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THE MAXIMAL OSCILLATION PROBLEM FOR
REGENERATIVE PHENOMENA! .

By DAvVID GRIFFEATH
Cornell University

An account of known upper and lower bounds for standard diagonal
Markov transition functions and standard p-functions taking on a given
value at time ¢ is presented, and some new results are derived.

1. Introduction. Let p(7) be a standard diagonal Markov transition function
of continuous time parameter ¢, in the sense of Chung [4]. If we know that
p(s) = M, what upper and lower bounds can we set on p() for 0 < ¢ < s? More
precisely, letting &2 # denote the class of all standard diagonal Markov transition
functions, we wish to determine for each fixed ¢ € (0, 1)

ﬁM(t) 1= SUPpes s {p(f)|p(1) = M}

my(f) i = inf,e o, {p() [p(1) = M}

(where : = designates a defining notational equality). The choice of s = 1 here
is only a matter of notational convenience, since 2 # is closed under constant
dilations or contractions of the time scale.

Determining # and 7 shall be known as the maximal oscillation problem. The
proper setting for the study of this problem is J. F. C. Kingman’s elegant theory
of regenerative phenomena [12]. Just as many aspects of discrete Markov chains
are most easily treated within the framework of Feller’s classical theory of re-
current events, so too is Kingman’s generalization of recurrent events most ap-
propriate for the study of continuous time problems such as ours. The analogues
of discrete renewal sequences in the theory of regenerative phenomena are the
so-called p-functions. For present purposes, the key fact is that &2 # is dense
in &, the class of all standard p-functions, in the topology of pointwise con-
vergence. Since there is a sequence of Markov functions converging to any
standard p-function, we may equally well define # and = over &, and as it turns
out, this is the more natural approach.

In this paper we shall outline those aspects of the theory of regenerative phe-
nomena necessary for the study of the maximal oscillation problem, summarize
results previously obtained, remark on general properties of # and r, and derive
some new bounds. It will become apparent that this problem is far from solved;

and
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the author hopes that the numerous conjectures offered in the course of the dis-
cussion may encourage further research.

2. Regenerative phenomena and p-functions. According to the formulation of
Kingman, let Z:= {Z(f); t > 0} be a stochastic process taking on values in the
two point set {0, 1}. If there exists a function p defined on (0, co) and such that
whenever 0 < 1, < t, < - -+ < t,, it follows that

(1) Pr{Z(t) = Z(t;) = --- = Z(1,) = 1} = [Tiza p(te — ) (t,:=0),
then Z is a regenerative phenomenon, and p is called the p-function of Z. 1If in
addition

limg—»ol’(’) =1,
then p is standard, and for convenience we may extend the definition of p to
[0, o0) by taking p(0) = 1, and setting Z(0) = 1 a.s. The class of all standard
p-functions is denoted by &

Useful properties of p ¢ .77 are the following:

(a) p(t) > 0on |0, oo);

(b) p is uniformly continuous on [0, co);

(¢) g:=lim,_,[1 — p(#)]/t exists; and if ¢ < oo, then p(f) = e~

(d) p(o0) := lim,_,, p(f) exists.

Proofs will be found in [12].

Also, if we let &2 # be the class of functions which arise as diagonal transition
functions for standard Markov chains, then &2 #Z c .&”. While this inclusion is
definitely strict, Kingman has shown that .22 # is dense in .Z”in the topology of
pointwise convergence. The precise characterization of .52 as a subclass of
7 has been one of the central problems in the theory of regenerative phenomena;
for its solution, see [12].

Consider next a sequence {f,; 1 < k < n} of increasing times in (0, o), and
define

f(t):=Pr{Z(t,) =0 for 1 <k<n—1;Z(, =1}
and
9(t,):=Pr{Z(t,) =0 for 1 <k < n}.

We may use (1) to express f(t,) and g(¢,) as polynomials in terms p(f, — ¢;)
(0 <j< k <n;ty:=0), and since f and g are probabilities,
) flt) =0

9(t,) = 0.

The inequalities (2) are called the Kingman inequalities of order n. Clearly, any
p-function must satisfy these inequalities for all n, and for arbitrary sequences
{t.} of increasing times. The first order inequalities simply give 0 < p(#,) < 1,
the second order ones are

f(t) = p(ty) — p()p(t, — 1) =2 0
9(t) = 1 — p(t;) — p(t) + p(t)p(t; — ) = 0,
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and higher order inequalities are generated recursively by

3) ftt) = p(ts) — Ziziflrop(ts — 1) 2 0

9(t) =1 — T fit) 2 0.
If p € &, then (3) are defined for ¢,,, — t, = 0. By only requiring that {7,} have
nonnegative increments, we see that the nth order pair of Kingman inequalities
contain all lower order ones as special cases. Thus we may consider the classes
%, of all real-valued functions defined on [0, c0), with p(0) = lim, , p(r) = 1,

and satisfying the nth order inequalities. In this way a useful characterization
of 7 is obtained:

(4) F D H,D e DD, and F=lim,_, 5%, .

