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M-ESTIMATION FOR LOCATION AND REGRESSION
PARAMETERS IN GROUP MODELS: A CASE STUDY

USING STIEFEL MANIFOLDS1

By Ted Chang and Louis-Paul Rivest

University of Virginia and Université Laval

We discuss here a general approach to the calculation of the asymptotic
covariance ofM-estimates for location parameters in statistical group mod-
els when an invariant objective function is used. The calculation reduces
to standard tools in group representation theory and the calculation of
some constants. Only the constants depend upon the precise forms of the
density or of the objective function. If the group is sufficiently large this
represents a major simplification in the computation of the asymptotic
covariance.
Following the approach of Chang and Tsai we define a regression model

for group models and derive the asymptotic distribution of estimates in
the regression model from the corresponding distribution theory for the
location model. The location model is not, in general, a subcase of the
regression model.
We illustrate these techniques using Stiefel manifolds. The Stiefel man-

ifold �p�m is the collection of p×m matrices X which satisfy the condition
XTX = Im where m ≤ p. Under the assumption that X has a distribu-
tion proportional to exp�Tr�FTX��, for some p×m matrix F, Downs (1972)
gives approximations to maximum likelihood estimation of F. In this paper,
we consider a somewhat different location problem: under the assumption
that X has a distribution of the form f�Tr��T0 X�� for some �0 ∈ �p�m,
we calculate the asymptotic distribution of M-estimates which minimize
an objective function of the form

∑
i ρ�Tr��TXi��. The assumptions on the

form of the density and the objective function can be relaxed to a more
general invariant form. In this case, the calculation of the asymptotic dis-
tribution of �̂ reduces to the calculation of four constants and we present
consistent estimators for these constants.
Prentice (1989) introduced a regression model for Stiefel manifolds. In

the Prentice model, u1�u2� 	 	 	 �un ∈ �p�m are fixed, V1�V2� 	 	 	 �Vn ∈ �p�m
are independent random so that the distribution of Vi depends only upon
Tr�VTi A2uiAT1 � for unknown �A1�A2� ∈ SO�m� × SO�p�. We discuss here
M-estimation of A1 and A2 under general invariance conditions for both
the density and the objective function.
Using a well-studied example on vector cardiograms we discuss the

physical interpretation of the invariance assumption as well as of the
parameters �A1�A2� in the Prentice regression model. In particular, A1
represents a rotation of the u’s to the V’s in a coordinate system relative
to the u’s and A2 represents a rotation of the u’s to the V’s in a coordinate
system fixed to the external world.
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1. Introduction. Statistical group models and invariance arguments
arise quite naturally in problems of inference, especially in the physical
sciences. Often it is desirable that inferences not depend upon the units of
measurement, or, for spatial data, on the coordinate system which we use to
translate such data into vectors and matrices. This notion of invariance under
change of scale or coordinate system can usually be mathematically formu-
lated using statistical group models.
When a statistical group model is justified, the requirement of invariance

can greatly restrict the range of statistical procedures to be considered. This
viewpoint is developed in Lehmann (1983) and Eaton (1989). Such models
occur naturally in the modelling of directional data [see Mardia and Jupp
(2000), page 33]. In addition, the use of invariance arguments can greatly
simplify statistical calculations; see, for example, Farrell (1985) where the dis-
tributions of important multivariate statistics are calculated using invariance
arguments.
Similarly, we will show that the asymptotic distributions of invariant M-

estimators for location and regression parameters in group models are often
determined up to a few constants by standard techniques in group represen-
tation theory. Except for these constants, the precise forms of the density and
the objective functions are irrelevant.
We will illustrate our techniques using Stiefel manifolds. The Stiefel man-

ifold �p�m� m ≤ p is the collection of p×m matrices X which satisfy the con-
dition XTX = Im. Special and important examples are the p− 1-dimensional
sphere �p�1 = 
p ⊂ Rp and the orthogonal group � �p� = 
Xp×p�XTX = Ip�.
We are interested inM-estimation for both location and regression parameters
on �p�m. Because the orthogonal group � �p� has two connected components,
one of which is the special orthogonal group SO�p� = 
X ∈ � �p��detX = 1�,
our asymptotic results for � �p� apply equally well to SO�p�. In fact, by con-
vention �p�p = SO�p�.
M-estimation for location problems on the sphere 
p were studied by Ko

and Chang (1993). Writing the general element X of 
p as a length p col-
umn vector, Ko and Chang (1993) assumed that the distribution of X is of
the form f�XT�0� for some unknown modal direction �0. They estimated �0
by minimizing an objective function of the form ρ�XT�� and calculated the
asymptotic distribution of the resulting estimator �̂.
Motivated by a problem in plate tectonics, Chang (1986) introduced the

spherical regression model: u1�u2� 	 	 	 �un ∈ 
p are fixed, V1�V2� 	 	 	 �Vn ∈ 
p

are independent random so that the distribution of Vi depends only upon
VT
i A0ui for some unknown A0 ∈ SO�p�. The asymptotic distribution of M-
estimators Â was derived by Chang and Ko (1995).
Location problems in Stiefel manifolds were studied by Downs (1972) and

Khatri and Mardia (1977). The application considered there was to vector
cardiograms. Downs, Khatri and Mardia assumed that the distribution of
X is matrix Fisher, so that its density is proportional to exp�Tr�FTX�� for
some p×m matrix F and gave approximations to the maximum likelihood
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estimation of F. Downs gave the following interpretation of the parameter
matrix F: using the singular value decomposition, we can write F = �0K
where �0 ∈ �p�m is a modal matrix and K is an m × m symmetric matrix.
K plays the role of a concentration parameter. If K is not a multiple of the
identity, the distribution of X is anisotropic.
Chikuse (1993) derived large p asymptotic expansions for the matrix Fisher

distribution on �p�m. Her work can be applied to approximate the conditional
distribution of the maximum likelihood estimator of �0, with the conditioning
on a statistic ancillary to �0. Chikuse’s work is not asymptotic in sample size,
but rather in p, and she envisions applications to compositional data where
p represents the number of components of the composition.
Motivated by a problem of matched pairs of vector cardiograms, Pren-

tice (1989) generalized the spherical regression model to a regression model on
�p�m. In the Prentice model, u1�u2� 	 	 	 �un ∈ �p�m are fixed, V1�V2� 	 	 	 �Vn ∈
�p�m are independent random so that the distribution of Vi is of the form
f0�Tr�VT

i A2uiA
T
1 �� for unknown �A1�A2� ∈ SO�m� × SO�p�. Prentice esti-

mated �A1�A2� by maximizing an objective function of the form
∑
i Tr�VT

i A2
uiA

T
1 �. Unfortunately, as discussed below, there is an error in Prentice’s proof

and result, and we will revise his result in what follows.
The special case of SO�3� has enjoyed a resurgence of interest due to the

study of human motion. For estimating a location parameter �0 ∈ SO�3�,
Rancourt, Rivest and Asselin (2000) derive the asymptotic distribution of an
estimator �̂ which maximizes

∑
i Tr��TXi� under rather general assumptions

about the distribution of the Xi. Similarly, for the Prentice regression model
on SO�3�, Rivest and Chang (2000) calculate the asymptotic distribution of
Prentice’s estimators �Â1� Â2� under equally general distributional assump-
tions on the distribution of the Vi. Rivest and Chang (2000) also develop a
test of correlation, based upon the Prentice regression model, for the Vi and
the ui.
In this paper, we will consider M-estimation of location and regression on

�p�m. For the location problem,

X1� 	 	 	 �Xn are i.i.d. with density f�X��0��
satisfying f�C2XCT1 �C2�0CT1 � = f�X��0�

(1)

for any �C1�C2� ∈ SO�m�×SO�p�. Densities satisfying (1) include all densities
of the form

f�X��0� = f0�Tr��T0 X��	(2)

We derive the asymptotic distribution of M-estimators which minimize an
objective function ∑

i

ρ�Xi����(3)

where ρ satisfies a condition similar to (1),

ρ�C2XCT1 �C2�CT1 � = ρ�X���	(4)
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In particular, all ρ of the form

ρ�X��� = ρ0�Tr��TX��(5)

satisfy (4).
Thus, let Xij and θij denote the entries of X and �, respectively. Then

ρ�X��� =∑
i� j

�Xij − θij�2 = Tr
�X − ��T�X − ��� = 2m− 2 Tr��TX�(6)

yields an L2 estimator. An L1 estimator can be arrived at using

ρ�X��� =
√
2m− 2 Tr��TX�	

More generally, any ρ which is a function of the eigenvalues of XT� + �TX
satisfies (4). In particular our results apply if

ρ�X��� = ��X − ��T�X − ���op�(7)

where �A�op denotes the maximum eigenvalue of the positive semidefinite
matrix A.
Thus these results include as a corollary those of Ko and Chang (1993). The

results of Downs (1972) and Khatri and Mardia (1977) are included whenever
the concentration matrix K is a multiple of the identity. Similarly, the results
of Rancourt, Rivest and Asselin (2000) are included under the additional sym-
metry condition (1).
For regression on Vp�m, we use a generalization of the Prentice regression

model,

u1�u2� 	 	 	 �un ∈ �p�m are fixed,

V1�V2� 	 	 	 �Vn ∈ �p�m are independent random,(8)

the distribution of Vi is of the form f�Vi�A2uiAT
1 ��

where f satisfies (1) and �A1�A2� ∈ SO�m� × SO�p� is unknown. We will
calculate the asymptotic distribution of estimators �Â1� Â2� which minimize
an objective function of the form∑

i

ρ�Vi�A2uiAT
1 ��(9)

where ρ satisfies the condition (4). Thus, besides revising Prentice (1989), our
results include those of Chang (1988), Chang and Ko (1995) and, when (6) is
true, those of Rivest and Chang (2000).
We will relate the asymptotic distribution of �Â1� Â2� in the regression

model (8) with objective function (9) to the asymptotic distribution of �̂ in
the location model (1) and objective function (3) using the same f and ρ.
Our proofs rely heavily on the statistical group model implied by (1) and (4).

