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SHARP ADAPTIVE ESTIMATION OF LINEAR FUNCTIONALS

By Jussi Klemelä and Alexandre B. Tsybakov

Universität Heidelberg and Université Paris VI

We consider estimation of a linear functional T�f� where f is an
unknown function observed in Gaussian white noise. We find asymptot-
ically sharp adaptive estimators on various scales of smoothness classes
in multidimensional situations. The results allow evaluating explicitly the
effect of dimension and treating general scales of classes. Furthermore,
we establish a connection between sharp adaptation and optimal recov-
ery. Namely, we propose a scheme that reduces the construction of sharp
adaptive estimators on a scale of functional classes to a solution of the
corresponding optimization problem.

1. Introduction. Adaptation is now commonly considered a crucial ele-
ment of curve estimation procedures. The literature on adaptive estimation
suggests various methods, starting from the classical cross-validation or Cp

criterion and ending with more recent techniques such as wavelet shrinkage
or the method of Lepski. A more complete review of the existing approaches
and further references can be found in Donoho, Johnstone, Kerkyacharian and
Picard (1995), Jones, Marron and Sheather (1996), Tsybakov (1998), Lepski
and Spokoiny (1997), Härdle, Kerkyacharian, Picard and Tsybakov (1998),
Tsybakov (1998), Barron, Birgé and Massart (1999), Nemirovski (2000).

How to choose a method of adaptation which is optimal in a certain sense?
Comparing the rates of convergence does not suffice for this purpose. In fact, it
is proved in the literature that most of the adaptive estimates attain optimal
rates (exactly or up to a logarithmic factor), and thus the rate criterion does not
allow distinguishing between them. This suggests studying exact asymptotics
of the estimation error.

Let f� Rd → R be the unknown function to be estimated. Intuitively, the
aim of adaptation would be to select the estimator which has the smallest
risk among all estimators for every f. Unfortunately, this is not possible. We
have either to restrict the class of estimators, considering, for example, kernel,
spline or orthogonal series estimators, and to mimic the best estimator in this
class for fixed f, or to restrict the class of functions f (usually, assuming that f
has some smoothness which is unknown) and to adapt among all estimators,
but in a minimax sense. Restricting the class of estimators disagrees with
our initial wish to seek optimality among all estimators. To satisfy it, the
approach starting from smoothness classes of f and using a minimax seems
more relevant. Note that, for curve estimation problems, it is often not a big
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limitation to assume that f belongs to some class of functions �ν, where ν is
an unknown smoothness parameter.

There exist several results on exact asymptotics in minimax adaptation:
Efroimovich and Pinsker (1984), Gobubev and Nussbaum (1990), Nemirovski
(2000), Cavalier and Tsybakov (2000) (estimation of f in the L2-norm), Lepski
(1992b), Tsybakov (1998) (estimation in sup-norm), Lepski and Spokoiny
(1997), Tsybakov (1998), Lepski and Levit (1998) (estimation at a fixed point).
These papers consider the one-dimensional case (d = 1). Recently some first
results on multidimensional exact constants appeared: Lepski and Levit (1999)
study the estimation of analytical functions in d dimensions and Efromovich
(2000) extends the L2-results of Efroimovich and Pinsker (1984) to the multi-
variate case.

We call the collection � = ��ν�ν∈B, where B is a given set of indices ν, the
scale of classes. A typical form of �ν is

�ν = �s
L = {
f� Rd → R 	ρs�f� ≤ L

}
(1)

where ν = �s
L�, ρs�·� is a given functional, usually a seminorm (for exam-
ple, the Hölder or Sobolev seminorm), s > 0 is a smoothness parameter (for
example, the number of derivatives) and L > 0 is the radius of the ball �ν.

In this paper we consider the estimation of f at a fixed point of Rd, or,
more generally, the estimation of some linear functional T�f� with values in
R. Ibragimov and Hasminskii (1981, 1984), Stone (1980), Sacks and Ylvisaker
(1981), Donoho and Liu (1991), Donoho and Low (1992), Donoho (1994b)
obtained optimal rates of convergence and linear minimax estimates in this
problem for various examples of seminorms ρs�·� and classes �ν. In particu-
lar, as noticed by Donoho and Low (1992), the optimal rates can be expressed
in terms of renormalization exponents related to the functionals ρs and T.
It is shown in these papers that the optimal rate has the form εκ [where
κ = κ�ρs
T� > 0 is an exponent depending on ρs and T] if the observations
Yε�t� follow the Gaussian white noise model,

dYε�t� = f�t�dt + εdW�t�
 t ∈ Rd
(2)

whereW is the standard Brownian sheet inRd and 0 < ε < 1 is a small param-
eter. The use of the Gaussian white noise model has recently become standard
in the literature on nonparametric estimation: it approximates asymptoti-
cally (in the sense of convergence of experiments) some common models with
discrete observations, such as nonparametric regression or density estima-
tion [Brown and Low (1996a), Nussbaum (1996)]. In such an approximation
ε ∼ 1/

√
n where n is the number of discrete observations. To our knowledge,

the equivalence results are now available only in dimension d = 1. Also, the
equivalence is valid only for large enough smoothness s. Nevertheless, this
does not restrict extension of our results to other nonparametric models, since
this can be done directly, without equivalence considerations. For example,
results for density estimation similar to ours and obtained by a direct method
are actually available [see Butucea (2001a)].
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For an estimator Tε based on the observation Yε�t� consider the maximal
risk

�ε
 ν�Tε� = sup
f∈�ν

Ef

( 	Tε − T�f� 	p)

where p > 0 and Ef denotes the expectation w.r.t. the distribution of the
observations when the underlying function is f. For the adaptive setup, ν
is unknown, and the minimax approach consists in looking for estimators T∗

ε

such that the supremum of the normalized risk supν∈B ϕ
−p
ε
 ν�ε
 ν�T∗

ε� is as small
as possible, where ϕε
 ν is the rate of convergence. As shown by Lepski (1990,
1992a), Efromovich and Low (1994), Brown and Low (1996b), the last expres-
sion does not tend to 0 asymptotically as ε → 0 if ϕε
 ν equals the optimal rate
εκ. The correct rate for adaptation deteriorates to ϕε
 ν = �ε√log�1/ε��κ; that
is the best we can guarantee in terms of the rate is

lim sup
ε→0

sup
ν∈B

ϕ−p
ε
 ν �ε
 ν�T∗

ε� < ∞


except for the upper boundary of B where the normalization εκ can be main-
tained [see Lepski (1992a), Tsybakov (1998)]. The results of Lepski (1990,
1992a), Brown and Low (1996b) are proved for the case where �ν are Hölder
classes of functions, T�f� = f�0� and d = 1. Efromovich and Low (1994) con-
sidered more general linear functionals and Tsybakov (1998) proved the result
for the Sobolev classes and d = 1. Following the scheme of Lepski (1992a) or
of Tsybakov (1998), it is not difficult to show that in the general situation with
d ≥ 1 and Hölder or Sobolev classes of functions the correct asymptotic nor-
malization ϕε
 ν in the risk supν∈B ϕ

−p
ε
 ν �ε
 ν �T∗

ε� is of the form �ε√log�1/ε��κ,
up to a boundary effect.

Here we do not go into details of these results about the rates. For a
more comprehensive discussion, the definition of adaptive rate and the lower
bounds, see Tsybakov (1998). Below we assume as given the normalization
ϕε
 ν = �ε√log�1/ε��κ for the risk, where κ is the exponent of the optimal
rate that is calculated as in Ibragimov and Hasminskii (1984), Donoho and
Liu (1991). Our aim is to find the exact asymptotical constant cν in the expres-
sion for the minimax “adaptive” risk and to construct the adaptive estimator
T∗

ε that attains this constant.
Such an estimator T∗

ε will be called sharp adaptive on the scale of classes
��ν�. Examples of sharp adaptive estimators of functionals are known for the
case where d = 1
 T�f� = f�0�. The first example has been given by Lepski
and Spokoiny (1997) who considered the Hölder scale of classes with smooth-
ness 0 < s ≤ 2. Tsybakov (1998) obtained sharp adaptive estimators for the
Sobolev scale of classes where s takes discrete values without upper restriction
on s and with fixed L. His set-up is somewhat different from the one consid-
ered here and his results cannot be formally deduced from ours. In the present
paper we assume that s belongs to a bounded interval: this allows, in partic-
ular, a unified treatment of the Hölder and Sobolev cases (in the Hölder case,
if s is large, we cannot guarantee the necessary assumptions and the optimal
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solutions for the kernels are not explicitly known). Also, the Gaussian model
here differs from those in Lepski and Spokoiny (1997) and Tsybakov (1998):
we consider the observations on Rd, while in those papers the observations
are on �0
1�. From the mathematical point of view, the difference is not signif-
icant between considering functions on R and periodic functions on �0
1� [as
in Tsybakov (1998)] or neglecting the boundary effects on �0
1� [as in Lepski
and Spokoiny (1997)]. However, working with the infinite interval of observa-
tions leads to more transparent notation. In practice we always have finite
intervals, but if they are large enough they can be approximately considered
as infinite. This is commonly done in the literature on signal processing [(cf.)
a discussion in Donoho and Low (1992)]. Lepski and Levit (1998, 1999) con-
sidered the Gaussian white noise model on the infinite interval and obtained
sharp adaptation results for the case where �ν are classes of analytic or super-
smooth functions.

Here we find sharp adaptive estimators of linear functionals for the general
problem of dimension d ≥ 1, classes (1) with some general functional ρs�·� and
both s and L unknown, and a functional T satisfying some assumptions that
are relevant for the nonregular case where the “

√
n-consistent” estimation is

not possible. The main examples are T�f� = f�0� or T�f� being a partial
derivative of f at a point.

We consider a general framework that makes transparent the connection
between sharp adaptation and optimal estimation of linear functionals (opti-
mal recovery). An explicit scheme is proposed that reduces the construction
of sharp adaptive estimators to a solution of the corresponding optimal recov-
ery (OR) problem. Donoho (1994a, b) was the first to point out a connection
between OR and nonparametric statistics. He showed that the OR argument
can be used to get exact asymptotics of linear minimax risks in estimation
problems. More recently Lepski and Tsybakov (2000) proved that by means of
OR one can construct asymptotically sharp minimax nonparametric tests. The
present paper describes one more field of application of OR: construction of
sharp adaptive estimators. Our conclusion can be formulated as follows: it is
possible to construct sharp adaptive estimators of linear functionals by action
of the Lepski-type selection procedure (with properly chosen thresholds) over
families of linear estimates with optimal recovery kernels.