A remark of Kingman shows that each inclusion in (4) is strict. Other more
constructive characterizations of .&° may be found in [12], but this will be the
most useful in our discussion of the maximal oscillation problem.

We note that pe .7, is necessarily continuous on [0, o), as the proof of
property (b) for p e .2 uses only second order Kingman inequalities and the
standardness condition. Thus the requirement that p satisfy the inequalities (2)
for arbitrary sequences {t,} imposes quite strong conditions, and makes the prob-
lem an analytic rather than algebraic one. The full implications of inequalities
as low as the third order are not yet understood.

3. The maximal oscillation problem: Known results. Define for each fixed ¢ in
0, 1)

Ty(1) 1= sup,... {p(t) | p(1) = M}
and

m(f) 1= inf, . {p(t) | p(1) = M} .
Also, let #,,(0) : = lim sup,_, 7,(¢), and define z,(0), #,(1) and (1) analogously.

The curves 7, and 7, bound a set D, in which the graph of any standard p-
function p(f) or Markov transition function p;;(¢) must remain for ¢ € (0, 1) given
that it passes through p(1) = M. Whether there is a p e & with p(1) = M and
p(t) = c for any (¢, ¢) € D, is another matter. This would clearly be the case if
Fwere additively convex, but unfortunately it is not, as Davidson [6] has shown.
We can find such a p for M < ¢ < M, since Fcontains all functions of the form
p(t) = e~*™, where x is nonnegative, continuous and concave on [0, c0), with
x(0) = 0 [10]. The remainder of D, is much more difficult to analyse, as we
shall see in Sections 5 and 6, but I conjecture that all points (¢, ¢) inside D, are
in fact accessible. The matter of accessibility of the boundary is more delicate;
here, for instance, we must distinguish between Z”and & #.

It is also reasonable to conjecture that the extension of # and = to (1, oo) is
totally determined by their nature on [0, 1] and that #,(1/f) = =, ~(f) and
m(1/t) = 7, 7'(¢), where the inverse operation is applied to = as a function of M.
But to show this we need at least that # and = are continuous and monotone as
functions of M, and even this appears nontrivial.



408 DAVID GRIFFEATH

Interest in the maximal oscillation problem until now has largely centered

about
I(M) := inf {z,(t); 0 < t < 1}
and
v, := inf {M| (M) > 0} .

Davidson [6] first studied the relationship between Mand I(M). Denoting m(p) =
min {p(); 0 < ¢ < 1}, he remarked that if for a given pe . Z m(p) < M < M =
p(1), then there exists a standard p-function g such that m(p) = m(p) and (1) = M.
Thus it is natural to seek the boundary between accessible and inaccessible pairs
(M, m) in what Davidson referred to as the “M — m diagram” (Fig. 1). Lower
bounds for /(M) give inaccessible regions, and families of known p-functions
provide accessible regions. While it is most likely that /(M) marks the boundary
between these regions, this seems difficult to prove.

Davidson produced accessible points of large oscillation by considering the
well-known standard “jump” p-functions (indeed the only well-known family of
standard p-functions which are not monotone):

K(s — bk)*
k!

—q(s—bk
e~ ) s

(5) pls) = D 4

0 1

Fic. 1. The M — mdiagram. The area between m = M and (6) (the upper solid curve)
is accessible. Regions successively proved inaccessible are bounded by (8) (the dashed
curve), Proposition 1 (the lower solid curve), and (9) and (15) (the dotted curves). The
shaded portion of the diagram is still uncharted.
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where [s] denotes the integer part of s. It is worth mentioning that these func-
tions are not Markov; a celebrated theorem of Ornstein states that p,; € F2# is
continuously differentiable on (0, oo), whereas p as given by (5) has discontinuous
derivative at s = b. In [9] Freedman constructs a family {p{»’} of Markovian
transition functions converging to p(s) uniformly in s, an illustration of the density
of Z.# in &. By maximizing p(1) = M for p(b) = min (5), Davidson produced
a sub-family of standard p-functions with m = 1 4 log M (e=* < M < 1). These
special p-functions are exponential on [0, 6] with p'(0+) = —g, where b =
log m/(log m + log M) and ¢ =1 — m — logm. For M near 1 they are expo-
nential just beyond ¢ = §, and as M decreases they stay exponential for longer
and longer until at M = e~ + ¢ pis exponential on virtually all of [0, 1), spiking
from arbitrarily small values up to M (see Fig. 2). This example therefore gives

