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EXTREMAL PROCESSES GENERATED BY INDEPENDENT
NONIDENTICALLY DISTRIBUTED RANDOM VARIABLES!

By IsHAY WEISSMAN
Tel-Aviv University

Let M, = max {Xy, - -+, Xy} and mu(t) = (M{nt] — @n)/bn (t = 1/n), where
the {X;} are independent rv’s and a, and b,, > 0 are real constants. Suppose
all the finite-dimensional laws of m, converge to those of a stochastic pro-
cess m = {m(f): t > 0}. This paper is a study of the class of all such pro-
cesses m.

0. Introduction. Let {X;} be a sequence of independent random variables
(rv’s) and let M, denote max {X,, --., X,}. Suppose there exist real numbers
b, > 0 and a, such that the distribution of (M, — a,)/b, converges to a non-
degenerate distribution function (df) G as n — co. Now define the process m, =

{m,(1): > O} by
(0.1) mt) = My - a)[b,  if 12 1jn
= (X, — a,)/b, if 0<r<l/n.

This paper treats the class of limit processes m = lim m, which may be obtained
in this manner. The limit is in the sense of convergence of all the finite-dimen-
sional laws (fdl) of m, to those of m.

These limit processes, the so-called Extremal processes have been studied by
a number of authors: Dwass [1]—[2], Lamperti [4], Oliveira [9] and Resnick
and Rubinovitch [10]. All of them assumed that the X; are i.i.d. Welsch [13]—
[14] generalized the results of [1] and [4] by replacing the independence of the
X; by the strong mixing property. In the present article we generalize [1] and
[4] in another direction namely, we keep the independence of the X; but allow
them to be nonidentically distributed.

The joint limit processes for (m,!, ..., m,*), where m*(t) is the kth largest
among {(X; — a,)/b,: i = 1, - .., [nt]}, including aspects of weak convergence,
are studied in [11].

We conclude this section with some conventions. All G, (¢ > 0) are non-
degenerate df’s, except G, = 1. We write G for G,. If G, is non-increasing in
t then for s < ¢ the ratio G,(x)/G(x) is defined to be 0 when G,(x) = 0 even if
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G,(x) = 0. Finally, let
G = inf {x: G(x) > 0}, G, =sup{x: G(x) < 1}.

1. The limiting process for the maximum. Suppose {G,: ¢t > 0} is a family
of df’s on R* such that G,(x)/G,(x) is a non-decreasing function of x whenever
0 < s < t and define a stochastic process m = {m(f): t > 0} as follows:

(1.1) m(t) < m(t + u) a.s. Vt,ue (0, )
and forall0 =, <1, < .- < fandallx, < x, < ... £ x,
(1.2) P(Niz () = x9)} = T (Gr (x)[G, (%)) -

Clearly, (1.1) and (1.2) determine a consistent set of fdl and hence a measure
space exists on which such a process can be defined. We call the class of all such
processes the class M.

THEOREM 1.1. Let m, be a partial maxima process as defined by (0.1) and suppose
that for each t > 0 there exists a G, such that

(1.3) m,(f) —, G, (n— o00).

Then all the fdl of m, converge to those of me M, where the fdl of m are deter-
mined by the G, as in (1.2).

Proor. Let F, (x) = P{X, < b,x + a,}. Since (1.3) holds for all 7 ¢ (0, o0),
we have

(1‘4) limn—wo 1, [ns]+1 m(x) Gt(x)/Gs(x) (0 é s < t)

at all continuity points of G,/G,. Hence G,/G, is a non-decreasing function and
a process m € M can be defined by the G,. Now we have to show that for every
0=tf<t< - <t andevery x;, ---, X,

(1.5) Plm, (1)) < X3 « -+, M(f) < x4}

converges (weakly) to the same expression with n suppressed. But since m, and
m are both non-decreasing, only x; < x, < --- < x, are of interest. For 0 <
s < t we define m,(s, t) = max {(X; — a,)/b,: [ns] < i < [nt]}. Then (1.5) is
equal to

(1.6) Plm,(1,) < x;, m,(ty, 1) = Xy <+ 5 My(bps ) = X}

= HWI] F, (xl),HEZ?itlm Fo(xy) - -+ HEZ‘["th_1]+1 Fo(xe) 3
the r.h.s. of (1.6) follows from the independence of the {X;}. If x; is a con-
tinuity point of G, /G,,_ (i = 1, .- -, k) then by (1.4) the limit of (1.6) is equal
to the r.h.s. of (1.2). []

It can be seen that for each n, the process m, has the form defined by (1.1)
and (1.2). The theorem proves that this form is preserved as we pass to the
limit (as n — o).