In Section 2 we review the notion of a statistical group model and related
standard constructions in differential geometry and apply these to the calcu-
lation of the asymptotic distribution ofM-estimators for location parameters.
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In Section 3, we define a regression model for statistical group models and
show how the asymptotic distribution ofM-estimators for regression parame-
ters can be derived from the asymptotic distribution ofM-estimators for loca-
tion parameters. We note that the location model is usually not a submodel of
the regression model.
The asymptotic approximations in Sections 2 and 3 are large sample approx-

imations. In many physical applications, concentrated error approximations
are more relevant. Examples where these occur are Rivest (1989), Chang
(1988), Rancourt, Rivest and Asselin (2000) and Rivest and Chang (2000).
In Section 4, we show how the techniques of Sections 2 and 3 can be adapted
to concentrated error asymptotics.
Sections 5 and 6 apply the general theory in detail to location and regres-

sion parameters, respectively, in �p�m. The results of Sections 2 and 3 reduce
the calculation of the asymptotic distribution of M-estimators to the estima-
tion of a small number of constants (at most four in the case of �p�m). In
Section 7, we give consistent estimators for these constants. Section 8 revis-
its the vector cardiogram example considered by Downs (1972), Khatri and
Mardia (1977) and Prentice (1989). It will be seen that the invariance condi-
tions (1) and (4) are physically natural and that the regression parameters
�A1�A2� have important physical interpretations. Section 9 gives the proofs of
the mathematical tools used in Sections 2 and 3.

2. The basic approach for group models. Let � denote a sample
space, � a parameter space, f�x��� a family of densities and ρ�x��� an objec-
tive function.
Suppose, temporarily, � = Rq, that X = �X1� 	 	 	 �Xn� is a sample from

f�x��0� and that �̂ minimizes
∑
i ρ�Xi���. This leads to the estimating equa-

tion S�X��� = 0 where S�X��� =∑i
∂ρ�Xi���

∂� . Let ��0��� = E�S�X��0� and write
�′�0��0� = ∂

∂�

∣∣
�=�0��0���. It can be shown [see, e.g., Brown (1985)] that, under

certain regularity conditions, n1/2��̂− �0� is asymptotically multinormal with
mean vector 0 and covariance matrix B−1AB−1T where, the q× q matrices B
and A are A = limn→∞ Cov�0�S�X��0��/n and B = limn→∞ �′�0��0�/n.
In this paper, we shall always assume that the regularity conditions hold

and concern ourselves with efficient calculation of A and B.
Chang and Tsai (1999) have reformulated A andB in a coordinate-free man-

ner for a differentiable manifold (without boundary) �. We describe below this
reformulation in informal terms; a rigorous reformulation is given in Chang
and Tsai (1999). In Euclidean space Rq if γ = �γ1� 	 	 	 � γq�� R1 → Rq is any
curve and f� Rq → R1 is any function, the chain rule implies

�f ◦ γ�′�0� =∑
i

∂f

∂xi
�γ�0��γ′i�0�	

Thus �f ◦ γ�′�0� depends only upon a basepoint γ�0� and a “tangent”
vector γ′�0�.
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Viewed in this way, the notion of tangent vector generalizes to manifolds:
a tangent vector to � at � ∈ � is an equivalence class of curves γ� R1 → �
satisfying γ�0� = � where two curves, γ1 and γ2, are considered to be equiva-
lent [define the same tangent vector at �] if �f ◦ γ1�′�0� = �f ◦ γ2�′�0� for any
f� �→ R1. The collection of tangent vectors at � form a vector space denoted
by T��.
Chang and Tsai (1999) reformulated A for manifolds as a family of (possibly

indefinite) inner products, one inner product on each T��, as follows:

�γ′1�0�� γ′2�0��A = Cov�
[(

d

dt

∣∣∣
t=0
ρ�X� γ1�t��

)(
d

ds

∣∣∣
s=0
ρ�X� γ2�s��

)]
�(10)

where γ1 and γ2 are curves with γ1�0� = γ2�0� = �. In standard mathematical
terminology, A is said to be a (possibly indefinite) Riemannian metric on �.
Similarly, B is reformulated as a family of bilinear forms, one on each T��,

by

�γ′1�0�� γ′2�0��B = E�

[(
d

dt

∣∣∣
t=0
ρ�X� γ2�t��

)(
d

ds

∣∣∣
s=0
log f�X� γ1�s��

)]
	(11)

In general, �� �B is not symmetric; �γ′1�0�� γ′2�0��B is not in general �γ′2�0�� γ′1
�0��B. Lemma 1 of Chang and Tsai (1999), however, shows that �� �B will be
symmetric whenever τ�0��� = E�0

�ρ�X���� has a critical point at � = �0 for
any �0. In this case �� �B has the alternative form

�γ′1�0�� γ′2�0��B = −E�

[
∂2

∂st

∣∣∣
�s� t�=�0�0�

ρ�X� γ�s� t��
]
�(12)

where γ� R2 → � satisfies γ�0�0� = �, γ1�s� = γ�s�0� and γ2�t� = γ�0� t�.
The condition that τ�0��� has a critical point at �0, for each �0, ensures that
the right-hand side of (12) depends only upon �γ′1�0�� γ′2�0�� and not upon the
particular choice of γ.
Lemma 1 in Section 9 gives useful conditions to ensure that this require-

ment on τ�0��� holds. We note that it is essential to assume here that � is
a manifold without boundary, or at least that �0 be in the interior of � to
ensure that the derivatives of τ�0��� vanish whenever τ�0��� has a minimum
at � = �0.
Suppose now we have a Lie group� which acts on� and on�; that is, there

are differentiable maps � ×� → � and � ×�→ � denoted by �g�x� → g ·x
and �g��� → g · �, respectively, such that 1 · x = x, g · �h · x� = �gh� · x, and
similarly for �. In what follows gx will generally indicate group or matrix
multiplication and g · x will indicate the action of g on x.
If, with respect to a � -invariant measure, the density functions f�x���

satisfy

f�g · x� g · �� = f�x����(13)

the triple �� ���� � is said to be a (differentiable) statistical group model. We
will also assume that all objective functions ρ are � -invariant,

ρ�g · x� g · �� = ρ�x���	(14)
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Finally, we assume that � acts transitively on the parameter space �; that is,
given ���1 ∈ �, there is a g ∈ � such that �1 = g · �.

Example. The prototypical group action is a group of matrices acting on
a space of vectors. Thus let � = SO�p� act on 
p by A · x = Ax. Under this
action, ordinary Lebesgue surface measure is � invariant. Let � = � = 
p.
In this case, the invariance conditions (13) and (14) are equivalent to

f�x��� = f0�xT�� and ρ�x��� = ρ0�xT���(15)

respectively. In other words, f and ρ depend only upon the distance from x to
�. Thus (15) is the form of the general SO�p�-invariant function on 
p. This
� action is transitive.
More generally, let � = � = �p�m and let � = SO�m� × SO�p� act on �

(and on �) by �A1�A2� · X = A2XAT
1 . The invariance conditions (13) and (14)

are simply (1) and (4) above. This � action is also transitive: it suffices to
show that any � ∈ �p�m is of the form A2�1A

T
1 where �1 = 
Im 0�T. To see this,

we can let A1 = Im and A2 = 
� �⊥� where �⊥ is any p × �p −m� matrix so
that A2 ∈ SO�p�.
For technical reasons, to be given later, we require that whenm = 2, p = 4,

(1) and (4) are true for �C1�C2� ∈ � �2�×� �4�. These conditions will automat-
ically hold whenever (2), (5) or (7) are true.

If γ�t� is a curve on �, so is g · γ�t� and hence each g ∈ � induces a linear
map T�� → Tg·��. If γ′�0� ∈ Tγ�0��, we will denote its image under g by
g · γ′�0�. Chang and Tsai (1999) show that �� �A and �� �B are invariant under
the action of � . Note that if � = ��0

= 
g ∈ � �g · �0 = �0�, then each h ∈ �
takes T�0

� into itself; that is, T�0
� is a representation of � and �� �A and

�� �B are invariant under this representation.
We assume that� is compact. This assumption is essential in what follows;

it avoids topological difficulties and is essential for the representation theory
used herein.
Lemma 1, stated and proved in Section 9, shows that if there does not

exist a nonzero v ∈ T�0
� such that h · v = v for all h ∈ � , then τ�0��� =

E�0
�ρ�X���� has a critical point at � = �0 for any invariant f and any invariant

ρ. Notice that the assumptions of Lemma 1 have nothing to do with f or
ρ besides their invariance. Thus, for example, it applies to �p�m using the
objective function (7).
Because of the assumed transitivity of the action of � on �, it suffices to

perform these calculations at any convenient �0.
Thus, under very general conditions, �� �A and �� �B are both � -invariant

symmetric bilinear forms. This puts tremendous constraints on them. Indeed
we have the following.

Proposition 1. Suppose the compact Lie group � is represented on the
real vector space � . Write � = ⊕�i as a direct sum of minimally invariant sub-
spaces. Suppose �� �0 is an � -invariant positive definite inner product and �� �
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an � -invariant symmetric bilinear form on � . Then:

(a) There exist constants ci such that �� � = ci�� �0 on �i.
(b) If �i and �j are inequivalent as representations of � , they are orthogonal

under �� � �and �� �0�.