2. Assumptions and preliminaries. Let s > 0 and let ρs be a functional
defined on a subset � of the space of all functions f� Rd → R. Suppose in the
sequel that � = �f� ρs�f� < ∞�. We assume the following conditions on the
functional ρs.

Assumption 1.

(i) The functional ρs is convex, nonnegative and symmetric; that is, ρs�f� =
ρs�−f�, and ρs�f� �≡ 0,

(ii) ρs�af�b·�� = absρs�f�·�� for any a ≥ 0
 b > 0
 f ∈ � .
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Furthermore, we assume that the functional T satisfies the following con-
ditions.

Assumption 2.

(i) T is a linear functional on � .
(ii) There exists r ≥ 0 such that T�af�b ·�� = abrT�f�·�� for a ≥ 0
 b >

0
 f ∈ � .
(iii) The modulus of continuity is well defined:

ωs
L�ε� def= sup�T�f�� �f�2 ≤ ε
 ρs�f� ≤ L� < ∞
for all s > r
 L > 0
 ε > 0 where � · �2 is the L2�Rd�-norm.

Assumptions 1(ii) and 2(ii) are usual renormalization assumptions [see
Donoho and Low (1992) for discussion and examples].

As described by Donoho (1994a, b), Donoho and Liu (1991), Donoho and
Low (1992), the minimax estimation of functionals from random noisy data
is closely related to the deterministic problem of minimax optimal recovery
that considers estimation from observations in nonrandom noise. These papers
show that, by calibrating the algorithms of optimal recovery one can construct
linear minimax estimators for the statistical estimation of linear functionals
and asymptotic minimax estimators for the statistical estimation of functions
with supremum loss. We refer to these papers for a detailed discussion. Here
we show that by calibrating the algorithms of optimal recovery, one can con-
struct a family of linear estimators such that choosing one of these linear
estimators with a certain data-based decision rule will result in a sharp adap-
tive estimation procedure. Next we give a brief summary of the results on
optimal recovery that will be used below.

By the generalized Weierstrass theorem, under the Assumptions 1 and 2
there exists a function gs
L
 ε which attains the supremum of the modulus of
continuity; that is,

T
(
gs
L
 ε

) = ωs
L�ε�(3)

[cf. Gabushin (1970), Micchelli and Rivlin (1977), Arestov (1989)]. These
authors show that the extremal problem

maxT�f� subject to
{ �f�2 ≤ 1


ρs�f� ≤ 1

(4)

is related to the optimal recovery problem: find a function Ks such that

sup
ρs�f�≤1
 �f−g�2≤1

∣∣∣∫ Ksg − T�f�
∣∣∣ = inf

K
sup

ρs�f�≤1
 �f−g�2≤1

∣∣∣∫ Kg − T�f�
∣∣∣ def= E�s��(5)

In particular, Theorems 6, 8 and 11 inMicchelli andRivlin (1977) and Theorems
2.4 and 2.5 in Arestov (1989) show that under Assumptions 1 and 2 there
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exists Ks ∈ L2�Rd� that satisfies (5) and, moreover,

E�s� = T
(
gs
1
1

) = sup
ρs�f�≤1

∣∣∣∫ Ksf − T�f�
∣∣∣+ �Ks�2�(6)

The property (6) plays crucial role in our argument. In the sequel Ks denotes
the optimal recovery kernel, that is, the function in L2�Rd� satisfying (6). Note
that if T�f� = f�0� and 0 <

∫
gs
1
1 < ∞, the kernel Ks has a particular form

Ks = K0
s where

K0
s = gs
1
1

/∫
gs
1
1�

This can be shown in a simple way [see, e.g., Lemma 1 of Lepski and Tsybakov
(2000)]. For general functionals T, a similar condition usually holds:

Ks = Cgs
1
1
(7)

where the constant C > 0 depends only on s
 r
 d. In fact, Assumptions 1 and
2 and the renormalization argument entail that ωs
L�ε� is of power law form:
ωs
L�ε� = ωs
1�1�L2�r+d�/�2s+d�εκ where

κ = κ�s� = 2�s − r�/�2s + d��
Hence, as in Donoho (1994b), Donoho and Liu [(1991), Section 4.3] and Donoho
and Low [(1992), Section 8], one gets (7).

We assume that the observations Yε�t�
 t ∈ Rd, are obtained from the
Gaussian white noise model (2). As follows from Donoho and Liu (1991),
Donoho and Low (1992), Donoho (1994b), the linear minimax estimator of
T�f� under the mean squared risk on the class of functions �s
L is the kernel
estimator with properly rescaled optimal recovery kernel Ks and the band-
width

hl�s
L
 ε� = �ε/L�2/�2s+d��(8)

The rate of convergence of the linear minimax estimator is respectively εκ.
Our definition of sharp adaptive estimator starts from the family of kernel

estimators with optimal kernels Ks, though with the bandwidths different
from those of the linear minimax case.

We suppose that the following continuity condition on the kernel holds.

Assumption 3. The optimal recovery kernel Ks satisfies �7� and �Ks′ −
Ks�2 → 0, as s′ → s, for any s > r.

Let the scale of classes
{
�s
L

}
�s
L�∈B

be defined by (1) with

B = ��s
L�� s∗ ≤ s ≤ s∗
 L∗ ≤ L ≤ L∗�

where r < s∗ < s∗ < ∞
 0 < L∗ < L∗ < ∞. This means that we are certain
that f ∈ �s
L for some L ∈ �L∗
L∗� and s ∈ �s∗
 s∗�. The values r
 s∗
 s∗ are
supposed to be known but L∗ and L∗ can be unknown: we do not need L∗
L∗

for the construction of our sharp adaptive estimators.
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Define the bias constant

bs
 s′ = sup
ρs�f�≤1

∣∣∣∫ Ks′f − T�f�
∣∣∣�

The following boundedness and continuity condition on the bias constant
will be assumed.

Assumption 4.

(i) For any r < r′ < s∗ there exists a positive constant bmax�r′
 s∗� such that
bs
 s′ ≤ bmax�r′
 s∗� ∀ r′ ≤ s′ ≤ s ≤ s∗�

(ii)

lim sup
δ→0

sup
s
 s′∈�s∗
s∗�� 	s−s′ 	≤δ

bs
 s′

bs
 s

≤ 1�

Clearly, the main interest of our construction is in the case where the
solution gs
L
 ε and the kernel Ks can be expressed explicitly. In this case
Assumptions 3 and 4 can be checked directly; see the examples in Section 5.

3. Results. For any h > 0 denote Ks
h�·� = h−d−rKs�·/h� where Ks is
defined in Section 2. Consider kernel estimators of the form

∫
Ks
h�t�dYε�t�

where h is a suitably chosen bandwidth. Denote

h�s
 ε� = ε2/�2s+d�
(9)

and introduce the “effective noise level under adaptation”

ε̃ = ε̃�s� = εdε�s� = (
λ�s�ε2 log ε−1)1/2


where

dε�s� = (
λ�s� log ε−1)1/2


λ�s� = 2p�2r + d�
(

1
2s + d

− 1
2s∗ + d

)
�

We use the bandwidth computed at the effective noise level,

h�s
 ε̃�s�� = (
λ�s�ε2 log ε−1)1/�2s+d�

�

This bandwidth is by a logarithmic factor larger in order than the bandwidth
(8) of the linear minimax estimate.

We will introduce a sufficiently fine grid on �s∗
 s∗� and a statistic ŝ having
values on this grid. To each point of the grid we assign a linear kernel esti-
mator. The statistic ŝ will choose one of these estimators. Namely, we consider
the grid

S = �s1
 � � � 
 sm�
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where

r′ < s1 < · · · < sm < s∗

with a fixed r′ satisfying r < r′ ≤ s∗, and we assume that there exist k2 >
k1 > 0 and γ1 ≥ γ > 1 such that

k1
(
log ε−1)−γ1 ≤ si+1 − si ≤ k2

(
log ε−1)−γ


 i = 0
 � � � 
m − 1
(10)

where s0 = r′
 sm−s∗ = o�1�, as ε → 0. Note that the same grid S can be used
for different values s∗, provided s∗ > r′. In this sense the exact knowledge of
s∗ is not required for the construction of the estimator.

For any s ∈ S introduce the linear kernel estimator of the functional T�f�:

Ts
ε =
∫

Ks
h�s
 ε̃�s���t�dYε�t��

The sharp adaptive estimator has the form Tŝ
 ε where ŝ is a suitably chosen
statistic. To define ŝ we follow the approach used in different statistical models
starting from the paper of Lepski (1990). That is, the statistic ŝ is defined as
the largest of those s-values in the grid for which the estimator Ts
ε does not
differ significantly from the estimators corresponding to the smaller s-values.
We choose

ŝ = max
{
s ∈ S� ∣∣Ts
ε − Ts′
 ε

∣∣ ≤ η�s′� for all s′ ∈ S
 s′ ≤ s
}

with the threshold

η�s� = dε�s�σs = ε̃�s�2�s−r�/�2s+d��Ks�2

where σs is the standard deviation of Ts
ε,

σs = ε
∥∥Ks
h�s
 ε̃�s��

∥∥
2 = εh−r−d/2�s
 ε̃�s���Ks�2�(11)

Finally, define the estimator of T�f� as
T∗

ε = Tŝ
 ε�(12)

The next theorem is the main result of this paper. It states that the estima-
tor T∗

ε is sharp adaptive and that the exact asymptotical constant cν for the
minimax adaptive risk is given by the expression

cν = cν
 s∗ =L�2r+d�/�2s+d�T�gs
1
1�

×
[
2p�2r + d�

(
1

2s + d
− 1

2s∗ + d

)]�s−r�/�2s+d�
�

(13)

To formulate the theorem we introduce, for any ψ > 0
 p > 0, the normalized
risk:

�ε
 ν�Tε
ψ� = sup
f∈�ν

Ef

(
ψ−p

∣∣Tε − T�f�∣∣p)
and denote

ψν = cνϕε
 ν = cν

(
ε2 log ε−1)�s−r�/�2s+d�

�(14)
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[Recall that we defined ϕε
 ν = �ε
√
log ε−1�κ and κ = 2�s−r�/�2s+d�.] The nor-

malizing factor ψν may be expressed as the value of the modulus of continuity
at the effective noise level ε̃. Indeed, by standard renormalization argument,
gs
L
ε̃�·� = ags
1
1�b ·� where a = Lb−s and b = �L/ε̃�2/�2s+d�. Thus,

ωs
L�ε̃� = T
(
gs
L
 ε̃

) = abrT
(
gs
1
1

)
= ε̃2�s−r�/�2s+d�L�2r+d�/�2s+d�T�gs
1
1�
= cν

(
ε2 log ε−1)�s−r�/�2s+d� = ψν�

(15)

Theorem 1. Let Assumptions 1–4 hold, let p > 0 and denote Bq = �s∗
 q�×
�L∗
L∗�, where s∗ < q < s∗. Then the estimator T∗

ε defined in �12� is sharp
adaptive,

sup
s∗<q<s∗

lim sup
ε→0

sup
ν∈Bq

�ε
 ν

(
T∗

ε
 ψν

) ≤ 1(16)

and

sup
s∗<q<s∗

lim inf
ε→0

inf
Tε

sup
ν∈Bq

�ε
 ν

(
Tε
ψν

) ≥ 1�(17)

Here infTε
denotes the infimum over all estimators.

