”"\/1)) 1/2 1 5
+( ) ty 3, log -

n 2n

The results of Section 3 provide some improvements of the above bounds on
generalization error of convex combinations of base classifiers. To be specific,
consider the case when J# is a VC-class of classifiers. Let V := V (#) be its VC-
dimension. A well known bound on the entropy of the convex hull of a VC-class
[see van der Vaart and Wellner (1996), page 142] implies that

Hyp, ,(conv(H);u) < sup Hg,,(conv(H);u) < pu— "
QeP(S)

[The bound on the entropy of a convex hull goes back to Dudley; the precise value
of the exponent was given by Ball and Pajor, van der Vaart and Wellner, Carl; in the
case of the convex hull of a VC-class, the above bound relies also on Haussler’s
improvement of Dudley’s original bound on the entropy of a VC-class. See the
discussion in the books of van der Vaart and Wellner (1996) and Dudley (1999) and
references therein.] It immediately follows from Theorem 5 that for all y > Z(V_})
and for some constants C, B,

~ Cc
P2/ ecomiit) (0] - n1=7128,(y: f)V}

|

Bu(yi f)i=sup (8 € (0.1): 87 Py{(x,y) s yf (1) <8) <n”~'FE).

This shows that in the case when the VC-dimension of the base is relatively small
the generalization error of boosting and some other convex combinations of simple
classifiers obtained by various versions of voting methods becomes better than was
suggested by the bounds of Schapire, Freund, Bartlett and Lee (1998). One can
also conjecture, based on the bounds of Section 3, that outstanding generalization
ability of these methods observed in numerous experiments is related not only

SIS

1
< Blog,log, n exp{ —En

where
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to the fact that they produce large margin classifiers, but also to the fact that the
combined classifier belongs to a subset of the whole convex hull for which the
random entropy Hy, , is much smaller than for the whole convex hull.

Finally, it is worth mentioning that the bounds in terms of the so called margin
cost functions [see, e.g., Mason, Bartlett and Baxter (1999), Mason, Baxter,
Bartlett and Frean (2000)] easily follow from Theorem 1. Namely, Theorem 1
implies that with probability at least 1 — «,

x ~ V(¥ log N\ /2 1 2
PU&SNSiM[RMNUﬁ+CLM/( )+< & ) }+J—J%—,
Nzl n n 2n o

where {py} is any sequence of Lipschitz cost functions such that ¢y (x)>
I(—0,0(x) forall x e R, N > 1 and Ly is a Lipschitz constant of ¢y .

6. Bounding the generalization error in neural network learning. We turn
now to the applications of the bounds of the previous section in neural network
learning. We start with the description of the class of feedforward neural networks
for which the bounds on the generalization error will be proved. Let # be a
class of measurable functions from (S, 4) into R (base functions). Consider an
acyclic directed graph G. Suppose that G has a unique vertex v; (input) that has
no incoming edges and a unique vertex v, (output) that has one outcoming edge.
The vertices (nodes) of the graph will be called neurons. Suppose the set V of all
the neurons is divided into layers

!
V={lulJV;,
j=0
where [ > 0 and V; = {v,}. The neurons v;, v, are called the input and the output
neurons, respectively. The neurons of the layer V will be called the base neurons.
Suppose also that the inputs of the base neurons are the outputs of the input neuron.
Suppose also that the inputs of the neurons of the layer V;, j > 1 are the outputs

of the neurons from the set Ui;(l) Vi. To define the network, we will assign the
labels to the neurons in the following way. Each of the base neurons is labeled by
a function from the base class #¢. Each neuron of the jth layer V;, where j > 1,
is labeled by a vector w := (wy, ..., w,) € R", where n is the number of inputs of
the neuron. w will be called the vector of weights of the neuron.

Given a Borel function o from R into [—1, 1] (a sigmoid) and a vector w :=
(wi,...,wy,) € R, let

n
Now: R' >R, Ny Uy, ..., up) ZZG(ijMj).
i=1

For w e R",

n
lwlle, =Y lwil.
i=1
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Leto; : j > 1 be functions from R into [—1, 1], satisfying the Lipschitz conditions
loj(w) —oj(v)| < Ljlu—vl, u,veR.