Proposition 1 is well known for complex representations. It can be extended
to real representations using the relationships between a real representation
and its complexification. We outline this proof in Section 9.
Thus, write T�0

� = ⊕�i as a direct sum of minimally invariant subspaces
and suppose the �i are all inequivalent. Then there are constants ci and di
such that

�	�	�A =
∑
i

ci�	i�	i�0�

�	�	�B =
∑
i

di�	i�	i�0�(16)

δ =∑
i

	i� 	i ∈ �i	

This process constructs an asymptotic distribution in T�0
�, but �̂ ∈ �. Let

$�0
� T�0

�→ � be any map such that $�0
�0� = �0 and such that the derivative

of $�0
at 0 is the identity map. This latter condition means that if v ∈ T�0

�,
then d

dt

∣∣
t=0$�0

�tv� = v. Brown’s theorem becomes the following.

Proposition 2. Suppose X = �X1� 	 	 	 �Xn� is a sample from f�x��0� and

that �̂ minimizes
∑
i ρ�Xi���. Let �̂ = $�0

�ĥ� and ĥ = ∑i=r
i=1 ĥi where ĥi ∈ �i.

Then the asymptotic distribution of n1/2ĥ is multivariate normal with density
proportional to

exp
(
−n
2

∑
i

d2i
ci
�hi�hi�0

)
� hi ∈ �i� i = 1� 	 	 	 � r	

In particular,

n
∑
i

d2i
ci
�ĥi� ĥi�0

is asymptotically χ2�dim��.

We note that the proposition is only marginally dependent upon the choice
of $�0

. If $̃�0
is a different choice and �̂ = $̃�0

�h̃�, then h̃ = h+o��h��, so that
asymptotically, there is no difference.

Example. We continue with the example � = � = 
p and � = SO�p�. In
what follows we consistently use � to denote the generic element of �, �0 to
denote its “true” value and �1 to denote a computationally convenient value
of �0.
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Let �1 = 
1 0 · · ·0�T. Then

� = ��1
= {A = block diag �1�A1�∣∣A1 ∈ SO�p− 1�}	

T�1
� = 
h = 
0 hT1 �T

∣∣h1 ∈ Rp−1� and the representation of � on T�1
� is

A · h = Ah.
To see this we note that � acts on � and its representation on T�1

� is
defined using the derivative. Formally, it is calculated as follows: if γ�t� is a
curve in 
p with γ�0� = �1 then the action of A on γ′�0� is defined to be

A · γ′�0� = d

dt

∣∣∣∣
t=0
A · γ�t� = d

dt

∣∣∣∣
t=0
Aγ�t� = Aγ′�0��

where the last equality is due to the linearity of matrix multiplication. We see
that, at least when matrices and vectors are involved, the representation of
� on T�1

� is usually clear.
The � representation on T�1

� is irreducible. Clearly also Ah = h for all
A ∈ � can only occur for h = 0. Hence, using Lemma 1, �� �B is symmetric
and there exist constants c2 and d2 (the addition of the subscript is to make
the notation consistent with later sections) such that

�h1�h2�A = c2h
T
1 h2�

�h1�h2�B = d2h
T
1 h2	

Using transitivity and invariance, we can deduce the general �0 from the
specific case �0 = �1. Pick A ∈ SO�p� so that �1 = A�0. If h ∈ T�0


p, then
A · h = Ah ∈ T�1


p. By invariance of �� �A, for h1�h2 ∈ T�0

p,

�h1�h2�A = �A · h1�A · h2�A = �Ah1�Ah2�A = c2�Ah1�TAh2 = c2hT1 h2	

A convenient $�0
to use is $�0

= �1−hTh�1/2�0+h (for h ∈ T�0

p� hTh < 1).

Proposition 2 then becomes: write �̂ as �̂ = ��̂T�0��0+ĥ where ĥT�0 = 0. Then
ĥ has multivariate normally distribution, of dimension p − 1 and supported
on T�0


p, with a density proportional to exp�−n
2
d22
c2
hTh�.

In essence then, what we need to do is to decompose the � representation
on T�0

� into its irreducible components and to find consistent estimators for
the dispersion constants ci and di. The latter is the only place that the specific
form of f and ρ plays a role.
We also see the point of the coordinate free approach. A parameterization of

�will usually destroy the symmetries induced by the action of � . For example,
any map of 
3 → R2 destroys spherical distance which is invariant under
SO�3�. Thus calculations we do in a specific parameterization will usually
contain correction terms whose sole purpose is to correct for the distortions
caused by the parameterization.
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3. M-estimation for regression parameters in statistical group
models. We will say that a statistical group model is a location model if
� = � (with the same � actions). Given a location model, Chang and Tsai
defined an associated regression model,

u1�u2� 	 	 	 �un ∈ � are fixed,

V1�V2� 	 	 	 �Vn ∈ � are independent random,(17)

the distribution of Vi is of the form f�Vi� g0 · ui�� g0 ∈ � �

where f satisfies the invariance condition (13). Here g0 is unknown and the
parameter of interest. We will estimate g0 by minimizing the objective function∑
i ρ�Vi� g · ui� where ρ satisfies the invariance condition (14).
The regression model (17) is a statistical group model with � = � and �

acting on itself by left multiplication. In principle, the results of the previous
section apply. However, for the regression model � = �g0

= 
g�gg0 = g0� =

1�, so that Propositions 1 and 2 yield no useful information about a regression
group model.
Let �� �A and �� �B denote theRiemannianmetrics on� derived from the loca-

tion model. Let �� �AG and �� �BG denote the Riemannian metrics on � derived
fromtheassociatedregressionmodelusing the samefandρ. Lemma 3 of Chang
and Tsai (1999) shows how �� �AG and �� �BG can be calculated from �� �A and
�� �B. Thus our approach for regression models is to use the preceding section
on �� �A and �� �B and then to calculate �� �AG and �� �BG from �� �A and ���B.
Let u ∈ � and define an associated map ru� � → � by ru�g� = g · u.

If γ�t� is a curve in � with γ�0� = g0, then γ̃�t� = γ�t� · u is a curve in �
with basepoint γ̃�0� = g0 ·u. Hence the derivative of ru is a map Ru� Tg0

� →
Tg0·u� such that γ̃′�0� = Ru�γ′�0��. It follows from (10) and (11) that

�	̃� 	̃�AG = n−1
∑
i

�Rui�	̃��Rui�	̃��A(18)

for 	̃ ∈ Tg0� . A similar equation holds for �� �BG.
Notice that in the right-hand side of (18), Rui�	̃� is tangent to � at g0 ·ui.

Thus, in fact, different inner products in the family �� �A of inner products are
being applied for the summands of (18). Chang and Tsai (1999) use invariance
and transitivity to eliminate this awkwardness by consolidating the basepoints
(18) to g0 ∈ � on the left-hand side and �1 ∈ � on the right-hand side.
In particular, for g ∈ � , let lg� � → � be defined by lg�h� = gh. Define

adg� � → � by adg�h� = ghg−1. We will use Lg and Adg, respectively,
to denote the derivatives of lg and adg, respectively. Given �1 ∈ � and
g0 ∈ � , choose g̃i ∈ � so that �1 = �g̃ig0� · ui. Given 	̃ ∈ Tg0

� , let 	i =
R�1

Adg̃ig0Lg−10 �	̃�� i = 1� 	 	 	 � n. 	i ∈ T�1
� and we have

�	̃� 	̃�AG = n−1
∑
i

�	i�	i�A(19)

with a similar result for �� �BG.
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Recall that for H a skew-symmetric r× r matrix (usually r =m or r = p),
exp�H� is defined to be the r×r matrix ∑iHi/i!. exp�H� ∈ SO�r�, exp�0� = Ir
and d

dt
�t=0 exp�tH� = H.

Example. We continue with the example � = 
p and � = SO�p� and
derive the asymptotic distribution of M-estimators for spherical regression.
We use at A0 ∈ SO�p� the local coordinate chart $A0 � TA0SO�p� → SO�p�
defined by

$A0�	̃� = A0 exp�L−1A0 �	̃��� 	̃ ∈ TA0SO�p�	

Notice that if Â = $A0�	̃� then Â = A0 exp�H� where H = L−1A0 �	̃� ∈ TISO�p�
is skew symmetric p× p.
Following (19), let g̃i ∈ SO�p� be such that �1 = �g̃iA0�ui, where �1 =


1 0 · · ·0�T. Now we define

	i = R�1
Adg̃iA0L

−1
A0
�	̃�

= R�1
Adg̃iA0H = R�1

d

dt

∣∣∣
t=0
adg̃iA0�exp�tH��

= d

dt

∣∣∣
t=0
r�1�g̃iA0 exp�tH�AT

0 g̃
T
i �

= d

dt

∣∣∣
t=0
g̃iA0 exp�tH�AT

0 g̃
T
i �1 = g̃iA0HAT

0 g̃
T
i �1 = g̃iA0Hui	

Thus

	Ti 	i = uTi HTHui = −Tr�H2uiuTi �

and using (19),

�	̃� 	̃�AG = n−1
∑
i

�	i�	i�A = −c2n−1
∑
i

	Ti 	i

= −c2n−1
∑
i

Tr�H2uiuTi ��

�	̃� 	̃�BG = −d2n−1
∑
i

Tr�H2uiuTi �	

Taking the asymptotic limit we get the following. Let , = limn→∞
1
n

∑
i uiu

T
i

and write theM-estimate Â in the form Â = A0 exp�Ĥ�. Then asymptotically
Ĥ is multivariate normal with density proportional to exp�n2

d22
c2
Tr�H2,��.