Proofs of Theorem 1 and of the further results are given in Section 7.

Remark 1. Since s and L are not fixed, it is more precise to call cν =
cν
 s∗ the “optimal normalizing function” rather than the optimal constant. An
insight on the structure of this function has been first given by Lepski (1992a),
Theorem 8, where he shows that

cν
 s∗ �
(

1
2s + 1

− 1
2s∗ + 1

)�s−r�/�2s+1�

(he considers the case d = 1 and the Hölder scale of classes, but it is not
hard to extend his result to our multivariate setting). Here we specify the
exact value of cν
 s∗ which contains, of course, the same factor, but also turns
out to contain another factor expressed in terms of optimal recovery solutions
[cf. (13)].

For s = s∗ we have cν
 s∗ = 0. Thus �ε
 ν

(
T∗

ε
 ψν

)
is not defined for the single

point s = s∗. This explains why the set Bq appears in place of B in Theorem 1:
indeed, the difference between (16) and (17) and analogous expressions with
limε→0 supν∈B is really minor but we have to use the form (16) and (17) in order
to exclude the point s = s∗. It is possible to construct an adaptive estimator
that has the property given in Theorem 1 and attains for s = s∗ a faster rate,
without the logarithmic factor: ε2�s

∗−r�/�2s∗+d� [cf. Lepski (1992a), Theorem 8].
Such an estimator is defined similarly to T∗

ε , but with the enlarged grid
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�s1
 � � � 
 sm
 s∗� and with Ts
ε replaced by

T̃s
 ε =


∫

Ks
h�s
 ε̃�s���t�dYε�t�
 for s = s1
 � � � 
 sm
∫
Ks
h�s
ε��t�dYε�t�
 for s = s∗.

Also one should impose an assumption on the rate of approximation of s∗ by
sm as ε → 0. The effect of improving the rate at a single boundary point s∗

is discussed for example by Lepski (1992a) and Tsybakov (1998). This issue
is of minor importance, although involving more technical details, and we do
not pursue it here.

The estimator T∗
ε depends on the value s∗ which is not always available.

One can propose a suboptimal modification of T∗
ε that does not depend on s∗.

It is obtained by putting formally s∗ = ∞ in the definition for T∗
ε. In other

words, we replace in all the formulas λ�s� by

λ̃�s� = 2p�2r + d�
2s + d




and we set

c̃ν = L�2r+d�/�2s+d�T�gs
1
1�
(
2p�r + d�
2s + d

)�s−r�/�2s+d�



ψ̃ν = c̃ν

(
ε2 log ε−1)�s−r�/�2s+d�. We also assume that the grid S = �s1
 � � � 
 sm� is

extended to the right beyond s∗:

r′ < s1 < · · · < sm = smax


where smax > s∗ and si satisfy (10). Here smax is an arbitrary large fixed
number.

Let T̃ε be the estimate defined as T∗
ε with the change of λ�s� to λ̃�s� and

with the extended grid S as above. Note that T̃ε is completely data-driven:
the dependence on s∗ disappears.

Theorem 2. Let Assumptions 1–4 hold and let p > 0. Then

lim sup
ε→0

sup
ν∈B

�ε
 ν

(
T̃ε
 ψ̃ν

) ≤ 1�

Proof of Theorem 2 is omitted: it follows the same lines as that of Theorem 1,
with a minor modification concerning the extension of the grid beyond s∗ (this
is done as in the proof of Theorem 3 below). Comparing with that proof, we
observe that Theorem 2 remains valid if one takes smax → ∞ as ε → 0, but
not faster than log�1/ε�.

Note that in view of Theorems 1 and 2 the asymptotical risk of the estimator
T̃ε can be larger than that of T∗

ε on any set �s (with s∗ ≤ s < s∗) at most by a
factor of

c̃ν

cν

=
(

2s∗ + d

2�s∗ − s�
)�s−r�/�2s+d�

�
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This factor is particularily close to 1 if s is fixed and s∗ gets large. Thus, for
s∗ large enough and fixed s the behavior of T̃ε and T∗

ε is similar, but T̃ε has
an advantage since it does not depend on s∗. Although, for s close to s∗ the
estimator T̃ε is much less efficient than T∗

ε.
A useful modification of Theorem 1 consists in constructing a grid on the

values of smoothing parameter h and not on the s-values as above. To get cor-
respondence with the s-grid satisfying (10), the h-grid should have a geometri-
cal character. This means that an “economic” choice of h (among a logarithmic
number of possible candidates) is in fact sufficient to attain sharp asymptotic
adaptivity: increasing the cardinality of the grid or passing to the choice of h
in a continuum of values complicates the procedure but does not improve the
result. We set h0 = h�r′
 ε̃�r′�� and define the sequence �hi� by the recursion

hi+1 = hi�1+ α�hi��(18)

where α�hi� is a slowly varying function of hi. It will be sufficient to consider

α�h� = �log�1/h��−γ0
(19)

where γ0 > 0 is a constant. Given the grid

� = �h1
 h2
 � � � 
 hm�

with m = max�i� hi < hmax�
 hmax ≥ ε2/�2s

∗+d�, consider the bandwidth

ĥ = max�h ∈ � � ∣∣Tε�h� − Tε�h′�∣∣ ≤ ηh′
 for all h′ ≤ h
h′ ∈ � �

where Tε�h� = ∫

Ks�h�
 h�t�dYε�t�, and

ηh = εh−r−d/2

√
p�2r + d� log hmax

h
�Ks�h��2

with

s�h� =
(
log ε

log h
− d

2

)
�

Define

T∗
ε = Tε�ĥ��(20)

We now state an analogue of Theorems 1 and 2 for the estimator (20).

Theorem 3. Let Assumptions 1–4 be satisfied, p > 0, and let T∗
ε be defined

in (20).

(i) If hmax = ε2/�2s
∗+d� then (16) holds; that is, the estimator (20) is sharp

adaptive.
(ii) If hmax = 1 then the estimator (20) satisfies

lim sup
ε→0

sup
ν∈B

�ε
 ν

(
T∗

ε
 ψ̃ν

) ≤ 1�
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We observe that the result of Theorem 3(ii) is robust to the choice of hmax.
Inspection of the proof shows that hmax = 1 can be replaced by hmax = h∗

for any positive h∗
 and other choices of hmax > ε2/�2s
∗+d� are acceptable as

well. We also note that a special case of the above construction is given by
Lepski and Spokoiny (1997). They considered a grid on h-values defined in
(18), (19) with γ0 = 1/4 and for the particular case of Hölder scale of classes
with 0 < s ≤ 2
 r = 0
 d = 1. Their Theorem 3.3 in the proper form follows
from Theorem 3 modulo the fact that their procedure is slightly different: it
includes an additional factor �1+ α�h�� in the threshold ηh.

Remark 2 (Pointwise and spatial adaptivity). Application of our adaptive
procedure to the particular functionals T�f� = f�x� for each point x of an
interval where f is defined gives an estimator of f on this interval. There-
fore, a special case of our results is sharp pointwise adaptivity for estimation
of a whole function f on an interval. Arguing as in Lepski, Mammen, and
Spokoiny (1997), Goldenshluger and Nemirovskii (1997) one can deduce spa-
tial adaptivity of such an estimator of a function from its pointwise adaptivity.

Remark 3 (Data-dependent kernels). One of the most studied topics in
nonparametric curve estimation is the choice of the smoothing parameter
in kernel estimation. We do not restrict ourselves to kernel estimators but
find asymptotically sharp adaptive estimator among all estimators. Observe
that nevertheless this estimator turns out to be a kernel one, with smoothing
parameter selected in a data-dependent way. What is more, our results sug-
gest that, to attain optimality, not only the smoothing parameter but also the
kernel function of this estimator should be chosen in a data-dependent way.

4. Other statistical models. It is possible to modify the proposed esti-
mator for other types of observations than the Gaussian white noise model.
Consider some examples.

Density estimation. Let X1
 � � � 
Xn be i.i.d. observations with density f on
Rd and consider estimation of T�f� = f�x� for some x ∈ Rd. Construct a
preliminary estimator f̂n�x� > 0 for f�x� and consider the family of kernel
estimators

Ts
n = 1
n

n∑
i=1

Ks
h�s
 ε̃�s���Xi − x�


where Ks
h and ε̃�s� are defined as above where one substitutes ε = �f̂n�x�/
n�1/2. The adaptive procedure is defined as in Section 3; it is a data-driven
selection of an appropriate member of this family. Again, in the definition of
the threshold η�s� of the adaptive procedure one should set ε = �f̂n�x�/n�1/2.
Sharp adaptation properties of this adaptive density estimator on the Sobolev
scale of classes are proved by Butucea (2001a). Butucea (2001b) presents a
large simulation study showing a successful behavior of the adaptive proce-
dure for different densities f. In particular, the procedure is quite robust to
the choice of the preliminary estimator f̂n.
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Nonparametric regression. Consider the nonparametric regression model

Yi = f�Xi� + ξi
 i = 1
 � � � 
 n


where Xi = i/n−1/2 are equispaced regressors on the interval �−1/2
1/2�
 f
is an unknown regression function and ξi are i.i.d. random variables such that
E�ξi� = 0, E�ξ2i � = σ2 > 0, satisfying some additional moment conditions. Let
again T�f� = f�x�. An adaptive procedure analogous to ours can be suggested
similar to the density case. Construct a preliminary estimator σ̂ of σ , and
consider the family of linear kernel estimators

Ts
n = 1
n

n∑
i=1

YiKs
h�s
 ε̃�s���Xi − x�


where Ks
 h and ε̃ are defined as in Section 3, with ε = σ̂/
√

n. Finally, apply
the thresholding procedures of Section 3 to get ŝ (or ĥ), with the above def-
inition of ε used to compute the threshold η�s�. The adaptive estimator is
then Tŝ
n. We conjecture that Tŝ
n has sharp optimality properties, as in
Theorems 1–3.

