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THE EXPECTATION AND VARIANCE OF THE NUMBER
OF COMPONENTS IN RANDOM LINEAR GRAPHS
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Formulas are given for the expectation and variance of the number of
components for two definitions of random graphs. The results extend those
of R. F. Ling (1973).

1. Introduction. A linear graph of order n consists of n labeled vertices to-
gether with some subset of the (3) possible edges. Gilbert [1] considers random
graphs, where each possible edge has probability p = 1 — ¢ of inclusion in the
graph independently of other edges. Gilbert finds the probability, P,, that a
random graph of order n is connected.

Ling [2] considers the set 7, , of linear graphs of order n that have exactly r
edges. He lets I', . denote a graph picked at random from the N(n, r) = ((g' ))
possible graphs in T, .. Ling notes that the probability that I, , is connected
is C, ,/N(n, r), where C, , is a known quantity (Ling (1)).

Ling denotes the number of components (connected subgraphs) of T, , of size
J(j vertices) as T', , ;. He derives E(T', , ;) as a function of the C;, terms. We
provide a simple alternative derivation that readily yields the Var (T, , ;) and
gives parallel results for the expectation and variance of the number of com-
ponents for Gilbert’s case.

2. The expectation and variance of T', , ; (Ling’s case). Ling has proved that
(1) EC,5) =) Z:CouNn —jor = DN, 1), 1= =T1(1)G) -
We prove that
@ Var(@,,;) = ET., ) — BT, ) + 073 Hn 1 )]
where
H(n, r,j) =X i, N —2j,r — 1, — lg)C,-,,le,,z/N(n, r).

PROOF. Let E; ; denote the event that vertex i is in a component of size j.
Note that
F'n,r,j = Z?:l Xt ’
X, =1jj, if E;,

=0, otherwise .

where
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Equation (1) follows immediately by noting that

B, ;) = Zia E(X) = nPr(E;)/j

Pr(E; ;) = (522) Ly N(n — j, r — DC;/N(n, 1) -
To find (2), write

and

Var (T, , ;) = nE(X?) + n(n — 1)E(X,X,) — EXT

n,r,j) .
To find E(X, X,) = Pr(E,; n E, ;)/j?, note that vertex i and k may be in the
same or different components:

Pr (E; ; N E, ;; same component) = (323) X1, NM(n — j, r — I)C; ,[N(n, 1) ;

Pr (E;; N E, ;; different components) = (*23)(*7i7")H(n, r,j) .

Asymptotzc results. Ling (Corollary 1.1, Theorem 2, (4)—(5), Corollary 2.1)
gives several approximations for E(T',, ;). To derive approximations for
Var (T, , ;), we can approximate H(n, r, j) in our equation (2) as in the approach
in Ling (Corollary 1.1):

H(n,r,j) ={N(n — 2j,r —2j + 2)C? ,_, 4+ 2N(n — 2j, r — 2j + 1)C,
+ N — 2j, r — 2))Cj }/N(n, 1) ,

g, :—1

where C; ;_, = ji~?, and
c, (J ! ( ey T )
dii +]+2! + +(j—3)!
The other approximations can be carried out similarly.

3. The expectation and variance of the number of components in random
graphs of order n (Gilbert’s case). Let Y, ; denote the number of components
of size j in a random graph of order n. Let Y, = }7_, Y, ; denote the total
number of components. We prove that

(3) E(Y,) = Xra (DPgt P,
and
(4 Var(Y,) = E(Y,) — EXY,)

+ n—ll 'n—; n! PP qn(r+s)—r2—32—rs s
TET s n—r—s! T

where P, is the probability that a random graph of order k is connected, and ¢
is the probability that a given edge is excluded from the graph.

Proor. Let X;* = 1/j,ifE, ;, forj =1,2, ..., n; note that Y, = Y7, X,*.
The proof follows as before. Here we consider Pr (E,, n E,,) where r and s
may or may not be equal. If r = s, then vertex i and k must be in different
components.
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To use (3) and (4) first use the recurrence formula in Gilbert [1] to find values
of P,. Table 1 gives some values for the expectation and variance of the number
of components in a random graph for Gilbert’s case.

Asymptotic results. Gilbert ([1] page 1144) gives the result for large n:
P, =1 — ng"' 4+ O(n*qg""?) .

We substitute this together with the exact results P, = 1, P, = 1 — ¢ in equa-
tions (3) and (4) to find

E(Y,) =1+ ng"' + O(n*g**?),

and
Var (Y,) = ng"~! 4 O(n*q***) .
TABLE 1
Expectation and variance of number of components in a random graph of order n
Expectation
n q.1 .3 .5 7 .9
2 1.10000 1.30000 1.50000 1.70000 1.90000
3 1.02900 1.24300 1.62500 2.12700 2.70100
4 1.00424 1.11918 1.53125 2.31918 3.40424
5 1.00051 1.04497 1.36524 2.32632 4.00996
6 1.00006 1.01538 1.21936 2.20655 4.52402
Variance
n q.1 .3 .5 7 .9
2 .09000 .21000 .25000 .21000 .09000
3 .03016 .23795 .48437 .54287 .26560
4 .00434 .12976 .53027 . 88989 .52110
5 .00051 .04482 .33144 .98818 . 89052
6 .00006 .01748 .27195 1.04536 1.38317
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