(6) IM)y<1 4 logM (eP<M<1),
and consequently
@) vy = et
Davidson also found the first lower bound for /(M), a result discovered inde-

pendently by Blackwell and Freedman [1] in the Markov case. Namely, he

1

P

FiG. 2. The Davidson p-functions. Examples yielding (6) are shown form = .9, .8, ---,
.1 and for m = .001. Note that in this last case M = .3682, exceeding e~! by less than
.0004, while b is still only about .87.
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showed that for p e .57,
1 + (4M — 3)t
—s

It is not hard to prove that (8) is sharp for p e 27;. An involved but routine
check shows that for M > 3, if we define p to be exponential on [0, ] with
p(3) = m = 31 + (4M — 3)!], take p(t) = 1 — (1 — M)/p(1 — 7) on [}, 1] and
define p appropriately on (1, co), then pe . %,. Moreover, if M = 3, then p
defined by

8) If M>3, then I(M) =

p(r) = et for 0<t<0b
e 4 1 — emuit=® for b=t

where m = e~ and b = ¢'log [1 + e?/4] defines for g € [log 4, o) a family of
%, functions achieving as minima all values in (0, ], and all spiking to § at
time 1. Thus these are extreme functions for the second order inequalities.

A much more extensive inaccessible region for the (M, m) diagram was de-
termined later by Bloomfield [3] and Davidson [8], when they proved that

%) M<Z1 4+ mlogm.

This bound is extremely good for large M, as the loci (6) and (9) have the same
curvature at M = 1. For m < e™', however, (9) deteriorates, so that until re-
cently it has been necessary to fall back on (8) for m near 0. New results to be
described in Sections 4 and 7 have improved this situation.

A final proposition along these lines was obtained by Davidson [6], when he
was able to show that for p e 577,

IA
wiro

Yo
Unfortunately this last argument made no real contribution to the (M, m)diagram.
The bounds for the diagram mentioned here and below are shown in Fig. 1.

4. A new result for the M — m diagram. We record here a new bound for /(M)
which places Davidson’s £ result in a more suitable light. Note that the argument,
like his, is based on third order Kingman inequalities.

ProposiTION 1. If M > %, then
1 4 2(3M — 2)t
3 .

M) =
Proor. For p e .7, the Kingman inequality g(#;) = 0 may be rewritten (taking
s=tyt=t,—tahu=t,—th,ands+t+u=1t=1)

= M2z p()[l = p(t 4 u) — p({1 — p()}] + p(s + O[T — p(w)] .
We make use of the lower order Kingman inequalities p(t) < p(t + u)/p(x) and
p(s +t) =1 — (1 — M)/p(u) to obtain

(10 1-Mzpe)1 —%}[1 —I—P‘@f‘—ﬂ[l — pw)]
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Taking p(t + u) = m, p(u) = (1 — M + m?*)} (this can always be done by conti-
nuity of p because p(0) = 1 = p(u) = m = p(t 4+ u)), and since p(s) = m, we
find that

(11) M —3’"2‘jm+3.

A

Next assume m < 4, and choose u to be the first time that p(u) = £. Substi-
tuting this value for p(x) in (10), we obtain

(12) 1—=Mzps)3—plt+u)]+§.

Now choose v to be the first time that p(v) = 1. If p(1 — v) < }, then we must
have 1 — v = v, or v < }. Since u < v, it follows that « + v < 1, so we may
take s =vand t =1 — u — v in (12). If, on the other hand, p(1 — v) > §, we
take s =1 — v and t = v — u in (12). In this manner we guarantee

I —Mz35-31+%,
or

(13) M<3.

In combination, (11) and (13) are equivalent to the proposition.

Whether Proposition 1 is best possible for p e % is not known, but I conjec-
ture that a considerably better bound exists. A means of proving v, < 1 would
be especially valuable, as Williams [14] has shown that this would have an im-
portant application to the problem of Markov groups. Namely, we could con-

clude that for any Markov semigroup P:
If inf, {p,(0)} > % for some ¢ (> 0), then lim,_,||P,—1]|=0.