5. Examples. In this section we give examples of classes �ν (respectively,
functionals ρs) that satisfy the assumptions of Section 2 and allow explicit
construction of sharp adaptive estimators.

Example 1 (Sobolev classes). Let β > d/2 and denote s = β − d/2. Define
the Sobolev seminorm ρs by

ρ2
s�f� = �2π�d

∫
Rd

�ω�2β∣∣f̂�ω�∣∣2 dω


where the Fourier transform of a function f ∈ L1�Rd� is

f̂�ω� = 1
�2π�d

∫
Rd

f�x� exp�−ixTω�dx

and � · � denotes the Euclidean norm in Rd. Note that if β is an integer,

ρ2
s�f� = ∑

	α	=β

∫
Rd

∣∣f�α�∣∣2

where

f�α��x� = i	α	
∫
Rd

ωαf̂�ω� exp�ixTω�dω

and α = �α1
 � � � 
 αd� is a multi-index, 	α	 = α1 + · · · + αd
 ωα = ω
α1
1 · · ·ωαd

d , for
ω = �ω1
 � � � 
 ωd�.
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Consider the estimation of the functional T�f� = f�α0��0� where α0 is a
multi-index, 	α0	 = r and r ≥ 0 is an integer, s > r . The kernel Ks is then
obtained as a renormalized version of the basic kernel

K̃s�x� = �2π�−dir
∫
Rd

ωα0�1+ �ω�2β�−1 exp�ixTω�dω�(21)

Note that K̃s is always real-valued: it is the directional derivative corre-
sponding to the multi-index α0 of the function whose Fourier transform is
�2π�−d�1+ �ω�2β�−1. Introduce the constant

C∗ =
[
1
2β

B

(
1+ 2r + d

2β

1− 2r + d

2β

)
�2π�−d

∫
Sd

ξ2α0 dµ�ξ�
]1/2




where Sd = �x ∈ Rd� �x� = 1� for d = 2
3
 � � � 
 S1 = �−1
1�
 µ is the
Lebesgue measure of Sd so that µ�Sd� = 2πd/2/4�d/2�
 d = 1
2
 � � �, and
B�·
 ·� denotes the beta-function.

Proposition 1. Let r ≥ 0 be an integer and s > r. Then for the Sobolev
seminorm ρs and T�f� = f�α0��0�
 	α0	 = r, the extremal function gs
1
1 is

given by gs
1
1�x� = �−1�raK̃s�bx� where K̃s is defined in (21), a = C−1
∗ b−s

and b =
(
2�s−r�
2r+d

)1/�2s+d�
. Furthermore,

Ks�x� = br+dK̃s�bx�


�Ks�2 = C∗

(
2�s − r�
2r + d

)�s+r+d�/�2s+d�



T�gs
1
1� = C∗

(
2r + d

2�s − r�
)�s−r�/�2s+d� 2s + d

2r + d
�

For the one-dimensional case (d = 1) the extremal function gs
1
1 was found
by Taikov (1968).

The kernel K̃s can be expressed in terms of the Bessel functions. Thus, if
r = 0, we have

K̃s�x� = �2π�−d/2�x�1−d/2
∫ ∞

0

td/2

1+ t2β
J�d−1�/2�t�x��dt


where Jn is the ordinary Bessel function of order n. For r �= 0 the kernel K̃s

is the corresponding directional derivative of the right-hand side of the last
equality.

Proposition 2. Let ρs be the Sobolev seminorm, and let T�f� be as in
Proposition 1. Then Assumptions 1–4 are satisfied with any s∗
 s∗
 r′ such that
r < r′ ≤ s∗ < s∗ < ∞
 r′ > �s∗ − r − d�/2.
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Example 2 (Taylor and Hölder classes). The Taylor classes are defined by
(1) with

ρs�f� = sup
x �=0

�x�−s

∣∣∣∣∣f�x� −
�s−1�∑
i=0

∑
	α	=i

xα

α!
f�α��0�

∣∣∣∣∣
(22)

where s > 0
 f�α��0� is the partial derivative corresponding to the multi-index
α and α! = α1! · · ·αd!. Consider the estimation of the functional T�f� = f�0�
when f is in a Taylor class. This problem was studied in a nonadaptive setting
of linear minimax estimation by Legostaeva and Shiryaev (1971), Sacks and
Ylvisaker (1981). The extremal function gs
1
1 of the maximization problem (4)
is given by the following proposition which is a multivariate generalization of
their results. This function is a renormalized version of the basic kernel

K̃s�x� = (
1− �x�s

)
I��x� ≤ 1��(23)

Proposition 3. Let r = 0
 0 < s ≤ 2. Then, for ρs defined in (22) and
T�f� = f�0� the extremal function gs
1
1 is given by gs
1
1�x� = aK̃s�bx�
where K̃s is defined in (23),a = b−s, and

b =
(

2s2µ�Sd�
�2s + d��s + d�d

)1/�2s+d�
�

Furthermore,

Ks�x� =
(

µ�Sd�s
�s + d�d

)−2s/�2s+d�( 2s
2s + d

)d/�2s+d�
K̃s�bx�


�Ks�2 = �s + d�d
µ�Sd�s

(
2s2µ�Sd�

�2s + d��s + d�d
)�s+d�/�2s+d�




T�gs
1
1� =
( �2s + d��s + d�d

2s2µ�Sd�
)s/�2s+d�

�

For 0 < s ≤ 1 the Hölder seminorm is defined by

ρs�f� = sup
x
y∈Rd
 x �=y

�x�−s	f�x� − f�y�	(24)

and the Hölder classes are defined by (1) with ρs as in (24).

Proposition 4. The result of Proposition 3 remains valid if ρs is the Hölder
seminorm and 0 < s ≤ 1.

Proposition 5. Let T�f� = f�0�. Then Assumptions 1–4 are satisfied with
any 0 < s∗ < s∗ ≤ 2 for the Taylor classes and with any 0 < s∗ < s∗ ≤ 1 for the
Hölder classes.
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The Hölder seminorm can be also defined for s > 1. However, explicit expres-
sions for the solution gs
1
1 and the kernel Ks are not generally known for
s > 1, even in the dimension d = 1. This does not allow constructing sharp
adaptive estimators on the Hölder scale with s∗ > 1. Thus, for d = 1
 s > 1
the Hölder seminorm is

ρs�f� = sup
x
y∈R
 x �=y

∣∣f�l��x� − f�l��y�∣∣
	x − y	s−l




where l =  s!. Explicit solutions of the extremal problem (4) with this semi-
norm are available only for 0 < s ≤ 1 and s = 2 [see Fuller (1961), Gabushin
(1968), Korostelev (1993), Leonov (1997, 1999), Zhao (1997)].

6. Lemmas. The following lemma gives a bound for the bias of a kernel
estimator.

Lemma 1. Let h > 0 and s′
 s > r. Then under Assumptions 1 and 2,

sup
f∈�s
L

∣∣∣EfTs′
 ε − T�f�
∣∣∣ ≤ Lhs−rbs
 s′ �

Proof. Using Assumptions 1 and 2, we have

sup
f∈�s
L

∣∣∣∣Ef

∫
Ks′
 h dYε − T�f�

∣∣∣∣ = sup
ρs�f�≤L

∣∣∣∣∫ Ks′
 hf − T�f�
∣∣∣∣

= sup
ρs�f�≤L

∣∣∣∣∫ Ks′ �x�h−rf�hx�dx − T�f�
∣∣∣∣

= Lhs−r sup
ρs�f�≤L

∣∣∣∣∫ Ks′ �x�
f�hx�
Lhs

dx − T

(
f�h ·�
Lhs

)∣∣∣∣
= Lhs−r sup

ρs�f�≤1

∣∣∣∫ Ks′f − T�f�
∣∣∣

since {
f�h ·�
Lhs

� ρs�f� ≤ L

}
= �f� ρs�f� ≤ 1�� ✷

Recall that hl�s
 L
 ε� = �ε/L�2/�2s+d�. Define the bias term

B�s
 L
 ε� = Lhs−r
l �s
 L
 ε�bs
 s

and the standard deviation term

R�s
L
 ε� = εh
−r−d/2
l �s
L
 ε��Ks�2�

Lemma 2. Suppose that Assumptions 1 and 2 hold and let gs
L
 ε be defined
by (3), ε > 0
 L > 0
 s > r. Then:

(i) �gs
L
 ε�2 = ε.
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(ii) If ρs�g� ≤ L and T�g� = T�gs
L
 ε�, then
∫

ggs
L
 ε ≥ �gs
L
 ε�22.
(iii) ψν = B�s
L
 ε̃�s�� + R�s
L
 ε̃�s��, where ψν is defined by (14).