Notice that c2 and d2 are the same for a spherical location model and its
corresponding spherical regression model. Sample estimates of these constants
are given in Section 7 [see equations (39)].
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4. Concentrated error asymptotic approximations. The Fisher–von
Mises Langevin distribution F��0� κ� on 
p has density proportional to exp
�κxT�0� where κ > 0 is a concentration parameter and �0 ∈ 
p. If X is dis-
tributed F��0� κ�, write X = XT�0�0 + Y. Y ∈ T�0


p has the property that
κ1/2Y approaches a multivariate normal distribution Np−1�0� I� supported on
the p−1-dimensional subspace T�0


p ofRp as κ→∞. Rivest (1989) analyzed
spherical regressions using an asymptotic κ→∞ approximation (with a fixed
sample size).
Thus for large κ asymptotics in location families, we hypothesize a family

of densities fκ�x��0� such that if X is distributed fκ�x��0�, and we write
X = $�0

�Y�, then κ1/2Y has a limiting normal distribution as κ → ∞. Here,
as before, $�0

� T�0
� → � is any map such that $�0

�0� = �0 and such that
the derivative of $�0

at 0 is the identitity map. This approach was used by
Chang (1988), Rancourt, Rivest and Asselin (2000) and Rivest and Chang
(2000).
Assuming, temporarily, that � = Rq and examining the usual Taylor series,

0 = �κ/n�1/2S�X� �̂�

= �κ/n�1/2S�X��0� +
[
1
n

∑
i

∂2

∂�2

∣∣∣
�=�0

ρ�Xi���
]
�nκ�1/2��̂− �0� + o�1�	

As κ→∞,

1
n

∑
i

∂2

∂�2

∣∣∣
�=�0

ρ�Xi��� →
∂2

∂�2

∣∣∣
�=�0

ρ��0���	

In general, second derivatives do not have coordinate free descriptions. They
do, however, at critical points. Thus, if τ̃�0��� = ρ��0��� has a critical point at
� = �0, then �� �B can be defined as

�	1�	2�B = −
∂2

∂s∂t

∣∣∣
�s� t�=�0�0�

ρ��0� γ�s� t���(20)

where γ�R2→ � satisfies γ�0�0� = �0,
∂
∂s
��s� t�=�0�0�γ�s� t� = 	1, and

∂
∂t
��s� t�=�0�0�

γ�s� t� = 	2. The condition that τ̃�0��� have a critical point at �0 ensures that
the right-hand side of (20) depends only upon �	1�	2� and not upon the par-
ticular choice of γ.
With this reinterpretation of �� �B, the remainder of Sections 2 and 3 are

valid without change.

5. M-estimation for location parameters in Stiefel manifolds. Let
�1 = 
Im 0�T. Rather than apply Proposition 2 to the general �0, we will first
perform calculations as if �0 = �1, and then use invariance (see Proposition 3
of Section 9) for the general �0.
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Let γ�t� be a curve in �p�m with γ�0� = �1. Write γ�t� = 
γT1 �t� γT2 �t��T.
Then Im = γ1�t�Tγ1�t� + γ2�t�Tγ2�t�, so that 0 = γ′1�0�Tγ1�0� + γ1�0�Tγ′1�0� +
γ′2�0�Tγ2�0� + γ2�0�Tγ′2�0� = γ′1�0� + γ′1�0�T. Thus every vector in T�1

�p�m has
the form 
KT

1 K
T
2 �T where K1 is m×m skew symmetric and K2 is m×p−m

without restriction.
We next show that any vector of the form 
KT

1 K
T
2 �T is in T�1

�p�m. Define
the curve g�t� ∈ SO�m� ×SO�p� by

g�t� =
(
exp�−tK1�� exp

(
t

[
0 −KT

2
K2 0

]))
and hence

γ�t� = g�t� · �1 = exp
(
t

[
0 −KT

2
K2 0

])
�1 exp�tK1�(21)

is a curve in �p�m. Now

γ′�0� = �1K1 +
[
0 −KT

2
K2 0

]
�1 =

[
K1
K2

]
(22)

and this establishes that 
KT
1 K

T
2 �T ∈ T�1

�p�m. In other words,

T�1
�p�m =

{

KT
1 K

T
2 �T � K1 is m×m skew symmetric,

K2 is m× �p−m�arbitrary
}
	

We define a local coordinate chart $�1
� T�1

�p�m → �p�m of �p�m by

$�1

([
K1
K2

])
= exp

([
0 −KT

2
K2 0

])
�1exp�K1�	(23)

Then, using (22),

d

dt

∣∣∣∣
t=0
$�1

(
t

[
K1
K2

])
=
[
K1
K2

]
�

which is another way of saying that the Jacobian of $�1
at 0 is the identity

map.
It is easily checked that �1 = A2�1AT

1 if and only if

A2 =
[
A1 0
0 A22

]
�

where A22 ∈ SO�p −m�. Thus � = SO�m� × SO�p −m� [� = � �2� × � �2�
when p = 4�m = 2].
To calculate the � action on T�1

�p�m, let γ�t� be as in (21). Then using (22),

�A1�A22� ·
[
K1
K2

]
= d

dt

∣∣∣∣
t=0
�A1�A22� · γ�t� =

d

dt

∣∣∣∣
t=0

[
A1 0
0 A22

]
γ�t�AT

1

=
[
A1 0
0 A22

]
γ′�0�AT

1 =
[
A1K1A

T
1

A22K2A
T
1

]
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It is easily checked that if A1K1A
T
1 = K1 for all A1 ∈ SO�m�, then K1 = 0.

Similarly, if A22K2A
T
1 = K2 for all �A1�A22� ∈ SO�m� × SO�p − m�, then

K2 = 0. Thus Lemma 1 applies and we conclude that �� �B has the coordinate
free definition (11).
Let �1 = 

KT

1 0�T� and �2 = 

0 KT
2 �T�. �1 and �2 are invariant under � .

If m = 1, then �1 = 
0�, so we only have �2 and it is irreducible. Similarly,
if m = p, �2 = 
0�, so we only have �1 and it is also irreducible. If 2 ≤ m ≤
p− 1, T�1

�p�m = �1⊕ �2 is a decomposition of T�1
�p�m into minimal invariant

subspaces.
Note that when p = 4�m = 2, �2 is irreducible under the action of � =

� �2� × � �2� but breaks up into two irreducible components under the action
of SO�2� × SO�2�. For this reason we have required invariance under � =
� �2� × � �4� for p = 4, m = 2.
There is an obvious � invariant inner product,〈[

K1
K2

]
�

[
K̃1
K̃2

]〉
0
= Tr�KT

1 K̃1� + Tr�KT
2 K̃2�	(24)

Recall that for �0 ∈ �p�m, �0⊥ is any p×�p−m�matrix so that 
�0 �0⊥� ∈ SO�p�.

Proposition 4. Suppose X = �X1� 	 	 	 �Xn� is a sample from a density
f�x��0� and that �̂ minimizes an objective function

∑
i ρ�Xi��� where f and ρ

satisfy (13) and (14).
If 1 < m < p, write


�0 �0⊥�T�̂ = exp
([
0 −ĥT2
ĥ2 0

])[
Im
0

]
exp�ĥ1�	(25)

Then there are constants c1� c2� d1� d2 such that n1/2�ĥ1� ĥ2� is asymptotically
multivariate normal with a density proportional to

exp
(
−n
2

(
d21
c1
Tr�hT1 h1� +

d22
c2
Tr�hT2 h2�

))
	

If m = p, write

�T0 �̂ = exp�ĥ1�	
Then n1/2ĥ1 is asymptotically normal with a density proportional to

exp
(−n

2
d21
c1
Tr�hT1 h1�

)
.

Proof. If �0 = �1 this is simply Proposition 2 using the local coordi-
nate chart (23). For general �0, let g = �Im� 
�0 �0⊥��. Then g · �1 = �0 and
Proposition 4 is a result of Proposition 3 (see Section 9). ✷

In Section 7, we will characterize the constants c1, c2, d1 and d2 and provide
consistent estimators for them. In addition, we show there that if f and ρ have
the form (2) and (5), c1 = c2 and d1 = d2.
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Proposition 4 can easily be used to construct tests of a null hypothesis of
the form � = �0. Using part (b) of Proposition 3 of Section 9, the resulting test
procedure does not depend upon the nonunique choice of �0⊥.
Proposition 4 does not readily lead to confidence regions. However, we have

the following asymptotic inversion.

Corollary 1. Let χ2 be the upper αth quantile of a χ2 distribution with
m�2p−m−1�/2 degrees of freedom. An asymptotic size 1−α confidence region

 for �0 can be calculated as follows:

If 1 < m < p, let


 =
{
� � � = 
�̂ �̂⊥� exp

([ 0 −hT2
h2 0

])[
Im
0

]
exp�h1�

such that n
(
d21
c1
Tr�hT1 h1� +

d22
c2
Tr�hT2 h2�

)
< χ2

}
	

If m = p, let


 =
{
��� = �̂ exp�h1� such that n

d21
c1
Tr�hT1 h1� < χ2

}
	

Proof. We prove the case 1 < m < p. If (25) is true, then


�0 �0⊥�T�̂ =
(
Ip +

[
0 −ĥT2
ĥ2 0

]
+O��ĥ2�2�

)[
Im
0

]
�Im + ĥ1 +O��ĥ1�2��	

Therefore up to terms Op�n−1�,
�T0 �̂ = Im + ĥ1�
�T0⊥�̂ = ĥ2	

(26)

Note that

Ip = 
�0�0⊥�
[
�T0
�T0⊥

]
�

Ip = �0�
T
0 + �0⊥�

T
0⊥	

Now write


�̂ �̂⊥�T�0 = exp
([

0 −hT2
h2 0

])[
Im
0

]
exp�h1�	

Then (26) implies h1 = −ĥ1 +Op�n−1� and
Tr�ĥ2ĥT2 � +Op�n−3/2� = Tr��T0⊥�̂�̂T�0⊥� = Tr��̂�̂T�Ip − �0�

T
0 ��

= Tr��̂T�̂� − Tr��̂�̂T�0�T0 � =m− Tr��0�T0 �̂�̂T�
= Tr�h2hT2 � +Op�n−3/2�	
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Hence,

n

(
d21
c1
Tr�ĥT1 ĥ1� +

d22
c2
Tr�ĥT2 ĥ2�

)
= n

(
d21
c1
Tr�hT1 h1� +

d22
c2
Tr�hT2 h2�

)
+Op�n−1/2�

and the corollary follows. ✷

6. Regression on Stiefel manifolds. We now turn to M-estimation of
A1 and A2 where the data satisfy the regression model (8) and the estimates Â1
and Â2 minimize (9) where f and ρ satisfy the invariance condition (1) and (4).
Major simplifications occur when f and ρ satisfy (2) and (5), respectively.
Let g0 = �A1�A2� and g̃i = �Im� 
A2uiAT

1 A2ui⊥�T�. Then g̃ig0 = �A1�

uiAT

1 ui⊥�T� and �g̃ig0� · ui = �1.
The general element 	̃ ∈ Tg0

�SO�m� ×SO�p�� has the form 	̃ = Lg0
�H�K�

where H and K are skew symmetric matrices of size m×m and p×p, respec-
tively.
We have, by the usual trick of starting with the curve 
exp�tH�� exp�tK��,

Adg̃ig0�H�K� =
(
A1HA

T
1 �

[
A1u

T
i

uTi⊥

]
K
[
A1u

T
i

uTi⊥

]T)
=
(
A1HA

T
1 �

[
A1u

T
i KuiA

T
1 A1u

T
i Kui⊥

uTi⊥KuiA
T
1 uTi⊥Kui⊥

])
and for arbitrary skew symmetric matrices H̃ and K̃ of sizesm×m and p×p,
respectively,

R�1
�H̃� K̃� = d

dt

∣∣∣∣
t=0
�exp�tH̃�� exp�tK̃�� · �1 =

d

dt

∣∣∣∣
t=0
exp�tK̃��1 exp�−tH̃�

= K̃�1 − �1H̃ =
[
K̃11 − H̃
K̃21

]
	

Here K̃11 and K̃21 represent the upper left m ×m and lower left p −m ×m
submatrices of K̃, respectively. Therefore,

	i = R�1
Adg̃ig0Lg−10 �	̃� =

[
A1�uTi Kui −H�AT

1
uTi⊥KuiA

T
1

]
	

Using (19),

n�	̃� 	̃�AG =
∑
i

�	i�	i�A = c1
∑
i

Tr
�H− uTi Kui��H− uTi Kui�T�

+ c2
∑
i

Tr
�uTi⊥Kui��uTi⊥Kui�T��

n�	̃� 	̃�BG =
∑
i

�	i�	i�B = d1
∑
i

Tr
�H− uTi Kui��H− uTi Kui�T�

+d2
∑
i

Tr
�uTi⊥Kui��uTi⊥Kui�T�	

(27)
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The apparent dependence of (27) on the somewhat arbitrary choices of the
ui⊥ can be removed as follows. Recall that ui⊥u

T
i⊥ = Ip − uiuTi . Hence

n�	̃� 	̃�AG = −c1
[
nTr�H2� − 2Tr

(∑
i

HuTi Kui
)]

− c2
[
Tr
(∑

i

K2uiu
T
i

)]
− �c1 − c2�

[
Tr
(∑

i

Kuiu
T
i Kuiu

T
i

)](28)

with a similar expression for �	̃� 	̃�BG.
It is important to note that the constants c1� c2� d1� d2 are the same for

location and regression models as long as the same f and ρ apply.
We note that the simplicity of the spherical regression case is due to the

lack of terms involving c1 and d1 and to the fact that u
T
i Kui = 0 when m = 1.

The cases 1 < m < p are quite messy except for the important case in
which c1 = c2 and d1 = d2. This case occurs, for example, when f and ρ are
as in (2) and (5) (see the Corollary to Proposition 7 of the next section). In this
case and when m = p, we have the following proposition (we have used in the
proof that if m = p, uiuTi = Ip).

Proposition 5. Suppose 1 < m < p and that c1 = c2 = c and d1 =
d2 = d or suppose that m = p and let c = c1 and d = d1. Write �Â1� Â2� =
�A1 exp�Ĥ��A2 exp�K̂�� where Ĥ and K̂ are skew symmetric of sizes m×m and

p×p, respectively. Then �Ĥ� K̂� is asymptotically multivariate normal with a
density proportional to

exp
[
nd2

2c

(
Tr�H2� + Tr�K2,� − 2

n
Tr
∑
i

�HuTi Kui�
)]

where , = limn→∞ n−1
∑
i uiu

T
i .

Remark. The main theorem of Prentice (1989) does not contain the cross-
product term − 2

n
Tr
∑
i�HuTi Kui�. The authors believe that the discrepancy is

due to an error in Prentice’s proofs. In that paper, to apply Chang (1986), one
needs to assume that when Vi is written as a vector vec�Vi� of length mp, it
will have a spherically symmetric distribution around vec�A2uiAT

1 �. However
vec�Vi� is constrained to lie in a m�2p−m−1�/2-dimensional submanifold of

pm. Thus Prentice’s application of the spherical regression results of Chang
(1986) cannot be justified.

We now consider the general case when either c1 �= c2 or d1 �= d2. For
1 ≤ j < k ≤ m, let Hjk be the m ×m skew symmetric matrix whose entries
are all zero except for the �j� k�th and �k� j�th entries which are +1 and
−1, respectively. Similarly define the p× p skew symmetric matrices Kqr for
1 ≤ q < r ≤ p. Let the index set� = 
�1� j� k��1 ≤ j < k ≤m�∪
�2� q� r� � 1 ≤
q < r ≤ p�. Let An be the 
m�m−1�/2+p�p−1�/2�×
m�m−1�/2+p�p−1�/2�
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matrix of the quadratic form (28). Its entries are

nAnι1ι2 = nAnι2ι1
= −c1nTr�HjkHj′k′ �� ι1 = �1� j� k�� ι2 = �1� j′� k′�

= c1Tr
(∑

i

Hjku
T
i Kqrui

)
� ι1 = �1� j� k�� ι2 = �2� q� r�

= −c2 Tr
(∑

i

KqrKq′r′uiu
T
i

)
− �c1 − c2�Tr

(∑
i

Kqruiu
T
i Kq′r′uiu

T
i

)
�

ι1 = �2� q� r�� ι2 = �2� q′� r′�	

(29)

Similarly, define the matrix Bn by replacing, in (29), c1 and c2 by d1 and d2.
Let A = limn→∞An and B = limn→∞Bn.

Proposition 6. Suppose 1 < m < p. Write �Â1� Â2� = �A1 exp�Ĥ��A2×
exp�K̂�� where Ĥ and K̂ are skew symmetric of sizes m × m and p × p,

respectively. Write Ĥ = ∑
1≤j<k≤m âjkHjk and K̂ = ∑

1≤q<r≤p b̂qrKqr. Then√
n�â12� 	 	 	 � â�m−1�m� b̂12� 	 	 	 � b̂�p−1�p� is asymptotically normally distributed

with mean zero and covariance matrix B−1AB−1.

7. Estimation of the constants c1� c2�d1�d2. Consider first the location
model for 2 ≤m ≤ p−1 and general invariant f and ρ satisfying (13) and (14).
Let γ�s� be a curve in � with γ�0� = �0. Using Lemma 1 (see Section 9),

E�0

[
d

ds

∣∣∣∣
s=0
ρ�X� γ�s��

]
= 0	(30)

Write γ′�0� in the form 
�0 �0⊥�
KT
1 K

T
2 �T where, by appropriate choice of γ,

K1 can be any m×m skew symmetric matrix and K2 any p−m×m matrix
without restriction. Using (10), (12) and (30) it follows that

�γ′�0�� γ′�0��A = E�0

[(
d

ds

∣∣∣∣
s=0
ρ�X� γ�s��

)2]
�

�γ′�0�� γ′�0��B = −E�0

[
d2

ds2

∣∣∣∣
s=0
ρ�X� γ�s��

]
	

On the other hand, γ′�0� = g · 
KT
1 K

T
2 �T where g = �Im� 
�0�0⊥�� ∈ SO�m� ×

SO�p�. Therefore, since �� �A and �� �B are invariant,

�γ′�0�� γ′�0��A = �
KT
1 K

T
2 �T� 
KT

1 K
T
2 �T�A = c1 Tr�KT

1 K1� + c2 Tr�KT
2 K2��

�γ′�0�� γ′�0��B = �
KT
1 K

T
2 �T� 
KT

1 K
T
2 �T�B = d1Tr�KT

1 K1� + d2 Tr�KT
2 K2�	
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Suppose γ̃1 and γ̃2 are curves such that γ̃1�0� = γ̃2�0� = �0, γ̃
′
1�0� =


�0 �0⊥�
KT
1 0�T, and γ̃′2�0� = 
�0 �0⊥�
0KT

2 �T. Then

c1 = E�0

[(
d

ds

∣∣∣∣
s=0
ρ�X� γ̃1�s��

)2]/
Tr�KT

1 K1��

c2 = E�0

[(
d

ds

∣∣∣∣
s=0
ρ�X� γ̃2�s��

)2]/
Tr�KT

2 K2��

d1 = −E�0

[
d2

ds2

∣∣∣∣
s=0
ρ�X� γ̃1�s��

]/
Tr�KT

1 K1��

d2 = −E�0

[
d2

ds2

∣∣∣∣
s=0
ρ�X� γ̃2�s��

]/
Tr�KT

2 K2�	

(31)

These equations do not depend upon the choice of K1, K2, γ̃1 or γ̃2.