Actually, proving the weaker property: =,(f) > 0 for all 7 € (0, ¢,) for some posi-
tive f, would be sufficient. In the notation of [10], either of these would yield
(F) = (U), one of the two implications needed for a complete characterization
of those Markov semigroups which may be extended to strongly continuous
groups on the entire real line.

5. Remarks on 7,. Very little attention has been paid to the more general
description of z, and 7, as functions of ¢ for fixed M. In this section we set
down a few remarks on the lower boundary for standard p-functions through
p(1) = M, and in the next we discuss the upper boundary.

Results such as Proposition 1 establish uniform lower bounds for r,, but as
to the shape of this curve, almost nothing is known. Indeed, we do not even
know in what sense it may be described as a ‘“curve.” =, is easily seen to be
upper semi-continuous, with =, (s 4 t) = m,(s)z,(t), but is z, () continuous for
te(0, 1)? I conjecture that it is, though this is by no means obvious.

Davidson’s results show that for M < e, 7,(f) = 0 on [0, 1]. For no value
of ¢ in [0, 1] is 7,(¢) yet known when M > e'. We can, however, determine
an upper bound for z,(0):
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PROPOSITION 2. 7,(0) < e'=@/,

Proor. Let {t,} be a sequence of times decreasing to 0. By taking {p,(s)} to be
of the form (5) with ¢, = (1 — M)/Mt, and b, = t,, we find that lim,_, p,(z,) =
et~ and lim,_,, p,(1) = M. These p-functions establish the proposition.

The proposition may also be regarded as a localized version of a result due to
Bloomfield [2]:
1
(14 Py zexpft — L,
()
where (14) is in fact a sharp uniform lower bound for p(1) in terms of p(co).
The following corollary is immediate:

COROLLARY. F, := {pe€ .Z|p(l) = M} is not compact for any M < 1.
(We can exhibit a sequence in .7, with limit function p* such that p*(0) = 1.)

I conjecture that for (M) > 0, z,(0) is in fact equal to ¢'~*", and that
mu(1) = M,

In much the same way that Davidson found the upper bound (6) for I(M),
we can find upper bounds for z,(f) by minimizing (5) at ¢ subject to the con-
straint that p(1) = M. This appears unmanageable by analytic techniques, but
is well within the scope of computer solution. The bound 4,(¢) which we obtain
has, of course, £,(0) = e!~%™, appears to decrease continuously but not mono-
tonically to a minimum at 4, (log (1 + log M)/(log M + log (1 4 log M)) =1 +
log M in accordance with (6), and then increases continuously to k,(1) = M.
This curve is shown for M = .7 in Fig. 3, along with the uniform lower bound
obtained from Proposition 1 and other bounds to be described below.

6. Remarks on 7,. The problem of upper bounds for p(f) seems to have been
virtually ignored. The nearest kind of result to be found in the literature is one
of Blackwell and Freedman [1], derived for p € 9, which states that

1+ M
hp(ndi < =25 (M <.
Since p is supermultiplicative we have p(1/k) < MY* for k = 1,2, ..., a bound

which is obviously sharp since p(f) = M* is in & Hence #,(1/k) = M'*. For
no other values of ¢ is #,(f) known, however, and the same remarks as for r
apply regarding such matters as continuity. Trivially, #,(0) = 1; the companion
conjecture to that of the last section is that 7,(1) = M.

By considering 4,/(f), the maximum value of (6) at ¢ given that p(1) = M, we
are able to obtain lower bounds for #,(7). Unfortunately, the computer simu-
lations here are much more difficult than for =, but results suggest a striking
transition in the nature of 4. Namely, for large M it appears that h,(r) = M*
(see Fig. 3). For M sufficiently small, on the other hand, we seem to have
h,(t) > M for all ¢ in (¢, 1) and not of the form 1/k. Thus for small M #,(f)
is necessarily a highly complex curve, constrained to be exponential at all times
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Fic. 3. 7 and z for M =.7. The uppermost and lowermost solid curves are computer
simulations of A and k. For M = .7, h = Mt while 4 is more complex. The line p = .7
is also shown. Two dotted p-functions of type (6) are given attaining minima on A.
Dashed bounds for z and 7 given by Propositions 1 and 3 are indicated.

of the form 1/k, but able to hop above M* during the whole of each of the in-
tervals (1/k + 1, 1/k). This does not mean that there are standard p-functions
which exceed M! in each such interval, but only that there exist p €& which
exceed M' at any point in any one of these intervals and also have p(1) = M. A
typical jump p-function exceeding M* is shown in Fig. 4.