From the multiplicative forr of (1.2), one can easily see that m is a Markov
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process and an equivalent definition of m e M is the following: for each 7 > 0

(1.7) P(m(r) = y) = GY) >

and transition probabilities P{m(f) < y|m(s) = x} (s < ?) are given by

(1.8) PulX> y) = Gi(1)[G(Y) x=y
=0 xX>y.

Theorem 1.1 is a generalization of Theorem 2.1 of Lamperti [4] and of Lemma
3.1 of Dwass [1]. These two papers are the first published studies of the partial
maxima of i.i.d. {X;} in the form of functional limit theorems. Clearly, when
the X, are i.i.d., m,(1) —, G implies m,(f) —, G* for all # > 0, and thus in this
case, (1.2), (1.7) and (1.8) become

(1.9) PNy (m(t) < %)} = G(x)G79(x,) - - - G~5=1(x,)
O<n< <t 2),
(1.10) P(m(f) < y) = GY(y)
and
(1.11) Pu(®: y) = G*(3) x<y
=0 x>y,
respectively.

2. Classification of extremal processes. Let E — M be the class of those
processes in M which are obtained as limits via (1.3).

THEOREM 2.1. The marginals G, of m ¢ E satisfy one of the following relations
(2.1) G, (x) = G(t%(x — ¢) + ¢) forall t >0 (0 =+ 0)
(2.2) G(x) =G(x —clogt)  forall t>0(0 =0,c=0).
Moreover, if in (2.1) 6 > 0 then G, < c and if § < O then G = c.

Proor. Since m ¢ E there exists a partial maxima process m, which satisfies
(1.3). By Theorem 1 of [12] (2.1) and (2.2) follow with ¢ arbitrary. Since G,
is non-increasing in ¢, we have ¢ > 0in (2.2). By the same argument #’(x — ¢) +
¢ = x for xe (,G, G,) and t € (0, 1). Thus, if # > O0then G, < cand if § <0
then .G = c. ]

It follows that each limit process m ¢ E is completely determined by a triple
{G, 0, c) where G is a df (and serves as G,) and 6 and ¢ are real numbers. We
shall identify the process m with its associated triple (G, ¢, c¢).

For given 0 and ¢ let H(6, c) be the set of all limit distributions G for which
{G,0,c)eE.

THEOREM 2.2.

(i) H(0, 0) is the set of all nondegenerate df’s.
(ii) H(O, c) is empty for ¢ < 0.
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(iii) G e H(0, c) for ¢ > 0 iff log G(x) is concave.
(iv) Ge H(, c) for 0 > 0iff G, < c and log G(c — e~*) is concave.
(v) Ge H(0, c) for 6 < 0iff ,G = ¢ and log G(c + e®) is concave.

Proor. (i) Let G be an arbitrary df. We have to show that there exist a
sequence of df’s {F,} and sequences of reals {a,} and {b,} (b, > 0) such that
T1i*) Fy(b,x + a,) — G(x) at all continuity points of G for all + < 0. The se-
quences F,(x) = G* "(x), a, = 0, b, = 1 will do.

(ii) Obvious, since in (2.2) ¢ = 0.

(iii) Suppose G € H(0, ¢) with ¢ > 0. Then the ratio G(x)/G(x — clog) is
non-decreasing in x for each ¢ ¢ (0, 1), hence log G(x) is concave.

Suppose now that log G(x) is concave and ¢ > 0. We have to show the ex-
istence of sequences {F,}, {a,} and {b,} such that T[{*{ Fy(b,x + a,) — G(x —
clog ) for each r € (0, o). Let G, = 1 and for n > 1 define G,(x) = G(x — clog n)
if x=0and 0if x<0. Then F,(x) = G,(x)/G,_(x) (n = 1) is a df (which
vanishes on (— oo, 0)) because log G(x) is concave. Witha, = clognand b, = 1
we have
(2.3) 14 F(b,x + a,) = Gpg(x + clogn) = G(x 4+ clogn — clog[nt])
if x 4+ clogn = 0 and O otherwise. Thus the l.h.s. of (2.3) converges (weakly)
to G(x — clog 1).

