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EQUIVALENCE OF INFINITELY DIVISIBLE DISTRIBUTIONS

By WiLLiaM N. HupsoN AND HowARD G. TUCKER
University of Utah and University of California, Irvine

If F is an infinitely divisible distribution function without a Gaussian
component whose Lévy spectral measure M is absolutely continuous and
M(R\{0}) = co, then F is shown to have an a.e. positive density over its
support; this support of F is always an interval of the form (—oo, o),
(—o0, a] or [a, o). In addition, sufficient conditions are obtained for two
infinitely divisible distribution functions without Gaussian components to
be absolutely continuous with respect to each other, i.e., equivalent.

1. Summary and introduction. The general problem of concern here is that
of absolute continuity of one infinitely divisible distribution function with respect
to another. Since, however, two distributions which are each equivalent to
Lebesgue measure over R* are equivalent to each other, this more specialized
problem is investigated as well. By absolute continuity of one distribution
function, F,, with respect to another, F,, we mean absolute continuity of the
Lebesgue-Stieltjes measure determined by F, on (R!, £&") with respect to the
same determined by F,. Equivalence of two measures means absolute continuity
of each with respect to the other. A number of particular problems of this sort
and related problems occur in fairly recent literature. A. V. Skorokhod has
considered in [10] and [11] conditions under which a translate of such a measure
is absolutely continuous with respect to the original measure. A related but
different problem is that of absolute continuity of probability measures over a
function space determined by stochastic processes with independent increments;
necessary and sufficient conditions for this were obtained by A. V. Skorokhod
in [9]. The results obtained here are for infinitely divisible distribution functions
without Gaussian components. Such a distribution has a characteristic function
of the form

(M) ) =exp i+ 58+ 550 (e — 1 — ) waw)]

1+ x?
where 7 is a real constant and M is a measure, called the Lévy spectral measure,
defined over all Borel subsets of IR*\{0} such that M(4) < oo for every Borel set
A4 whose closure does not contain 0, and such that §Z¢ + (I x2M(dx) < oo.

In Section 2 sufficient conditions are obtained for an infinitely divisible distri-
bution function F without a Gaussion component to be equivalent to Lebesgue
measure over R' and over intervals of the form (— oo, @] or [a, co) when such
an interval is the support of F. In particular, it is shown that if M(R\{0}) = co
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EQUIVALENCE OF DISTRIBUTIONS 71

and if M is absolutely continuous with respect to Lebesgue measure over R*\{0},
then the support of F is as just stated, and F is equivalent to Lebesgue measure
over its support.

In Section 3, sufficient conditions are found for equivalence of two infinitely
divisible distribution functions F, and F, with no Gaussian components. It is
proved that the conditions obtained are equivalent to conditions in a theorem
by Gikhman and Skorokhod ([2]; see Theorem 6.3 on page 125).

The following notation and definitions will be used. The same symbol will
be used for a distribution function (or any non-decreasing function) and the
Lebesgue-Stieltjes measure it determines; i.e., if F is a distribution function,
F(x) = F(— o0, x), and F(A) = {, dF(x), this integral being a Lebesgue-Stieltjes
integral. If X is a random variable, then F, denotes the distribution function
determined by X, i.e., Fy(A4) = P[Xe A]. We denote R' = (— o0, +o0) and
" to be the sigma-algebra of Borel subsets of R'. The letter A will denote
Lebesgue measure over R'. If F and G are distribution functions (or any non-
decreasing funtions), we say F is absolutely continuous with respect to G, written
F « G, if G(4) = 0 implies F(4) = 0. If F € G and G  F, we shall say that
F and G are equivalent and shall denote this by F ~ G. In particular, the above
definition must be born in mind when the condition M ~ A over R*\{0} is used.

2. Equivalence with Lebesgue measure. In Theorems 1, 2 and 3 in this sec-
tion, sufficient conditions are established for an infinitely divisible distribution
function, F, without a Gaussian component to be equivalent to Lebesgue meas-
ure over R! and over intervals of the form (— oo, @) and (a, o).