Proof. Assertion (i) means that the solution gs
L
 ε is attained at the
boundary of the set of restrictions, while (ii) follows from the usual duality
argument [see Gabushin (1970), Micchelli and Rivlin (1977), Arestov (1989)].
An elementary proof of (i) and (ii) for the case T�f� = f�0� is given in Lepski
and Tsybakov (2000). It can be easily extended to our general case. Let us
prove (iii). In view of (6),

T�gs
1
1� = bs
 s + �Ks�2�(25)

Now, by standard renormalization argument, gs
L
 ε�x� = ags
1
1�bx� where
a = Lb−s = ε2s/�2s+d�Ld/�2s+d�
 b = �L/ε�2/�2s+d� = h−1

l �s
L
 ε��
Thus,

abr = Lhs−r
l �s
L
 ε� = εh

−r−d/2
l �s
L
 ε�


and, by (25),

T�gs
L
 ε� = abrT�gs
1
1� = B�s
L
 ε� + R�s
L
 ε��
This and (15) yield (iii). ✷

For s > s′ > 0 define

dε�s′
 s� =
[
2p�κ�s� − κ�s′�� log ε−1

]1/2
=
[
2p�2r + d�

(
1

2s′ + d
− 1

2s + d

)
log ε−1

]1/2
�

(26)

Lemma 3. Let Assumptions 1–4 hold. Let s
 s′ ∈ �r′
 q�
 r < r′ < q
 s′ <
s
L ∈ �L∗
L∗�, and denote ν = �s
L�. Then there exist positive constants
D1
 � � � 
D5 (that can depend only on s∗
 s∗
L∗
L∗
 r
 q
 d
p) such that

ψs′
L

ψν

≤ D1 exp
{

1
2p

d2
ε�s′
 s�

}

(27)

ψs′
L

ψν

≥ D2

(
ε2 log

1
ε

)�κ�s′�−κ�s��/2

(28)

h�s
 ε̃�s��
h�s′
 ε̃�s′�� ≥ D3 exp

{
2

�2s∗ + d�2 �s − s′� log ε−1
}

(29)

and

D4 ≤ ψs
L

η�s� ≤ D5�(30)
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Proof. From (15) we have ψs
L = ε̃2�s−r�/�2s+d�L�2r+d�/�2s+d�T�gs
1
1�where
ε̃ = εdε�s
 s∗�. Thus,

ψs′
L

ψν

= exp
{

1
2p

d2
ε�s′
 s�

}
d
2�s′−r�/�2s′+d�
ε �s′
 s∗�
d
2�s−r�/�2s+d�
ε �s
 s∗�

T�gs′
1
1�
T�gs
1
1�

L
2r+d
2s′+d

− 2r+d
2s+d �

Note that �Ks�2 > 0 for every s, since otherwise �gs
1
1�2 = 0 [by (7)] which
contradicts Lemma 2(i). Also, by Assumption 3, �Ks�2 is a continuous function
of s on the interval �r′
 s∗� for r′ > r. Hence

inf
s∈�r′
 s∗�

�Ks�2 > 0
 sup
s∈�r′
 s∗�

�Ks�2 < ∞�(31)

Combining (31) with (25) and taking into account Assumption 4(i) we get

inf
s∈�r′
 s∗�

T�gs
1
1� > 0
 sup
s∈�r′
 s∗�

T�gs
1
1� < ∞�(32)

Now, for s0 < s1,

d2
ε�s0
 s1� = 4p�2r + d�

�2s0 + d��2s1 + d� �s1 − s0� log ε−1(33)

and thus, for s ∈ �r′
 q�,
4p�2r + d�
�2s∗ + d�2 �s∗ − q� log ε−1 ≤ d2

ε�s
 s∗� ≤ 4p
2r + d

�s∗ − r� log ε−1�

Therefore,

D6
(
log ε−1)�κ�s′�−κ�s��/2 ≤ d

2�s′−r�/�2s′+d�
ε �s′
 s∗�
d
2�s−r�/�2s+d�
ε �s
 s∗�

≤ D7
(
log ε−1)�κ�s′�−κ�s��/2

for D6
D7 > 0. Observing that �κ�s′� − κ�s��/2 < 0 and using (32) we obtain
(27) and (28). To prove the bound (29) it is enough to note that

h�s
ε̃�s��
h�s′
ε̃�s′�� =exp

{
4�s−s′�

�2s+d��2s′+d�
(
logε−1− 1

2
log logε−1

)}
λ�s�1/�2s+d�

λ�s′�1/�2s′+d� �(34)

The bounds (30) follow from the equality

ψs
L

η�s� = L�2r+d�/�2s+d�T�gs
1
1�
�Ks�2

in view of (31) and (32). ✷

We need some exponential bounds for the stochastic part of the estimator.
Define

Zs = ε
∫

Ks
h�s
 ε̃�s���t�dW�t��(35)
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Lemma 4. Let σs be as defined in (11). Then for u > 0
 p ≥ 0,

E�	Zs	pI�	Zs	 ≥ u�� ≤ D�p��σp
s + up� exp

{
− u2

2σ2
s

}



where D�p� > 0 is a constant depending only on p.

Proof of this lemma is straightforward since Zs ∼ � �0
 σ2
s �.

7. Proofs of the results. In the following we denote C
C′
C1
C2
 � � �
positive constants that can depend only on s∗
 s∗
L∗
L∗
 r
 q
 d
p. These con-
stants may be different in different occasions.

Proof of the upper bound in Theorem 1. Here we prove the bound (16).
Consider ν = �s
L� ∈ Bq and define s− = s−�s� by

s− = s − log log log�1/ε�
log�1/ε� �

We have

sup
f∈�ν

Ef

(
ψ−p

ν 	T∗
ε − T�f�	p) = R−

ε
ν + R+
ε
ν


where

R−
ε
 ν = sup

f∈�ν

Ef

(
ψ−p

ν 	T∗
ε − T�f�	pI

(
ŝ < s−

))



R+
ε
ν = sup

f∈�ν

Ef

(
ψ−p

ν 	T∗
ε − T�f�	pI

(
ŝ ≥ s−

))
�

To show (16), we will prove that

lim
ε→0

sup
ν∈Bq

R−
ε
 ν = 0(36)

and

lim sup
ε→0

sup
ν∈Bq

R+
ε
 ν ≤ 1�(37)

Proof of (36). Let s ∈ �s∗
 q�
 s′ ∈ S
 s′ < s−
L ∈ �L∗
L∗�. Let f ∈ �ν
 ν =
�s
L�. Then for sufficiently small ε, using Lemma 1, (29) and the fact that
s′ < s, we get

	EfTs′
 ε − T�f�	 ≤ Lhs−r�s′
 ε̃�s′��bs
 s′ ≤ Lhs−r�s
 ε̃�s��bs
 s′ �(38)

By definition,

hs−r�s
 ε̃�s�� = ε̃κ�s��s
 ε̃�s��
(39)

where κ�s� = 2�s−r�/�2s+d�. Comparing this to (15) and using the inequality
bs
 s′ ≤ bmax�r′
 s∗� [Assumption 4(i)], we get

Lhs−r�s
 ε̃�s��bs
 s′ ≤ C1ψν�(40)
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Then

	Ts′
 ε − T�f�	 ≤ 	EfTs′
 ε − T�f�	 + 	Zs′ 	 ≤ C1ψν + 	Zs′ 	

where Zs′ is defined in (35) as a stochastic error of the kernel estimator. Using
this we find

R−
ε
ν ≤ ∑

s′∈S
s′<s−
sup
f∈�ν

Ef

(
ψ−p

ν 	Ts′
ε − T�f�	pI�ŝ = s′�) ≤ g1�ν� + g2�ν�


where

g1�ν� = C
∑

s′∈S
 s′<s−
sup
f∈�ν

Pf�ŝ = s′��1+ ψ−1
ν τ�s′��p(41)

and

g2�ν� = C
∑

s′∈S
 s′<s−
E
[(
1+ ψ−1

ν 	Zs′ 	
)p

I�	Zs′ 	 ≥ τ�s′��
]

(42)

with

τ�s′� = σs′

[
dε�s′
 s� +

(
log ε−1)1/4]


where σs′ is defined in (11) and dε�s′
 s� is defined in (26).
Let us prove that the probability of greatly underestimating largely the

value of s by the statistic ŝ is small, uniformly over f ∈ �ν.

Lemma 5. Let s ∈ �s∗
 q�, s′ ∈ S, s′ < s−, L ∈ �L∗
L∗� and ν = �s
L�. Then
for every δ > 0 there exists ε0 = ε0�δ� > 0 independent of s
 s′
L and such that
for all 0 < ε < ε0 we have

sup
f∈�ν

Pf�ŝ = s′� ≤ Cm exp
{− 1

2 d2
ε�s′
 s∗��1− δ�}�

Proof. Since Card�S� = m, we have

sup
f∈�ν

Pf�ŝ = s′� ≤ ∑
s′′∈S
 s′′≤s′

sup
f∈�ν

Pf

(∣∣Ts̄′
ε − Ts′′
ε
∣∣ > η�s′′�)

≤ m max
s′′∈S
 s′′≤s′

sup
f∈�ν

Pf

(∣∣Ts̄′
 ε − Ts′′
 ε
∣∣ > η�s′′�)
(43)

where s̄′ = s̄′�s′� is the smallest element of S greater than s′. Let f ∈ �ν.
Arguing as in (38) and (40), and using (28), for sufficiently small ε we get∣∣EfTs̄′
 ε − T�f�∣∣+ ∣∣EfTs′′
 ε − T�f�∣∣ ≤ C1ψν ≤ C1γεψs′′
L


where

γε = γε�s
s′′�=D−1
2

(
ε2 log

1
ε

)�κ�s�−κ�s′′��/2
≤D−1

2 exp�−C�κ�s�−κ�s′′��log�1/ε��

≤ D−1
2 exp

{−C�κ�s�−κ�s−��log�1/ε�}≤D−1
2 exp

{−C′ log log log�1/ε�}�
Note that γε�s
 s′′� → 0 as ε → 0 uniformly in s
 s′′ ∈ �r′
 q�.
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Using (30) we obtain ψs′′
L ≤ D5η�s′′� and thus∣∣Ts̄′
 ε − Ts′′
 ε
∣∣ ≤ ∣∣EfTs̄′
 ε − T�f�∣∣+ 	EfTs′′
 ε − T�f�	 + 	Zs̄′ − Zs′′ 	
≤ C3γεη�s′′� + 	Zs̄′ − Zs′′ 	�

Hence, for sufficiently small ε,

Pf

(∣∣Ts̄′
 ε − Ts′′
 ε
∣∣ > η�s′′�) ≤ Pf�	Zs̄′ − Zs′′ 	 > η�s′′��1− C3γε���(44)