Remark. It is worthwhile to comment here about the mysterious appear-
ance of the matrices K1 and K2 in (31).
We reason by analogy to the sphere. Suppose X ∈ 
p, written as a column

vector, has a rotationally symmetric distribution around �0 ∈ 
p. Chang (1986)
has expressed this condition in the form

E�0
�XXT� = k1�0�T0 + k2Ip	

Equivalently, we can say that for all K which satisfy KT�0 = 0,
E�0
��XTK�2� = k2KTK	(32)

Since KT�0 = 0, K represents a tangential direction in which X can stray from
its true value �0. Equation (32) expresses the idea that all directions are the
same (at least to second-order moments).
The Stiefel manifolds are more complicated than the sphere; they exhibit

less symmetry. Essentially we are saying that there are two types of directions:
those of the form 
K1 0�T and those of the form 
0 K2�T. Within each of these
two groups, all directions are the same. Notice however that 
K1 0�T and

0 K2�T are not tangent to �p�m at �0. They are tangent at �1 = 
Im 0�T.
We have used a transformation 
�T0 �T0⊥� to bring �0 to �1. This is analogous
to the often used simplification in spherical statistics of assuming that a true
modal direction is the North Pole.

One way to produce the curves γ̃1 or γ̃2 is to define γ̃1�s� = γ1�sK1��0� and
γ̃2�s� = γ2�sK2��0�, where γ1 and γ2 are defined by

γ1�K1��� = � exp�K1��
γ2�K2��� = exp��⊥K2�T − �KT

2 �
T
⊥��	

To obtain sample estimates from (31), one can replace the expected values
by the obvious sample means, using any convenient K1 and K2. However,
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the m × m skew symmetric matrices K1 span a vector space of dimension
m�m − 1�/2 and a more reasonable approach would be to use a basis of this
vector space and average the results over this basis. We propose a similar
approach for K2. Thus let K1jk be them×m skew symmetric matrix which has
1 in the �j� k�th spot, −1 in the �k� j�th spot, and zero elsewhere. Similarly,
let K2jk be the p −m ×m matrix which has 1 in the �j� k�th spot and zero
elsewhere.
This leads to the sample estimates

ĉ1 =
1

nm�m− 1�
∑
i

∑
j<k

[
d

ds

∣∣∣∣
s=0
ρ�Xi� γ1�sK1jk� �̂��

]2
�

ĉ2 =
1

nm�p−m�
∑
i

∑
j� k

[
d

ds

∣∣∣∣
s=0
ρ�X� γ2�sK2jk� �̂��

]2
�

d̂1 = −
1

nm�m− 1�
∑
i

∑
j<k

[
d2

ds2

∣∣∣∣
s=0
ρ�X� γ1�sK1jk� �̂��

]
�

d̂2 = −
1

nm�p−m�
∑
i

∑
j� k

[
d2

dt2

∣∣∣∣
s=0
ρ�X� γ2�sK2jk� �̂��

]
	

(33)

An obvious difficulty with (33) is the evaluation of the derivatives when ρ
is messy, such as in (7). In this case we can use “central difference” approxi-
mations to the derivatives of a function φ,

φ′�0� = �2ε�−1�φ�ε� −φ�−ε�� +O�ε2��
φ′′�0� = ε−2�φ�ε� +φ�−ε� − 2φ�0�� +O�ε3�	

(34)

Thus, we can apply (34) within (33) with φ�s� = ρ�Xi� γ1�sK1jk� �̂�� or with
φ�s� = ρ�Xi� γ2�sK2jk� �̂�� and ε chosen small.
The difficulties with evaluating the derivatives in (31) and (33) do not occur

when (5) is true. In this case

d

ds

∣∣∣∣
s=0
ρ�X� γ1�sK1���� = ρ′0�t�Tr�XT�K1��

d

ds

∣∣∣∣
s=0
ρ�X� γ2�sK2���� = ρ′0�t�Tr�XT�⊥K2��

d2

ds2

∣∣∣∣
s=0
ρ�X� γ1�sK1���� = ρ′′0�t�
Tr�XT�K1��2 − ρ′0�t�Tr�XT�KT

1 K1��

d2

ds2

∣∣∣∣
s=0
ρ�X� γ2�sK2���� = ρ′′0�t�
Tr�XT�⊥K2��2 − ρ′0�t�Tr�XT�KT

2 K2�

t = Tr�XT��	

(35)
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This yields the population parameters

c1 = E�0

ρ′0�t�2�Tr�XT�0K1��2�/Tr�KT

1 K1��
c2 = E�0


ρ′0�t�2�Tr�XT�0⊥K2��2�/Tr�KT
2 K2��

d1 = −E�0

ρ′′0�t��Tr�XT�0K1��2 − ρ′0�t� Tr�XT�0KT

1 K1��/Tr�KT
1 K1��

d2 = −E�0

ρ′′0�t��Tr�XT�0⊥K2��2 − ρ′0�t� Tr�XT�0KT

2 K2��/Tr�KT
2 K2��

(36)

where t = Tr�XT�0� and, as before, the right-hand sides of (36) do not depend
upon the choices of K1 or K2.
We note that if R = XT� and R⊥ = XT�⊥,∑

j<k

Tr�XT�KT
1jkK1jk� = Tr

(
R
∑
j<k

�KT
1jkK1jk�

)
= �m− 1�Tr�R��

∑
j� k

Tr�XT�KT
2jkK2jk� = �p−m�Tr�R��

∑
j<k

�Tr�XT�K1jk��2 =
∑
j<k

�Rkj −Rjk�2 = −
1
2
Tr��R−RT�2��(37)

∑
j� k

�Tr�XT�⊥K2jk��2 = Tr�RT
⊥R⊥� = Tr�XXT�⊥�T⊥��

= Tr�XXT�Im − ��T�� =m− Tr�RRT�	
Applying (35) and (37) to (33) we get the following estimates:

ĉ1 = −
1

2nm�m− 1�
∑
i

�ρ′0�t̂i��2Tr��R̂i − R̂T
i �2��

ĉ2 =
1

nm�p−m�
∑
i

�ρ′0�t̂i��2�m− Tr�R̂iR̂
T
i ���

d̂1 =
1

2nm�m− 1�
∑
i

ρ′′0�t̂i�Tr��R̂i − R̂T
i �2� +

1
nm

∑
i

ρ′0�t̂i�t̂i�

d̂2 = −
1

nm�p−m�
∑
i

ρ′′0�t̂i��m− Tr�R̂iR̂
T
i �� +

1
nm

∑
i

ρ′0�t̂i�t̂i�

(38)

where R̂i = XTi �̂ and t̂i = TrR̂i.
For the important case m = 1 of the sphere 
p, (38) becomes

ĉ2 =
1

n�p− 1�
∑
i

ρ′0�t̂i�2�1− t̂2i ��

d̂2 = −
1

n�p− 1�
∑
i

ρ′′0�t̂i��1− t̂2i � +
1
n

∑
i

ρ′0�t̂i�t̂i�
(39)

where t̂i = Tr�XTi �̂�.
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If m = p, we use the obvious subset of the estimates (33) or (38).
If the density f has the form (2) and ρ has the form (5), we will show at the

end of this section that c1 = c2 = c and d1 = d2 = d. In this case we pool the
estimates given in (38). Recalling that the K1 and the K2 form vector spaces
of dimensions m�m− 1�/2 and m�p−m�, respectively, we propose

ĉ = m�m− 1�
m�2p−m− 1� ĉ1 +

2m�p−m�
m�2p−m− 1� ĉ2�

d̂ = m�m− 1�
m�2p−m− 1� d̂1 +

2m�p−m�
m�2p−m− 1� d̂2�

(40)

where ĉ1, ĉ2, d̂1 and d̂2 come from (38).
Recall that the constants are the same for regression and location models

when the same f and ρ apply. Thus we can transform (33), (38), (39) and (40)
into formulas for regression models by replacing, within the ith summands,
each Xi by Vi and each �̂ by Â2uiÂ

T
1 . Note that the p×p−m matrix Â2u⊥ is

an orthogonal complement to the p×m matrix Â2uÂT
1 .

In this way, for example, (38) and (40) remain valid for regression models
when R̂i = VT

i Â2uiÂ
T
1 .

Similarly, for spherical regressions, (39) remains valid when t̂i = VT
i Âui.

The resulting estimators coincide with those of Chang and Ko [(1995), page
1837], after correction for a typo there. When ρ0�t� = t, they also coincide with
Chang (1986), Proposition 1.

Remark. It is interesting to note what (36) and (40) become when ρ0�t� = t
and f satisfies (2). In this case, Prentice (1989) described the dispersion in f0
using three constants which, to avoid conflict with the notation of this paper,
we will denote as c0p, c1p and c2p.
Prentice defined c0p by the equation E�0

�X� = c0p�0. It easily follows from
(36) that c0p = d. From (38) and (40), d̂ = �nm�−1

∑
i Tr�XTi �̂� for the location

model and d̂ = ĉ0p for the regression model (after correction for a typo in the
definition of ĉ0p).
Prentice defined c1p and c2p using the equation

E�0
�X ⊗ X� = �c20p + c1p��0 ⊗ �0 + c2pIq�(41)

where Iq represents a q×q identity matrix with q = pm. The authors believe
that, except for the case m = 1, the left-hand side of (41) does not necessarily
have the form of the right-hand side of (41).
Consider, for example, the important case of p = m = 3. Without loss of

generality, we can assume �0 = I3. Then, letting xij denote the entries of X,
(41) implies E�x2ii� = c20p + c1p + c2p, E�x2ij� = c2p, and E�xiixjj� = c20p + c1p,
i �= j, with all other second moments equal to zero. X represents a rotation of
an angle φ around an axis t = 
t1 t2 t3�T, and under the assumption (2), φ is
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independent of t with the latter uniformly distributed on the sphere 
3. Then

X = cosφI3 + sin φ
[ 0 −t3 t2
t3 0 −t1
−t2 t1 0

]
+ �1− cosφ�ttT	

Routine calculations then establish

15E�x2ii� = 3+ 4E�cosφ� + 8E�cos2φ��
15E�x2ij� = 6− 2E�cosφ� − 4E�cos2φ��

15E�xiixjj� = 1+ 8E�cosφ� + 6E�cos2φ��
in contradiction to (41).
Thus our ĉ has no obvious relationship to Prentice’s ĉ2p, due to, we believe,

a misspecification in the definition of c2p.