Computer simulations also seem to indicate that the portion of D, lying be-
tween h,(r) and h,(f) is totally accessible. As a final conjecture I suggest that
we may well have 4, = 7, and &, = =, for I(M) > 0.

We conclude this section by deriving an upper bound for #,(f) based on
Proposition 1, and holding for all p e .577.

PROPOSITION 3. For 1 > a > %, if M < a[(1 + 2(3a — 2)*)/3], then
Ty S a*  for 27F < S 20R k=1,2,....

Proor. It suffices to show that z,(f) < a on [4, 1], as the more general result
follows from the supermultiplicity of p-functions. For ¢ [4, 1] we have

M =z p(p(l — 1) .
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Fic. 4. A jump p-function with p(1) = .1 is shown exceeding (.1)! from just beyond .9
to 1.

If p(r) > %, then since 1 — ¢t < ¢, by Proposition 1 we find that

Mz p(o (LT HRO =20,

from which the proposition easily follows.
The upper bound for 7 given by Proposition 3 is shown for M = .7 in Fig. 3.

7. Recent developments. In this last section we discuss two new results which
have been derived simultaneously with those described above.
Cornish [5] has obtained:

(15) I(M) = p(M) for M>1—e?,

where p is the largest root in (0, 1] of M = 1 + plog p. He has thus succeeded
in extending a horizontal tangent from the maximum point (1 — e7?, e7") of the
Bloomfield locus (9) to (1 — e™*, 0) in the M — m diagram (see Fig. 1). While
(15) is sharper than Proposition 1, the Cornish argument involves Kingman in-
equalities of arbitrarily large order. It is interesting to note that for p € 277 his
method gives v, < 19 whereas Proposition 1 implies v, < %, a better value. Itis
therefore not too much to hope that third order inequalities may eventually yield
a better bound than (15).
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Cornish’s work suggests one method of checking: non-linear programming.
His technique is to reduce high-order inequalities to linear maximization prob-
lems, but in doing so a good deal of precision is probably lost. Perhaps computer
programming will be able to help us identify the extreme %", functions, which
seem to hold the key to the entire problem.

This is especially true in light of a result of Kingman [13]. He has shown that
if p(f) = e on [0, 7], then p(t) < e™** 4 e~ on [, co). This has an intriguing
corollary for the maximal oscillation problem. Suppose that {p,()} is a sequence
of p-functions with m(p) tending to 0 and M(p) tending to v,, and suppose further
that the p, are all exponential for at least some fixed time z. Then since ¢, — oo
and ¢ is bounded away from 0, the Kingman result gives v, < e~ so that by (7),
v, = el

Now the Davidson examples which give (6) are all exponential on [0, §] (see
Fig. 2), as are the extremal .7, functions. Thus, if the extremal .7, functions
are also exponential on [0, }] and appear to be tending toward Davidson’s, then
we have convincing evidence that these latter functions are indeed the extremal
standard p-functions. If, on the other hand, the .5 extreme functions only
stay exponential until short of r = 4 or do not have exponential starts at all,
this would seem to indicate that v, may well exceed e~'.

One last remark will support these claims. Namely, the second order inequality
g(t;) = 0 yields

. h) — . 1 — p(h
P +) = limy EED =P < tim, [ L=LO 11— p(o] = g1t — pio)].
In particular, for p(f) = m, we see that

(16) pP+) =gl —m],

so that for ¢ < oo the rate at which p can increase is regulated by ¢ and m.
Note that (16) is satisfied with equality by the extreme >, functions, and also
by the Davidson p-functions which we conjecture are extremal for .. It is most
plausible that the extreme p-functions are exponential on some interval [0, 5],
the heuristics being that p should probably attain m as quickly (“efficiently”) as
possible. Similarly, it is reasonable that after attaining m the function should
climb as quickly as possible. According to these principles, the second order
inequality above suggests the differential equation

p(x) =gl —e "],
which the extreme .2, functions satisfy on [b, 1]. A third order inequality
9(t;) = 0 may be written
[1 = p(b + kB)] — p(A)1 — p(b + (k — 1)A)]
= [p(b + b) — pBPHIL — pl(k — 1A)]
to suggest the differential equation

(17) —p'(x) + g[1 — p(x)] = g[1 — e79=7"].
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The surprising result of this approach is that the Davidson p-functions satisfy
(17). This observation reinforces our conviction that the entire maximum oscil-
lation problem may be solved using third order inequalities, and that the use of
higher order ones is probably misguided. Thus we consider it not at all unlikely
that the extreme functions of %7, and so a fortiori of &, are the Davidson p-
functions.
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