Denote h0 = h�s′′
 ε̃�s′′��, h1 = h�s̄′
 ε̃�s̄′��, #K0 = Ks′′ , #K1 = Ks̄′ , and, as usual,#Ki
hi
= h−r−d

i
#Ki�·/hi�. Now Zs̄′ − Zs′′ ∼ � �0
 ε2A2� where

A = ∥∥ #K0
 h0
− #K1
 h1

∥∥
2 ≤ ∥∥ #K0
 h0

− #K0
 h1

∥∥
2 + ∥∥ #K0
 h1

− #K1
 h1

∥∥
2
def= A1 + A2�

Now

A2
1 = h−2r−d

0

∫ [
#K0�x� −

(
h0

h1

)r+d

#K0

(
h0

h1
x

)]2
dx

= h−2r−d
0

[∫
#K2
0 +

(
h0

h1

)2r+d ∫
#K2
0 − 2

(
h0

h1

)r+d ∫
#K0�x� #K0

(
h0

h1
x

)
dx

]
�

Denote

g̃�x� =
(

h0

h1

)−r

gs′′
1
1

(
h0

h1
x

)
�

Then, because h0 < h1,

ρs′′ �g̃� =
(

h0

h1

)s′′−r

ρs′′ �gs′′
1
1� ≤ 1

and T�g̃� = T�gs′′
1
1�. Lemma 2(ii) gives∫
gs′′
1
1g̃ ≥

∫
g2

s′′
1
1

and therefore, by (7),(
h0

h1

)−r ∫
#K0�x� #K0

(
h0

h1
x

)
dx ≥

∫
#K2
0�

Thus

A2
1 ≤ h−2r−d

0

[
1−

(
h0

h1

)2r+d] ∫
#K2
0 ≤ h−2r−d

0

∫
#K2
0�(45)

Also,

A2
2 = h−2r−d

1

∥∥ #K0 − #K1

∥∥2
2 = h−2r−d

0

∥∥ #K0

∥∥2
2γ

′
ε
(46)

where

γ′
ε = γ′

ε�s̄′
 s′′� =
(

h0

h1

)2r+d
∥∥ #K0 − #K1

∥∥2
2∥∥ #K0

∥∥2
2

→ 0
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as ε → 0. Indeed, to prove this consider the two cases: (i) s̄′ −s′′ ≥ �log ε−1�−1/2
and (ii) 0 < s̄′ − s′′ < �log ε−1�−1/2. If (i) holds then, by (29), h0/h1 ≤ D−1

3

exp�−C
√
log ε−1�, and, using (31), we get γ′

ε ≤ C exp�−C
√
log ε−1�. If (ii)

holds, then (29) and the inequality s̄′ > s′′ entail h0/h1 ≤ C, while � #K0 −
#K1�2 ≤ ?�s̄′ − s′′� ≤ ?��log ε−1�−1/2� where ?�δ� = sup��Ks −Ks′ �2� 	s− s′	 ≤
δ
 s
 s′ ∈ �r′
 s∗��. Note that ?�δ� → 0, as δ → 0, by the uniform continuity
of the function F�s
 s′� = �Ks − Ks′ �2 on �r′
 s∗� × �r′
 s∗� which follows from
Assumption 3. Thus, in both cases (i) and (ii) we have γ′

ε�s̄′
 s′′� → 0 as ε → 0,
uniformly in s̄′
 s′′ ∈ �r′
 s∗�.

From (45) and (46) it follows that for sufficiently small ε,

ε2A2 ≤ ε2h−2r−d�s′′
 ε̃�s′′���Ks′′ �22�1+ γ′
ε� = σ2

s′′ �1+ γ′
ε��

Now, for sufficiently small ε,

η2�s′′�
ε2A2

≥ η2�s′′�
σ2

s′′ �1+ γ′
ε�

= d2
ε�s′′
 s∗�
1+ γ′

ε

≥ d2
ε�s′
 s∗�
1+ γ′

ε

�

Thus, using Lemma 4 we get

Pf�	Zs̄′ −Zs′′ 	>η�s′′��1−C3γε�� ≤ C4 exp
{
− 1
2ε2A2

η2�s′′��1−C3γε�2
}

≤ C4 exp
{
−1
2
d2

ε�s′
s∗��1−C3γε�2�1+γ′
ε�−1

}
�

Comparing this to (43) and (44) we get the lemma. ✷

Lemma 6. Let g1 be defined in (41). Then,

lim
ε→0

sup
ν∈Bq

g1�ν� = 0�

Proof. Let s ∈ �s∗
 q�, s′ ∈ S, s′ < s−, L ∈ �L∗
L∗�, ν = �s
L�. By defini-
tions [see also (33)],

τ�s′�
η�s′� = dε�s′
 s� + �log ε−1�1/4

dε�s′
 s∗�
≤ C1�

Next, by (30),

η�s′�
ψν

≤ C2
ψs′
L

ψν

�

Combining the two previous inequalities and using (27), we get

τ�s′�
ψν

≤ C3
ψs′
L

ψν

≤ C4 exp
{

1
2p

d2
ε�s′
 s�

}
�(47)
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Using this and Lemma 5, we find

g1�ν� ≤ C5
∑

s′∈S
 s′<s−
sup
f∈�ν

Pf�ŝ = s′�
(

τ�s′�
ψν

)p

≤ C6m
∑

s′∈S
 s′<s−

[
exp

{
1
2

d2
ε�s′
 s�

}
exp

{
−1
2

d2
ε�s′
 s∗��1− δ�

}]
≤ C7m

2 exp
{−c�δ� log ε−1}


where

c�δ� = p�2r + d�
(

1
2s + d

− δ

2r + d
− 1− δ

2s∗ + d

)
�

Choose δ = �s∗−q��2r+d�
2�s∗−r��2q+d� . Then c�δ� ≥ C8 > 0. Moreover, in view of (10),

m = O��log�1/ε��γ1�
 ε → 0
(48)

and the lemma follows. ✷

Lemma 7. Let g2 be defined in (42). Then,

lim
ε→0

sup
ν∈Bq

g2�ν� = 0�

Proof. Let s ∈ �s∗
 q�, s′ ∈ S, s′ < s−, L ∈ �L∗
L∗�, ν = �s
L�. Now,

τ2�s′�
σ2

s′
= [

dε�s′
 s� + �log ε−1�1/4]2 ≥ �log ε−1�1/2�

This, together with Lemma 4 and (47), (48) yields

g2�ν� ≤ C1
∑

s′∈S
 s′<s−

[
1+ ψ−p

ν �σp
s′ + τp�s′��] exp{−τ2�s′�

2σ2
s′

}

≤ C2m exp
{
−1
2

(
log ε−1

)1/2}
→ 0

uniformly in ν ∈ Bq, as ε → 0. ✷

Lemmas 6 and 7 imply (36).

Proof of (37). Let s ∈ �s∗
 q�, L ∈ �L∗
L∗�, ν = �s
L�. Let s̄ = s̄�s� be
defined by

s̄ = s − �2s + d� log L

2 log�1/ε� − log log�1/ε� + 2 log L
�

In other words, s̄ is chosen so that(
L−2ε2 log ε−1)1/�2s+d� = (

ε2 log ε−1)1/�2s̄+d�
�(49)
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Let s+ ∈ S be the largest grid point ≤s̄. Denote �1 = �1�s� = �s′ ∈ S� s− ≤
s′ ≤ s+� and �2 = �2�s� = �s′ ∈ S� s+ < s′ ≤ q�. Assume that ε is small
enough, so that s− < s+. We have

R+
ε
 ν = sup

f∈�ν

Ef

(
ψ−p

ν 	T∗
ε − T�f�	pI�ŝ ∈ �1 ∪�2�

)
�

Let s′ ∈ �1 and f ∈ �ν. Using successively Lemma 1, the fact that s′ ≤ s̄
and (49) we get

	EfTs′
 ε − T�f�	 ≤ Lhs−r�s′
 ε̃�s′��bs
 s′

= Lλ�s′��s−r�/�2s′+d��ε2 log ε−1��s−r�/�2s′+d�bs
 s′

≤ Lλ�s′��s−r�/�2s′+d��ε2 log ε−1��s−r�/�2s̄+d�bs
s′

= Lλ�s′��s−r�/�2s′+d�(L−2ε2 log ε−1��s−r�/�2s+d�bs
s′

= B�s
 s′�Lhs−r
l �s
L
 ε̃�s��bs
 s′


(50)

where B�s
 s′� = λ�s′��s−r�/�2s′+d�λ�s�−�s−r�/�2s+d�. Note that

	s − s′	 ≤ C log log log�1/ε�
log�1/ε� ∀ s′ ∈ �1�(51)

This and the uniform continuity of B�s
 s′� in s
 s′ ∈ �s∗
 q� yields that B�s
 s′� ≤
1 + γε1. (Here and later we denote γεi
 i = 1
2
 � � � the functions of ε that
can depend only on s∗
 s∗
L∗
L∗
 r
 q
 d
p and such that limε→0 γεi = 0.)
Next, using Assumption 4(ii) and (51), for every s′ ∈ �1
 s ∈ �s∗
 s∗�, we get
bs
s′ ≤ bs
s�1+ γε2�. These remarks, (50) and Lemma 2(iii), yield

	EfTs′
 ε − T�f�	 ≤ Lhs−r
l �s
L
 ε̃�s��bs
 s�1+ γε3�

= B�s
L
 ε̃�s���1+ γε3� ≤ ψν�1+ γε3� ∀ s′ ∈ �1�
(52)

From (27) and (51) we have ψs′
L/ψν ≤ �log log�1/ε��C1 ∀ s′ ∈ �1. This and
(30) entail

η�s′� ≤ D−1
4 ψs′
L ≤ C2�log log�1/ε��C1ψν ∀ s′ ∈ �1

and

σs′

ψν

≤ C3�log log�1/ε��C1
σs′

η�s′� = C3�log log�1/ε��C1

dε�s′
 s∗�

≤ C3�log log�1/ε��C1

dε�q
 s∗� ≤ C4

log1/4�1/ε� ∀ s′ ∈ �1�

(53)
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Note also that, since s+ ≤ s̄, the argument similar to (50), (52) and Assumption
3 yield

η�s+� = �λ�s+�ε2 log ε−1��s+−r�/�2s++d��Ks+�2
≤ λ�s+��s+−r�/�2s++d��ε2 log ε−1��s̄−r�/�2s̄+d��Ks+�2�1+ γε4�

= λ�s+��s+−r�/�2s++d�√ε2 log ε−1
(

ε2 log ε−1

L2

)−�r+d/2�/�2s+d�

× �Ks+�2�1+ γε4�
≤ ε̃�s�h−r−d/2

l �s
L
 ε̃�s���Ks�2�1+ γε5�
= R�s
L
 ε̃�s���1+ γε5��

(54)

[For the first inequality in this display we used the fact that, by (10), 	s̄−s+	 ≤
k2�log�1/ε��−γ, γ > 1, and thus �ε2 log ε−1��s+−r�/�2s++d�−�s̄−r�/�2s̄+d� ≤ �1+γε4�.]