We now establish c1 = c2 = c and d1 = d2 = d when f has the form (2) and
ρ has the form (5). Let µ�dx� denote a measure on �p�m which is invariant
under SO�m� ×SO�p�.

Proposition 7. Let �1 = 
Im 0�T. Let φ�t� be continuous. Then there is a
constant c�φ� such that for all K = 
KT

1 K
T
2 �T, with K1 m×m skew-symmetric

and K2 m× p−m arbitrary,∫
�p�m

φ�Tr�xT�1��
Tr�xTK��2µ�dx� = c�φ�Tr�KTK�	

Proof. Let g�t� be arbitrary. We claim that ∫�p�m g�Tr�xT���µ�dx� does
not depend upon �. To see this, write � = A2�1AT

1 . Then∫
�p�m

g�Tr�xT���µ�dx� =
∫
�p�m

g�Tr��AT
2 xA1�T�1��µ�dx�

and the claim follows from making the substitution y = AT
2 xA1 and µ�dy� =

µ�dx�.
Thus if γ�s� is any curve in �p�m,

0 = d

ds

∫
�p�m

g�Tr�xTγ�s���µ�dx�

=
∫
�p�m

g′�Tr�xTγ�s���Tr�xTγ′�s��µ�dx��∫
�p�m

g′′�Tr�xTγ�s���
Tr�xTγ′�s���2µ�dx�

= −
∫
�p�m

g′�Tr�xTγ�s���Tr�xTγ′′�s��µ�dx�	
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We apply this identity to the curve

γ�s� = exp
(
s

[
0 −KT

2
K2 0

])
�1 exp�sK1�

=
[
Im + sK1 − s2�KT

1 K1 +KT
2 K2�/2

sK2 + s2K2K1

]
+O�s3��

where we let t = Tr�xT�1�. This yields∫
�p�m

g′′�t�
Tr�xTK��2µ�dx� = Tr
CKT
1 K1� + Tr
CKT

2 K2� − 2Tr
DK2K1��

where the m×m and m×p−m matrices C and D are ∫ g′�t�xT�1µ�dx� and∫
g′�t�xT�1⊥µ�dx�, respectively.
It is easily checked that ACAT = C for all A ∈ � �m�. This implies, by the

Schur lemma [see Vinberg (1989)], that C = cIm for some constant c. Writing
x = 
xT1 xT2 �T, make the change of variables y = 
xT1 − xT2 �T in D. This yields
D = −D and completes the proof of the proposition. ✷

Corollary 2. Suppose the density and objective functions satisfy (2)
and (5). Then c1 = c2 and d1 = d2.

Proof. We apply Proposition 7 to (10) with γ�s� = γ1�sK1��0�. Letting
�0 = A2�1AT

1 and making the substitution y = AT
2 xA1, we get

��0K1��0K1�A =
∫

�p�m

ρ′0�Tr�xT�0��Tr�xT�0K1��2f0�Tr�xT�0��µ�dx�

= c�ρ′20 f0�Tr�KT
1 K1�	

Thus c1 = c�ρ′20 f0�. Similarly we use γ�s� = γ2�sK2��0� to establish that
c2 = c�ρ

′2
0 f0�.

The exact same proof using (11) establishes that d1 = c�ρ′0f′0� = d2. ✷

8. A numerical example. Downs, Liebman and MacKay (1974) discuss
a data set consisting of 98 matched pairs of “leads of vector cardiograms.” Each
pair corresponds to one subject; there are 28 male subjects age 2–10, 28 male
subjects age 11–19, 17 female subjects age 2–10, and 25 female subjects age
11–19. The leads are referred to as the “Frank” lead and the “McFee” lead.
The leads are close to planar curves in R3; each curve has a shape close to a

cardiod. Thus each lead can be described by a 3×2 matrix whose first column
is a unit vector q, in the plane of the curve, in the direction of the vector from
the apex of the cardiod to its cusp, and whose second column is a vector p
perpendicular to the plane of the curve. We denote by �ui�Vi� the pair of 3×2
matrices, corresponding to the Frank and McFee leads respectively, for the ith
subject.



808 T. CHANG AND L.-P. RIVEST

Downs (1972) and Khatri and Mardia (1977) analyze the McFee leads under
the assumption that the density of V is matrix Fisher,

f�v���K� = c�K� exp�Tr�vK�T���(42)

where the unknown parameter K is a 2×2 symmetric positive definite matrix.
Downs uses a tangent space approximation at � for the distribution of V, and
hence his results are asymptotic as the eigenvalues of K approach infinity.
Khatri and Mardia (1977) calculate the large sample asymptotic behavior of
the MLE. For one sample problems, these two papers consider primarily the
question of testing if � is some specified �0.
Prentice (1986, 1989) augmented the pairs �ui�Vi� to pairs �ũi� Ṽi� in

SO�3� × SO�3� by adding third columns to each ui and Vi. Thus within each
matrix, the third vector is in the plane of the cardiod and is perpendicular
to the vector from the apex to its cusp. Prentice (1986), using a large sample
nonparametric approach, studied location problems on SO�3�. He concluded
that the modal matrix of the Ṽi depends upon age, but not gender. Letting
X̃i = ũTi Ṽi, Prentice (1986) concluded that the modal vector of the X̃i does not
depend upon either gender or age. He did conclude, however, that the distribu-
tion of the X̃i is not rotationally symmetric; this would preclude, for example,
its distribution having the form f̃0�Tr�X̃Ti ���.
Prentice (1989) used a regression approach to the �ũi� Ṽi�, and assumed

that the distribution of Ṽi is the form

f̃�ṽi� Ã2ũiÃT
1 � = f̃0�Tr�ṽTi Ã2ũiÃT

1 ���(43)

where �Ã1� Ã2� ∈ SO�3� × SO�3�. As discussed above, we disagree with the
correctness of his derived distribution of the estimators �̂̃A1� ̂̃A2�.
Prentice (1986, 1989) performed separate analyses for each age and gen-

der group. Unfortunately, the authors have only been able to obtain data
without age and gender labels. Emboldened by the results of Prentice (1986),
we will assume that a single regression model for the original combined data
�ui�Vi� holds. In other words, the density f satisfies the invariance condition
(1) which, when rewritten in the regression context, becomes

f�C2viCT1 �C2A2uiAT
1 C

T
1 � = f�vi�A2uiAT

1 ��(44)

where �A1�A2� ∈ SO�2� × SO�3� is the unknown parameter and �C1�C2� ∈
SO�2� ×SO�3� is any pair of matrices.
It is useful to try to envision what the assumption (44) or, equivalently, (1)

for the location model, physically means. Suppose the basic physical object is
a distance-preserving linear transformation φ� Rm → Rp. In this case we can
imagine a prototypical cardiod curve in R2 and the observed space curve is,
after centering, a three-dimensional rotation of the prototype, together with
some random deformation. In the studies of human motion, m = p = 3 and
φ represents the rotation of one limb relative to the other limb. Let X�φ�
be the matrix of φ with respect to some orthonormal bases of Rm and Rp.
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The invariance assumption is simply that it does not matter which orthonor-
mal bases are chosen. It is known that for many pairs �m�p�, SO�m�×SO�p�
is the largest compact connected Lie group which acts on �p�m [see Hsiang
and Su (1968)], so that invariance under SO�m� × SO�p� would seem to be
mathematically quite natural.
In the studies of human motion, the bases are determined by three-

dimensional sensors placed upon each limb, and the invariance assumption is
clearly reasonable. In the planar curve randomly oriented in space example,
we are assuming that neither the orthonormal basis of R3 nor the orientation
of the prototypical curve in R2 matters. In the example of the Down’s vector
cardiogram data, the columns of X are the direction of the axis q of the car-
diod and the normal p to the plane. Thus the invariance assumption under
SO�2� refers to rotating the prototypical curve around the axis q × p. The
authors believe this invariance assumption is not unreasonable.
The interpretation of the parameters �A1�A2� in the regression model is a

little complicated since A1 is completely superfluous unless there are at least
two pairs of matched curves. [Indeed, Rivest and Chang (2000) establish that
at least three, and sometimes four, pairs are needed to fit A1 and A2	� An addi-
tional complication is that the rotation groups SO�p� are not commutative if
p ≥ 3. Imagine a prototypical cardiod curve inR2 and that the maps φu and φv
are maps from R2 → R3 which, except for random deformation, generate the
curves whose 3× 2 matrices are u and V. Suppose φv = A2φuAT