The network works the following way. The input neuron inputs an instance
x € §. A base neuron computes the value of the base function (it is labeled with)
on this instance and outputs the value through its output edges. A neuron in
the jth layer (j > 1) computes and outputs through its output edges the value
N(,j,w(ul, ...,Uuy) (Where uy, ..., u, are the values of the inputs of the neuron).
The network outputs the value f(x) (of a function f it computes) through the
output edge.

We denote by N; the set of all such networks. We call A; the class of
feedforward neural networks with base # and / layers of neurons (and with
sigmoids {o;}). Let Nog := U?o:o N;. Define #, := J, and then recursively

Hj = {Na'j’w(hl,...,hn) n>0,h; € H;_q, weR"}Uij_l.

Denote H, 1= U?o:o #;. Clearly, # includes all the functions computable by
feedforward neural networks with base F.

Let {A;} be a sequence of positive numbers. We also define recursively classes
of functions computable by feedforward neural networks with restrictions on the
weights of neurons:

Hi(Ar, ..., A))
i={Nojw(hi,....hy) :n>0,hi € Hj_1(A1, ..., Aj_)),
weR", Jlwlle, <A}
UFH;—1(AL, ..., Aj1).
Clearly,
Hi = J{Hj(A1,...,A)) 1 Al ... Aj < 400

As in the previous section, let ¢ be a function such that ¢(x) > I(_x0,01(x) for all
x € R and ¢ satisfies the Lipschitz condition with constant L(¢p).
We start with the following result.

THEOREM 13. Forallt > 0 and foralll > 1,

]P’{EIfle,(Al,...,Al):P{ffo}

3 1
> inf [in<i)+m1‘[<2LjAj+1)Gn<J€)}+ﬂ}

5€(0,1] ) b ] vn

<2exp{—2¢%}.
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PROOF. We apply Theorem 2 to the class F = #Hj(Aq, ..., A}) =: Jf,’, which
gives for all r > 0,

f) N N%L«p) G ()

P13f e g : P{f <0} > inf |:Pn§0<_

mn
5€[0,1] 1)

loglog2(28_1))1/2 142
+<—n + G

< 2exp{—2¢*}.

Thus, it’s enough to show that

Gn(H) =E

n
n! ZgiaXi
i=1

l
< (2LJ'AJ' + DHE
H =1

n
n~! ZgiSXi
i=1

H

To this end, note that

6.1) E <E +E

G

’

/
‘%l—l

n
n”! ZgiéXi
i=1

n
n_l Zgiéx,‘
i=1

n
n_l Zgiéx,‘
i=1

H]
where
G1:={Noywhi,....,hy) :n>0,h; € H_1(A1,..., A1),
weR”, lwlle, <A}
Consider two Gaussian processes,
n
Zi(f)=n""2>"gi(o10 £)(Xi)
i=1

and

Zy(f):=Lin""2Y " g (X0,
i=1
where

n
feld whin=0hied_, weR", |wly <At =4

i=1



EMPIRICAL MARGINS AND GENERALIZATION ERROR 43

We have

Ee|Z1(f) — ZiW))* =n~" S |on (£ (Xi) — o (h (X)) |

i=1

< LI Y F X)) — k(XD = By Za(f) — Zat)|.

i=1
By Slepian’s Lemma [see Ledoux and Talagrand (1991)], we get
n
n! Z 8idx;
i=1