Now we are ready for the main argument of the proof. Let first ŝ = s′ ∈ �1.
Then, in view of (52),

	T∗
ε−T�f�	 = 	Ts′
 ε−T�f�	 ≤ 	EfTs′
 ε−T�f�	+	Zs′ 	 ≤ ψν�1+γε3�+	Zs′ 	�(55)

Next, let ŝ = s′ ∈ �2. Then, using successively the definition of ŝ, (52), (54)
and Lemma 2(iii), we get

	T∗
ε − T�f�	 ≤ 	Ts′
 ε − Ts+
 ε	 + 	Ts+
 ε − T�f�	

≤ η�s+� + 	EfTs+
 ε − T�f�	 + 	Zs+	
≤ R�s
L
 ε̃�s���1+ γε5� + B�s
L
 ε̃�s���1+ γε3� + 	Zs+	
≤ ψν�1+ γε6� + 	Zs+	�

This and (55) entail

Ef

(
ψ−p

ν 	T∗
ε − T�f�	pI�ŝ ∈ �1 ∪�2�

)
≤ ∑

s′∈�1

Ef

((
1+ γε3 + ψ−1

ν 	Zs′ 	
)p

I�ŝ = s′�)
+ ∑

s′∈�2

Ef

((
1+ γε6 + ψ−1

ν 	Zs+	
)p

I�ŝ = s′�)�
(56)

Applying Lemma 4 and (53) we get, for any s′ ∈ �1,

Ef

((
1+ γε3 + ψ−1

ν 	Zs′ 	
)p

I�ŝ = s′�)
≤
(
1+ γε3 +

√
σs′ψ

−1
ν

)p
Pf�ŝ = s′�

+Ef

((
1+ γε3 + ψ−1

ν 	Zs′ 	
)p

I
(	Zs′ 	 ≥

√
σs′ψν

))
≤ (

1+ γε3 +
√

σs′ψ
−1
ν

)p
Pf�ŝ = s′� + C5

[
Pf

(	Zs′ 	 ≥
√

σs′ψν

)
+ψ−p

ν Ef

(	Zs′ 	pI
(	Zs′ 	 ≥

√
σs′ψν

))]
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≤ (
1+ γε3 +

√
σs′ψ

−1
ν

)p
Pf�ŝ = s′�

+C6

[
1+ ψ−p

ν

(
�σs′ψν�p/2 + σ

p
s′

)]
exp

{
− ψν

2σs′

}

≤
(
1+ γε3 + C

1/2
4 �log�1/ε��−1/8

)p
Pf�ŝ = s′� + C7 exp

{
− log1/4�1/ε�

2C4

}
�

Since s+ ∈ �1, an analogous bound holds for Ef��1+γε6+ψ−1
ν 	Zs+	�pI�ŝ = s′��.

We conclude therefore that

R+
ε
 ν = sup

f∈�ν

Ef

(
ψ−p

ν 	T∗
ε − T�f�	pI�ŝ ∈ �1 ∪�2�

)
≤
(
1+ γε7 + C

1/2
4

log1/8�1/ε�

)p

sup
f∈�ν

Pf�ŝ ∈ �1 ∪�2�

+2C7m exp
{
− log1/4�1/ε�

2C4

}(57)

where γε7 = max�γε3
 γε6�. It remains to note that (37) follows from (57) and
(48). ✷

Proof of the lower bound in Theorem 1. Here we prove the bound (17).
The proof consists in reducing the problem to getting a lower bound on the
risk of two hypotheses f = f0 and f = f1, which are chosen to be distant
enough. In fact, f1 will be chosen on the “boundary” of our scale of classes.
Let L ∈ �L∗
L∗�, ν′ = �s∗
L� and ν′′ = �q
L�. Consider the functions

f0 ≡ 0
 f1 = �1− δ�gs∗
L
 ε̃�s∗�

where 0 < δ < 1/2 and ε̃�s∗� = εdε�s∗
 s∗�. Obviously, f0 ∈ �q
L. Furthermore,
ρs∗�f1� = �1 − δ�ρs∗�gs∗
L
 ε̃�s∗�� ≤ �1 − δ�L and thus f1 ∈ �s∗
L. From (15),
T�f1� = �1− δ�ψν′ . Also, T�f0� = 0. Thus, for any estimator Tε,

	Tε − T�fi�	 = ψν′D
(�1− δ�−1ψ−1

ν′ Tε
 i
)

 i = 0
1


where D�u
 v� = �1− δ�	u − v	, u
 v ∈ R. Denoting Q = ψν′/ψν′′ and Ei = Efi
,

we get

inf
Tε

sup
ν∈Bq

sup
f∈�ν

Ef

(
ψ−p

ν 	Tε − T�f�	p)
≥ inf

Tε

max
{
E0
(
ψ

−p
ν′′ 	Tε − T�f0�	p

)

E1

(
ψ

−p
ν′ 	Tε − T�f1�	p

)}
= inf

Tε

max
{
QpE0D

p�Tε
0�
E1D
p�Tε
1�

}
�

Denote for brevity Pi = Pfi

 i = 0
1. We apply now the following lemma,

which is a special case of Theorem 6(i) in Tsybakov (1998) adapted to the
present notation.
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Lemma 8. Let Q > 0, τ > 0, 0 < δ < 1/2, 0 < α < 1 be fixed and let
D� R×R → �0
∞� be a distance such that

D�0
1� ≥ 1− δ�

Suppose that

P1

(
dP0

dP1
≥ τ

)
≥ 1− α�

Then, for p > 0,

inf
Tε

max�QpE0D
p�Tε
0�
E1D

p�Tε
1�� ≥ �1− α��1− 2δ�pτ�Qδ�p
�1− 2δ�p + τ�Qδ�p 


where the infimum is taken over all estimators.

Let us check the assumptions of Lemma 8. Clearly, the assumption
D�0
1� ≥ 1 − δ is satisfied for our definition of D�·
 ·�. Next, by Lemma 2(i),
�f1�22 = �1− δ�2ε̃2�s∗�. Put

τ = exp
{
−1− δ

2
d2

ε�s∗
 s∗�
}
�

Then

P1

(
dP0

dP1
≥ τ

)
= P

(
exp

{
ε−1�f1�2ξ − ε−2�f1�22/2

} ≥ τ
) = 1− E�lε�


where ξ ∼ � �0
1�, E�·� is a standard normal c.d.f. and

lε = ε

�f1�2
(
log τ + ε−2�f1�22/2

) = −δ

2
dε�s∗
 s∗� → −∞
 ε → 0�

Hence, we can use Lemma 8 with the choice α = E�lε� which results in

inf
Tε

max
{
QpE0D

p�Tε
0�
E1D
p�Tε
1�

} ≥ �1− E�lε���1− 2δ�pτ�Qδ�p
�1− 2δ�p + τ�Qδ�p �(58)

Here, in view of (14) and (33),

τQp = exp
{
−1− δ

2
d2

ε�s∗
 s∗�
}(

ψν′

ψν′′

)p

≥ exp
{

2p�2r + d�
�2s∗ + d��2s∗ + d� �q − s∗ + δ�s∗ − s∗�� log ε−1

}
≥ exp

{
− p�2r + d�

�2s∗ + d��2q + d� log log ε−1
}(

cν′

cν′′

)p

�

Choose δ = �1− δ1� s∗−q
s∗−s∗

+ δ1, where 0 < δ1 < 1/2, and consider only q that is
close enough to s∗, so that δ < 1/2. Then q−s∗+δ�s∗−s∗� > 0, and τQp → ∞,
as ε → 0. Since also lε → −∞, we conclude that the RHS of (58) tends to
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�1 − 2δ�p, as ε → 0. Taking the limit of �1 − 2δ�p, as q → s∗, and using the
fact that δ1 can be chosen arbitrarily small, we get

lim
q→s∗

lim inf
ε→0

inf
Tε

sup
ν∈Bq

�ε
ν�Tε
ψν� ≥ 1� ✷

Proof of Theorem 3. We start with the proof of Theorem 3(i). Note that
the function

F�s� def=
(
max

(
λ�s�
 λ

(
s∗ + q

2

))
ε2 log ε−1

)1/�2s+d�

is a continuous function of s on the interval �r′
 s∗�, and F�r′� = h�r′
 ε̃�r′�� ≤
hi < hmax = ε2/�2s

∗+d� < F�s∗� for any i ∈ �1
 � � � 
m� and ε small enough.
Hence for every i ∈ �1
 � � � 
m� there exists at least one si ∈ �r′
 s∗� such that

hi =
(
max

(
λ�si�
 λ

(
s∗ + q

2

))
ε2 log ε−1

)1/�2si+d�
�(59)

Fix a sequence S = �s1
 s2
 � � � 
 sm� where si is a solution of (59). Using (18),
(19) it is easy to check that si defined by (59) satisfies (10) with γ1 = γ = 1+γ0,
and

hi = h�si
 ε̃�si�� ∀ si ≤ �s∗ + q�/2�
Therefore, we can apply the argument as in the proof of Theorem 1 for this
particular grid S. Some modifications of the proof are needed here since, unlike
the case of Theorem 1, the kernel and the threshold are defined with s�hi� in
place of si. These modifications are easy to establish if one notes that

	si − s�hi�	 ≤
C log log�1/ε�√

log�1/ε� ∀ si ≤ �s∗ + q�/2�(60)

In fact, Assumption 3 and (60) entail∣∣∣∣ ηhi

η�si�
− 1

∣∣∣∣ ≤ γε8 ∀ si ≤ �s∗ + q�/2
(61)

and, in view of (60) and Assumption 4,

bs
 s�hi� ≤ bs
 si
�1+ γε9� ≤ bmax�r′
 s∗��1+ γε9� ∀ s
 si ∈ �r′
 q�
 si ≤ s�(62)

Using (60)–(62), the proof of (36) is almost the same as in Theorem 1. For the
proof of (37) we mention only the modifications in the key relations (50) and
(54). Instead of (50) we now obtain (with the notation s′ = si)

	EfTε�hi� − T�f�	 ≤ Lhs−r
i bs
 s�hi� = Lhs−r�si
 ε̃�si��bs
 s�hi�


where, by (51), 	si − s	 ≤ C log log log�1/ε�/ log�1/ε�. This and (60), together
with Assumption 4(ii), yield bs
 s�hi� ≤ bs
 s�1 + γε10�. Other elements of (50)
remain as in the proof of Theorem 1. Turning to (54), we have to evaluate
now ηh+ in place of η�s+�, where h+ = h�s+
 ε̃�s+��. By virtue of (61), the only
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difference from the case of Theorem 1 appears in the inclusion of the extra
factor �1+ γε8�.