1 . If A2 = I3,
the prototypical cardiod for the v-cardiod is obtained from the prototypical
cardiod for the u-cardiod by the rotation A1 and the observed configuration
is the result of applying φu to this pair of prototypical cardiods. Thus when
A2 = I3, the observed pairs of cardiods are rigid motions of a prototypical pair
of cardiods, possibly together with translations of one cardiod relative to the
other. In the Prentice reformulation of the data as 3× 3 matrices the orienta-
tion of the prototypical McFee lead to the prototypical Frank lead is arbitrary.
In the original formulation of the data as 3×2 matrices, the regression model,
when A2 = I3, would assume that the protypical McFee lead is obtained from
the prototypical Frank lead by a rotation about the q × p axis.
On the other hand, if A1 equals I2 or I3 (depending upon whether two

columns or three are used to express the data), the orientation of the McFee
lead is obtained from that of the Frank lead by rotation around a fixed axis—
namely, that of A2. Presumably in that case the axis of A2 has some intrinsic
physical interest. In other words, A1 rotates the Frank lead into the McFee
lead, using a rotation whose axis is fixed in a coordinate frame fixed to the
Frank lead and A2 rotates the Frank lead into the McFee lead, using a rotation
whose axis is fixed in a coordinate frame fixed to the outside. When A2 = I3,
the orientation of the McFee lead relative to the Frank lead does not depend
upon the orientation of the Frank lead. But when A2 �= I3, the orientation of
the McFee lead relative to the Frank lead depends upon the orientation of the
Frank lead relative to the axis of A2. We again emphasize that one should
think of multiple pairs of leads, since with one pair of leads, only one of A1 or
A2 is needed to rotate the Frank lead into the McFee lead.
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Borrowing terminology standard to the kinematics of rigid body motion,
we will refer to these coordinate systems as “body” and “space” coordinates,
respectively.
Recall that c1 = c2 if

f�vi�A2uiAT
1 � = f0�Tr�vTi A2uiAT

1 ��(45)

and an objective function of the form ρ�Vi�A2uiAT
1 � = ρ0�Tr�VT

i A2uiA
T
1 �� is

used. Thus a test that the density has the form (45) versus f�vi�A2uiAT
1 � is a

general invariant density (44) can be based upon ĉ2− ĉ1. We will use the least
squares objective function (6): ρ0�t� = 4− 2t. Then using (38),

ĉ2 − ĉ1 =
2
n

n∑
i=1
2− 2Tr�R̂iR̂

T
i � + Tr�R̂2i ��

R̂i = VT
i Â2uiÂ

T
1 	

For the vector cardiogram data, n = 98,

Â1 =
[
0	999 −0	0425

−0	0425 0	999

]
�

Â2 =
 0	952 0	124 0	281
−0	153 0	985 0	0829
−0	266 −0	122 0	956

 �
ĉ1 = 0	8058 and ĉ2 = 1	0306. Letting Zi = 2 − 2Tr�R̂iR̂

T
i � + Tr�R̂2i �, we can

estimate the variance of n1/2�ĉ2 − ĉ1� by the sample variance of the Zi. In
this way we estimate the standard error of ĉ2 − ĉ1 to be 0	3155 and hence we
cannot reject that the density has the form (45).
On the other hand, suppose we redefine the ui to be the first and third

columns of ũi, and similarly redefine Vi. Thus the columns of ui and Vi are
now the axis q of the cardiod and a vector, in the plane of the cardiod, perpen-
dicular to q. Then ĉ2 − ĉ1 = −2	5420 with a standard error of 0	5585. Thus in
this case we can reject that the density has the form (45).
While this might seem curious, elementary calculations show that if the

augmented matrix Ṽi has a density of the form (43) for nonuniform f̃0, then
any two of its columns cannot have a density of the form (45). Similarly if
Vi has a nonuniform density of the form (45), then its augmented matrix Ṽi
cannot have a density of the form (43) and the first and third columns of Ṽi
cannot have a density of the form (45).
More generally, if Ṽi has a matrix Fisher distribution where the eigenval-

ues of the concentration parameter K are all nonzero, no two columns of Ṽi
will have a matrix Fisher distribution. On the other hand, if distribution of
Ṽi satisfies the invariance condition for the group SO�3� × SO�3�, then the
distribution of any two columns of Ṽi will satisfy the invariance condition for
SO�2� ×SO�3�.
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Suppose we desire to test if the joint configuration of the McFee and Frank
leads is rigid. That is, if A2 = I3. Since the regression model for the 3 × 2
matrices would, if A2 = I3, imply a more restricted relationship between the
two leads, we will apply this test to the augmented 3 × 3 matrices �ũi� Ṽi�.
As discussed above, it would appear to be prudent to assume the underlying
density is a general invariant one rather than a density of the form (43), and
we continue to use a least squares objective function. For the mechanics of
calculation, assuming only the more general invariance condition makes no
difference since m = p and hence the constants c2 and d2 do not exist. It
would have made a difference in the calculations if we had used the original
3× 2 matrices.
For this data,

Â1 =
 0	9971 −0	0490 0	0577
0	0446 0	9961 0	0761

−0	0612 −0	0733 0	9954

 �
Â2 =

 0	9677 0	1560 0	1979
−0	1767 0	9800 0	0916
−0	1796 −0	1236 0	9759

 �
ĉ1 = 0	4015� d̂1 = −1	875	

A 3× 3 skew symmetric matrix H can always be put in the formM�h� where

M�h� =
 0 −h3 h2
h3 0 −h1
−h2 h1 0


and h = 
h1 h2 h3�T. Using Proposition 5, and letting, �Â1� Â2� = �A1 expM�h��
A2 expM�k��, we calculated the joint precision matrix P of �h�k� as a 6 × 6
matrix with diagonal entries 196 and all other entries zero except for the
upper right and lower left 3× 3 blocks P21 = PT12 where

P12 =
 94	144 114	692 91	578
124	492 −126	469 35	235
84	232 48	933 −142	727

 	
Write Â2 = exp�M�k��. Under the null hypothesis that A2 = I3, we can obtain
from P the asymptotic covariance matrix of k. Since k is asymptotically multi-
variate normal with mean 0, we obtain an asymptotic χ23-value of 21	56. Thus
Â2 is clearly significantly different from the identity. We conclude that the
joint configuration of the McFee and Frank leads is not rigid.
Proceeding similarly, we can test if A1 = I3 and it turns out that p-value of

this test is 0	25. We conclude that the orientation of the McFee lead is obtained
from that of the Frank lead by the rotation A2; this rotation is estimated to be
a rotation of 0	277 radians around the axis �−0	393�0	690�−0	608� in space
coordinates.
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9. Some supplementary results and their proofs. We rely on Vinberg
(1989) for background theorems and all references refer to Chapter I of
Vinberg.

Lemma 1. Let � = ��0
and suppose that � is compact. Consider the

representation of � on T�0
� and suppose there is no v ∈ T�0

� such that
h · v = v for all h ∈ � . Then �0 is a critical point for τ�0���.

Proof. Let the densities f�x��� be written with respect to the� invariant
measure µ�dx�. We note that even if µ�dx� is only � relatively invariant, it
will be � invariant since � is compact. Let γ�s� be a curve in � such that
γ�0� = �0. Then

τ′�0��0��h · γ′�0�� =
d

ds

∣∣∣∣
s=0

∫
�
ρ�x� h · γ�s��f�x��0�µ�dx�

= d

ds

∣∣∣∣
s=0

∫
�
ρ�x� h · γ�s��f�x�h · �0�µ�dx�

= d

ds

∣∣∣∣
s=0

∫
�
ρ�h−1 · x� γ�s��f�h−1 · x��0�µ�dx�

= d

ds

∣∣∣∣
s=0

∫
�
ρ�y� γ�s��f�y��0�µ�dy�

= τ′�0��0��γ′�0���
where we have made, in the above, the substitution y = h−1 ·x. In other words
τ′�0��0�� T�0

�→ R is a linear transformation which satisfies

τ′�0��0��h · v� = τ′�0��0��v�	(46)

Let � be the kernel of τ′�0��0�. It is an invariant subspace and hence if � �=
T�0

�, it has an invariant orthogonal complement � . Then τ′�0��0�� � → R is
an isomorphism. But (46) implies that for any v ∈ � , h · v = v for all h ∈ � .
This contradiction establishes the lemma. ✷

Proof of Proposition 1. We note that Proposition 1 is Theorems 8 and 9
of Vinberg for complex representations and complex inner products (that is,
�� � is positive definite Hermitian sesquilinear – �y�x� = �x�y� and �x� αy� =
ᾱ�x�y� for complex constants α ∈ C). However careful examination of the
proofs of Theorems 8 and 9 will reveal that only �� �0 need be positive definite;
�� � can simply be any Hermitian sesquilinear form.
Let �C = C⊗R � . The real representation of � on � extends to a complex

representation on �C in the obvious manner. By Vinberg, Theorem 6, if �iC is
not irreducible it can be written �iC = 
 + 
̄ where 
 and 
̄ = 
x − iy �x +
iy ∈ 
� are both complex irreducible. Using this, it is routine to prove the
proposition. ✷
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The following proposition follows easily from the invariance of A and B.

Proposition 3. Suppose X = �X1� 	 	 	 �Xn� is a sample from f�x��0� and
that �̂ minimizes ρ�X��� = ∑i ρ0�Xi���. Suppose that for some �1 �not neces-
sarily the same as �0�, $�1

� T�1
�→ �, minimal ��1

-invariant subspaces �i of
T�1

� = ⊕i�i, ��1
-invariant inner product �� �0, and constants ci and di have

been identified as in Proposition 2.

(a) Pick g ∈ � such that g · �1 = �0. Let �̂ = g · $�1
�ĥ� and ĥ = ∑i=r

i=1 ĥi
where ĥi ∈ �i. Then the asymptotic distribution of n1/2ĥ is multivariate normal
with density proportional to

exp
(
−n
2

∑
i

d2i
ci
�hi�hi�0

)
	

In particular,

n
∑
i

d2i
ci
�hi�hi�0

is asymptotically χ2�dim ��.
(b) Suppose g̃ ∈ � also satisfies g̃ · �1 = �0. Let �̂ = g̃ · $�1

�h̃�. Then

h̃ = �g̃g−1� · ĥ where g̃g−1 ∈ ��1
. Thus

n
∑
i

d2i
ci
�h̃i� h̃i�0 = n

∑
i

d2i
ci
�ĥi� ĥi�0	
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