(iv) Suppose G e H(0, c¢) with § > 0. By Theorem 2.1 we have G, < ¢. Let
u = x — c; then G(x)/G,(x) = G(u + ¢)/G(t’u + c). It follows that log G(c — e~*)
is concave. Conversely, suppose § > 0, ¢ = G, and log G(c — e~*) is concave.
As in case (iii) we let G, =1 and for n = 1 we define G,(x) = G(c + n’x) if
x = x, and 0 if x < x,, where x, < 0 is arbitrary. Then F,(x) = G,(x)/G,_,(x)
is a df because log G(c — e~*) is concave. With b, = n~? and a, = —cn~? we
have
24 I Fbux + a,) = Gra(n™'(x — ¢)) = G(c + [n]’n~(x — ¢))
if x = ¢ + n’x, and 0 otherwise. Thus the 1.h.s. of (2.4) converges (weakly) to
G(c + t%(x — ¢)).

The proof of (v) is analog to (iv). [J

REMARKS. In a sequence of papers [5]—[8] Mejzler studied the possible limit
df’s of m,(1), under the right negligibility condition (RNC). Namely, those
df’s G which are limits of [, Fi(b,x + a,) for some {F,, a, b,} under the con-
dition that

lim,_, max,_,., (1 — Fy(b,x +a,)) =0 Vx> ,G.
He proved that the set of these G is the set of all G which satlsfy one of the
following conditions:

(a) log G(x) is concave,
(b) log G(G, — e~*) is concave and G, < oo,
(c) log G(+G + e7) is concave and ,G > — oo.
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Notice that the third condition implies the first. Our choices of {F,, a,, b,} in
the proofs of (iii)—(v) satisfy the RNC, and thus adding this condition does not
reduce the classes H(0, c) in (iii)—(v) of Theorem 2.2.

3. Extremal processes with stationary transition probabilities. Let {X,} be
i.i.d. rv’s and suppose m,(1) —, G where G is non-degenerate. Then there exists
an extremal process m ¢ E defined by (1.10) and (1.11) such that m, — m (in the
sense of convergence of all the fdl). As we see in (1.11) the transition proba-
bilities of m are stationary. Moreover, up to scale and location parameters, G
must belong to one of the following classes of extreme value df’s: {®,: a > 0},
{¥,: « > 0} and {A} (see [3] or [12]). For any df G the process m = {G, 0, 0>
obviously possesses stationary transition probabilities, since m reduces here to a
random variable (m(rf) = m(1) a.s. for all t > 0). There is one other nontrivial
class of extremal processes m ¢ E with stationary transition probabilities. To
prove this we need the following notation. For any df G we define

G(x) = G(x)/G(G—) x <G,
=1 x=G,,
(if G(G,—) = 1 then G = G).
THEOREM 3.1. If m = {G, 0, c) € E (with §* 4 ¢* > 0) has stationary transition
probabilities then either G or G is one of the classic extreme value df’s. If G + G
then G is of ¢,,4~type.

Proor. Since

(3.1) H(t) = G,,(x)/G,(x)
does not depend on s, by a routine argument we find that
(3.2) H,(1) = H'(x)
for some H(x). From (2.1) and (2.2) we get the following table
TABLE 1
6=0 6>0 <0
limg | o Gs(x) = 1 vx 1 if x=c¢ 1 if x>¢
= G(c—) if x<e¢ 0 if x<e¢

Notice that if # > 0 then log G(c —'e~*) is concave hence G(x) is continuous at
each x < c¢. But Theorem 2.1 implies G, < ¢ thus G(c—) < 1| implies ¢ = G,,.
Now we use the table above and take the limit in (3.1) as s | 0. In view of (3.2)
we get H = G. Hence G must satisfy either G'(x) = G(t’(x — ¢) + ¢) or G'(x) =
G(x — clog?). Hence (see Theorem 2 in [13]) G is of ¢_,,-type if § < 0, of
A-type if & = 0 and of ¢, ,-type if & > 0. As follows from the table, the only
case where G = G is 6 > 0 with G(G,—) < 1. This completes the proof. []

Notice that in case § > 0and G(G,—) < 1the fdlof m = (G, 0, G,.) coincide
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with those of m = (G, 0, G, conditioned by the requirement that m(¢) < G,
for all ¢ > 0.

For every df G one can define a process m e M by putting G, = G* in (1.2),
and thus get stationary transition probabilities. But by Theorem 3.1, if G is not
one of the classic extreme value limit distributions then m ¢ E.
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