Consider now the proof of Theorem 3(ii). We have F�r′� = h�r′
 ε̃�r′�� ≤
hi < hmax = 1 = lims→∞ F�s�. Hence, the solutions si exist, as above, but we
get an additional set of gridpoints that extends to the right beyond s∗,

�3 = �si� si > �s∗ + q�/2��
We can apply the argument as in the proof of Theorem 3(i) with a modification
so as to address the set S3 and the choice hmax = 1. The latter is equivalent
to putting s∗ = ∞, and all the calculations in the proof of Theorems 1 and 3(i)
remain valid with this modification if ψν is replaced by ψ̃ν. Inclusion of the
set �3 leads to a modification only in the proof of (37). In fact,

R+
ε
 ν = sup

f∈�ν

Ef

(
ψ−p

ν 	T∗
ε − T�f�	pI�ŝ ∈ �1 ∪�2 ∪�3�

)
and the inclusion of �3 results in the consideration of the third component of
R+

ε
 ν, namely,

R++
ε
 ν = sup

f∈�ν

Ef

(
ψ−p

ν 	T∗
ε − T�f�	pI�ŝ ∈ �3�

)
�

We treat this component similarily to (56) (we have the same expression with
�3 instead of �2). Hence

R++
ε
 ν ≤ sup

f∈�ν

∑
s′∈�3

Ef

((
1+ γε8 + ψ−1

ν 	Zs+	
)p

I�ŝ = s′�)
and acting as in the calculation following the formula (56), we get instead
of (57)

R+
ε
 ν ≤

(
1+ γε7 + C

1/2
4

log1/8�1/ε�

)p

sup
f∈�ν

Pf�ŝ ∈ �1 ∪�2 ∪�3�

+2C6m exp
{
− log1/4�1/ε�

2C4

}
and we conclude the proof by noting that m = Card�S� ≤ C�log�1/ε��1+γ0 . ✷

Proof of Proposition 1. Note that

�K̃s�22 = �2π�d� ̂̃Ks�22 = �2π�−d
∫
Rd

ω2α0

�1+ �ω�2β�2 dω

= 1
2β

B

(
2r + d

2β

2− 2r + d

2β

)
�2π�−d

∫
Sd

ξ2α0dµ�ξ�

and

ρ2
s�K̃s� = �2π�d

∫
Rd

�ω�2β
∣∣∣ ̂̃Ks�ω�

∣∣∣2 dω = �2π�−d
∫
Rd

ω2α0�ω�2β
�1+ �ω�2β�2 dω

= 1
2β

B

(
1+ 2r + d

2β

1− 2r + d

2β

)
�2π�−d

∫
Sd

ξ2α0 dµ�ξ� = C2
∗�
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Since the beta- function satisfies B�c
 d� = B�c − 1
 d + 1��c − 1�/d, ∀ c >
1
 d > 0, it follows that

�K̃s�22 = 2�s − r�
2r + d

ρ2
s�K̃s�


and thus

b =
( �K̃s�2

ρs�K̃s�

)2/�2s+d�
�(63)

Now,

�−1�rT�K̃s� = �−i�r
∫

ωα0
̂̃
Ks�ω�dω

= �2π�−d
∫
Rd

ω2α0

1+ �ω�2β dω = �K̃s�22 + ρ2
s�K̃s�

and hence, using (63), we get

T�gs
1
1�·�� = �−1�raT�K̃s�b·�� = �−1�rabrT�K̃s�

=
(

ρs�K̃s�
�K̃s�2

)2�s−r�/�2s+d�
ρs�K̃s�−1

(�K̃s�22 + ρ2
s�K̃s�

)

= C∗

(
2r + d

2�s − r�
)�s−r�/�2s+d� 2s + d

2r + d
�

(64)

Now,

�Ks�2 = br+d/2�K̃s�2�(65)

To evaluate the bias constant we use the following lemma.

Lemma 9. Let the assumptions of Proposition 1 be satisfied, and let r <

r′ < s∗, r′ ≤ s
 s′ ≤ s∗, β = s + d/2
 β′ = s′ + d/2, b′ = ( 2�s′−r�
2r+d

)1/�2s′+d�
. Then

bs
s′ ≤ �b′�r−s

[
�2π�−d

∫
Rd

ω2α0�ω�4β′−2β

�1+ �ω�2β′ �2 dω

]1/2
provided the last integral is finite.

Proof. We have K̂s′ �ω� = �2π�−dirωα0�1 + �ω/b′�2β′ �−1. Hence, by the
Cauchy inequality,

bs
 s′ = sup
ρs�f�≤1

∣∣∣∣∫ Ks′f − T�f�
∣∣∣∣ = sup

ρs�f�≤1

∣∣∣∣∫Rd
f̂�ω���2π�dK̂s′ �ω� − irωα0�dω

∣∣∣∣
= sup

ρs�f�≤1

∣∣∣∣∫Rd
f̂�ω�irωα0

( �ω/b′�2β′

1+ �ω/b′�2β′

)
dω

∣∣∣∣
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≤ �b′�r−s sup
ρs�f�≤1

[
�2π�d

∫
Rd

�ω�2β∣∣f̂�ω�∣∣2dω
]1/2

×
[
�2π�−d

∫
Rd

ω2α0�ω�4β′−2β

�1+ �ω�2β′ �2 dω

]1/2
�

Using the definition of ρs for the Sobolev classes, we get the lemma. ✷

It follows from Lemma 9 with s = s′ that bs
 s ≤ ρs�K̃s�br−s. Moreover,

bs
 s = ρs�K̃s�br−s�(66)

Indeed, the function f∗ with the Fourier transform

f̂∗�ω� = �2π�−dρs�K̃s�−1b−r−s−d irωα0

1+ �ω/b�2β
satisfies ρs�f∗� = 1 and∣∣∣∫ Ksf∗ − T�f∗�

∣∣∣ = ∣∣∣∣∫Rd
f̂∗�ω�irωα0

( �ω/b�2β
1+ �ω/b�2β

)
dω

∣∣∣∣ = ρs�K̃s�br−s�

Combining (64)–(66), and using (63), we get (6). This proves the proposi-
tion. ✷

Proof of Proposition 2. Assumptions 1–3 are straightforward to verify.
We check only Assumption 4. For s
 s′ ∈ �r′
 s∗� and β = s + d/2
 β′ = s′ + d/2
using the inequality r′ > �s∗ − r − d�/2 assumed in Proposition 2, we obtain
β′ ≥ r′ + d/2 > �s∗ − r�/2 ≥ �s − r�/2 = �β − r�/2− d/4. Thus∫

Rd

ω2α0�ω�4β′−2β

�1+ �ω�2β′ �2 dω ≤
∫
Rd

�ω�4β′−2β+2r

�1+ �ω�2β′ �2 dω = µ�Sd�
∫ ∞

0

t4β
′−2β+2r+d−1

�1+ t2β′ �2 dt

≤ µ�Sd�
(∫ 1

0
t4β

′−2β+2r+d−1 dt +
∫ ∞

1
td−1−2β+2r dt

)
≤ µ�Sd�

[
1

4r′ − 2�s∗ − r − d� + 1
2�r′ − r�

]



where for the last inequality we used that β
β′ > r′ +d/2. This and Lemma 9
yield Assumption 4(i). Next, Assumption 4(ii) follows from (66), the continuity
of the beta function and the fact that (by Lemma 9)

bs
 s′ ≤ �b′�r−s

[
1
2β′ B

(
1+ 2r + d + 2�β′ − β�

2β′ 
1− 2r + d + 2�β′ − β�
2β′

)]1/2
×
[
�2π�−d

∫
Sd

ξ2α0 dµ�ξ�
]1/2

� ✷

Proof of Propositions 3 and 4. Note that, for K̃s defined in (23),∫
�x�sK̃s�x�dx + �K̃s�22 =

∫
K̃s�
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Now, gs
1
1�·� = aK̃s�b ·�, where b = �K̃s�2/�2s+d�
2 . Let

Ks�x� =
[∫

gs
1
1

]−1
gs
1
1�x� =

[∫
K̃s

]−1
bdK̃s�bx��

Then∫
�x�sKs�x�dx + �Ks�2 =

(
b−s

∫
�x�sK̃s�x�dx + bd/2�K̃s�2

)/∫
K̃s

= �K̃s�−2s/�2s+d�
2

(∫
�x�sK̃s�x�dx + �K̃s�22

)/∫
K̃s

= �K̃s�−2s/�2s+d�
2 �

For f ∈ �g� �g�2 ≤ 1
 ρs�g� ≤ 1� we get

	f�0�	 ≤
∣∣∣∫ Ksf − f�0�

∣∣∣+ ∣∣∣∫ Ksf
∣∣∣ ≤ ∣∣∣∫ �f�x� − f�0��Ks�x�dx

∣∣∣+ �f�2�Ks�2

≤
∫

�x�sKs�x�dx + �Ks�2 = �K̃s�−2s/�2s+d�
2 �

On the other hand, this upper bound is achieved by gs
1
1 because

gs
1
1�0� = aK̃s�0� = a = �K̃s�−2s/�2s+d�
2 �

Propositions 3 and 4 follow from these remarks and the equations∫
K̃s = µ�Sd�s

�s + d�d
 �K̃s�22 = 2s2µ�Sd�
�2s + d��s + d�d� ✷

Proof of Proposition 5. Assumptions 1–3 are straightforward. To check
Assumption 4, it suffices to remark that in this case bs
s′ ≤ ∫ �x�sKs′ �x�dx
and bs
s = ∫ �x�sKs�x�dx. ✷
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UMR CNRS 7599
Université Paris 6
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