Eg =n"'PE|1Z1 g < 2n7 ' PEl1 Za g,

G

(6.2)

n
n”! ZgiSXi

i=1

=2L/E,
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Since 9; = A; convg(F_1) [here conv, (%) denotes closed symmetric convex hull
of a class §, that is, closed convex hull of the class # U —J#], it is easy to get that

n n
n”! ZgiSXi n! Zgzﬁxi
i=1

i=1

(6.3) E = AE

91
It follows from the bounds (6.1)—(6.3) that

n
n”! ZgiSXi
i=1

The result now follows by induction. [

Hi—1

E <QL/A;+ DE

Hi

n
n! ZgiéXi
i=1

H-1

REMARK. It can be shown that in the case of multilayer perceptrons (in which
the neurons in each layer are linked only to the neurons in the previous layer)
the factor ]_[11.21(2L jAj + 1) in the bound of the theorem can be replaced by

]_[ljzl(ZL jAj). If the sigmoids are odd functions, the same factor in the case
of general feedforward architecture of the network becomes ]_[ljzl(L jA;+ 1),

and in the case of multilayer perceptrons ]_[ljz1 LjAj. Bartlett (1998) obtained a
bound similar to the first inequality of Theorem 13 for a more special class # and

with larger constants. In the case when A; = A, L; = L (the case considered by
(AL)1(1+1)/2
8!

i}

Bartlett) the expression in the right-hand side of his bound includes

l
which is replaced in our bound by %. These improvement can be substantial in

applications, since the above quantities play the role of complexity penalties.
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Given a neural network f € Ny, let
L(f):=min{j > 1: f € N;}.

Let {br} be a sequence of nonnegative numbers. For a number k, 1 <k < £(f), let
Vi (f) denote the set of all neurons of layer k in the graph representing f. Denote

Wi(f) = max Jw™], Vb,  k=1,2,...,00),

NeVi(f)
and let
L)
A(f) =[] @GLiW(f) + D),
k=1

e(f) o
La(f) = 3 |5 108+ [Hogy Wi,
k=1

where o > 0 is a number such that { («) < 3/2, ¢ being the Riemann zeta-function:

(a) = Zk_“.
k=1

THEOREM 14. For all t > 0 and for all « > 0 such that ¢{(a) < 3/2, the
following bounds hold:

5€(0,1) 1)

P13f € Hoo: P{f <0} > inf [Pn (£>+@A(f)Gn(J€)

loglog,26H\?]  Tu(f)+1+2
¥ (o) 4TS

<23 —2¢()Lexp{—2¢*}.

PROOF. With a little abuse of notation, we write f for both the neural network
and the function it computes. Denote

A [2¢-1,2K), forkeZ, k#0,1,
“Tliz2,  fork=1

The conditions £(f) =1 and

Wi(f) €Dy,  kjeZ\{0}, j=1.....1,
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easily imply that
! L i
AN =ZJTELR2Y+1),  Talf) =32 /5 loglk;l+1)
j=1 j=1

and also that f € # 2k, ..., 2k, Therefore, the following bounds hold:

P{er;foo:P{fgo}

i —1y\ 1/2
> inf |:Pn(p<§)+@j\(f)(;n(ﬂ)+<%) :|

8e(0,1)

Co(f)+t+2
w ey
SNDIEEDY

1=0 k1 €Z\{0} ki €Z\{0}

xPiafeJeoom{f:E(f)zl, W;(f) € Ag;, j:l,...,l}:P{fso}

- mf{gl(f>+%£§3£2
5€(0,1) 1)

5 A(f)Gn(H)

loglog, 28"\ ?]  To(f)+1+2
+(—n ) +—ﬁ

<y % IP’{EIfeJ(’l(Z"l,...,Zk’):P{ng}

1=0 k1 €Z)\{0} ki eZ\{0}

> inf

8e(0,1)

[P,, (g) + L%L@)

[
x [T@L;2Y + DG,(30)
j=1

+C%b&@rhyﬂ}

n

+21j:1 /%log(lkj|+1)+t+2}

i
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Using the bound of Theorem 13, we obtain

- inf {Bw<i)+gi§%£%2AU3Gﬂﬂﬂ

N <loglog’21(28_1))1/2i| L Ta(D Fe42 (f) +1+42
00 )
SZ Z Z Zexp=—2<z /%log(lk |+ )+t) }
I=0k €Z\{0}  k;€Z\{0} =1

o0 1
EZ Z Zexpi—;alog(lkjl—i-l)—th}
: j:

1€Z\{0}  keZ\{0}

:2% Yoo Y H(ij|+1)_aexp{—2t2}

I=0k €Z\{0}  kjeZ\{0} j=1

_22n<22k )exp 22 2(¢ () — D] exp{ 21%)

1=0 j=1 \ k=2
=2(3 —2¢()) " exp{—22],

which yields the bound of the theorem. [J

It follows, in particular, that for any classifier fs € #, based on the training
data 8 := ((X1, Y1), ..., (X, Y,)), we have

P{fs<0}> inf

fs\  2V27L(p)
8€(0,1) [P”(p<_> + TA(fJ)Gn(f}f)

8

_%my%xm*n”2+ramrw+2
n Jn

<2(3 —2¢(a)) " exp{—2¢2}.
Next we consider a method of complexity penalization in neural network

learning based on the penalties that depend on £;-norms of the vectors of weights
of the neurons. Suppose that fs is the neural network from F C J that
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minimizes the penalized training error

N —1\ 1/2
fs :=argmin_inf [Pn({f§8})+ﬂA(f)Gn(,}f)+(M) }
feF 8€(0,1] 1) n
Iy (f)
T
= argmin [Pn({f <O}) + inf #u(f: a)],

where the quantity infse (0,177, (f; 8) plays the role of the complexity penalty,

7 (f10) 1= Pa({0 < F < 8}) + Wa (/3 6),
Z1N\ 172

0 (:8) = 2 (e + (B D)E Tl
n v

We define a distribution dependent version of this data dependent penalty as
infse0,11 70 (f; 8), where

T (f38) := P({0 < f <28}) +2W,(f; 6).

The first inequality of the next theorem provides an upper confidence bound on the
generalization error of the classifier fg. The second bound is an “oracle inequal-
ity” that shows that the estimate fg obtained by the above method possesses some
optimality property [see Johnstone (1998) and Barron, Birgé and Massart (1999)
for a general approach to penalization and oracle inequalities in nonparametric
statistics].

THEOREM 15. Forallt > 0 and for all o« > 0 with ¢ (o) < 3/2, the following
bounds hold:

t+2
]P’{P{ fs <0} >flg£ [Pn + lnf nn(f 5)]4—7}

<2(3-2(@)" exp{ 2t}
and

P{P{fg <0} — inf P{z<0)
ge

> inf [P{fgo}— inf P{g < 0}+6igbf1]nn(f;8)]+

2t + 4}
feF geF

Jn
<4(3 —2¢(a)) " exp{—272).
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PROOF. The first bound follows from Theorem 14 and the definition of the
estimate fg. To prove the second bound, we repeat the proof of Theorems 1, 2 to
show that for any class ¥/,

]P’{Elfe}“’EIcSe(O,l]:Pn{ffé}

f—=8\ 227 . (loglog,26~H\ /2]t +2
> |:P(p< 5 >+ 3 G, (F)+ (f) + NG
<2exp{—2¢%}.

The argument that led to Theorems 13 and 14 shows that

P{afegfaae(o,l];Pn{fgs}

-[rir <o 22

{f =28} + A(f)Gn(H)

NN
<2(3-2¢(a)) " exp{—2:2).

I 172
(loglog »(28~ )) +Fa(f)+t+2”

If now
inf _inf [P,({f <8})+ V. (f; 5)]+ 2
inf in (L f < —
feF 5€(0,1] Jn
- 2t +4
inf inf [P 28} 42V, (f; 4 ,
> inf inf [P{f =28} +20.(f:8)]+ NG
then
- ~ t+2
AfeF 35€(0,1]: P{f <8} >[P{f <28} + Wu(f; 5)]+7,
n
Combining this with the first bound gives
x 2t +4
{fg <O}>fgg-”éel(r(l)fl)[P{f528}+2wn(f’8)]+ 7 }

403 = 2¢ ()" exp|—2¢*},

which implies the result. [
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