LemMA 1. If X and Y are independent random variables with distribution functions
F and F, respectively, if F, & A, if (c, d) is any interval over which the density
of Fy is positive a.e. [A], and if b e R* is such that Fy([b, b + €]) > O for every
¢ > 0, then the density of F,, is positive a.e. [A] over (b + ¢, b 4 d). (Note: ¢
and 5 may be — oo, d may be 4 co. Also, the lemma is clearly true for convo-
lutions of finite measures.)

Proor. We denote the density of a random variable W by ¢,,. The convo-
lution of F, and F,, is known to be absolutely continuous with density ¢, ,(z) =
§°w ©x(z — y)Fy(dy). Let ze(b 4 c¢,b+4d). Then b +c <z or z—c>b,
from which we obtain

Cxiv(2) Z S1o,0-0) Px(2 — Y)Fy(dy)

and where, by hypothesis, Fy([b,z —¢)) > 0. Also z< b+dorb>z—d.
Now ¢x(z —y) > 0ifc<z—y<dorz—c>y>z—d, and hence if z —
¢ >y = b. Thus the above integral is positive. []

LeEMMA 2. If ¢ is a nonnegative, Borel measurable, real-valued function over IR*
with finite, positive Lebesgue integral, then the convolution of ¢ with itself is positive
over some open interval.
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Proor. We shall refer in this proof to the notion of metric density and the
following known theorem (see [6] pages 222-224): if 4 is a Borel measurable
subset of R* of positive Lebesgue measure, then there is a subset 4, of A of
measure zero such that every x e 4\4, has metric density 1 with respect to 4,
ie., lim, ,(2e)7"A((x — e, x +¢) N A) = 1. Let S = {x: ¢(x) > 0}. We may
assume without loss of generality that every point in S has metric density 1 with
respect to S. Thus for arbitrarily small ¢ > 0 (¢ < {;), there exists an interval
(u, v) such that A((u, v) 0 S)/(v —u) > 1 —e. LetT = (u,v) N S. Then —T =
{t: —teT}c (—v, —u),and —T + u + v C (u, v). Let

U=(—T+4+u+v)nTC (uv).

Then A(U) > 0, and U is symmetric with respect to (z + v)/2, and every point
in U has metric density 1 with respect to U. Thus U+ U =U — U + u + v.
Now, by a known result (see, e.g., [4] page 68) U — U contains an open interval
which contains 0. Hence there exists a nonempty open interval 7 C U + U.
Let ¢, be defined by ¢,(x) = ¢(x) if xe U and = 0 if x ¢ U, and define ¢, =
© — ¢y SinCe ¢ x ¢ = @y x oy + 20, * @ + @, * ¢, it is sufficient to prove
oy * oy(x) > 0 for all xe U 4+ U. To do this, we note
Py * pp(@ + 8) = §y op(@ + b — y)pu(y) dy
for ae U, be U. By properties of U, if 0 < § < 1, there exists an ¢, > 0 such
that for 0 < ¢ < ¢,
*) A — e, b+ ¢) n U) > 2¢(1 — 9) and
(**) A((@ —¢,a+¢) nU) > 21 — 9).
Let us denote C={ye (b —¢,b+¢): gy(a+ b — y)py(y) > 0}. It is now
clearly sufficient only to prove A(C) > 0. To do this, we note that
A((b — &b+ e\C) S A({ye(d — &b+ )i pyla+ b —y) =0}
+ A E® — &b+ pyly) = 0)).

By (*), the second term on the right is less than 2de. By (**), the first term on
the right of the inequality equals

At —ye(—ee) py(a+ b —y) =0}
=A{te(@ —c¢,a+ ¢): pu(t) = 0}) < 20 .
Thus, A(C) > 0. [] ,

THEOREM 1. If F is an infinitely divisible distribution function with characteristic
Sunction f(u) = exp{§&, (e™*— 1)M(dx)}, if M & A over (0, o), if 0 < §5, xM(dx) <
oo, and if M((0, o0)) = oo, then F ~ A over (0, o) and F((0, o0)) = 1.

Proor. It is already known [12] that the hypotheses imply F € A, so we
need only prove A « F over (0, co) and F((0, co0)) = 1. This second conclusion
easily follows from the fact that F ¢ A and Theorem 1 in [12]. In order to
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prove A K F, let co = b, > a, =b,>a, = --- > 0besuchthat b, | 0asn—
oo and M((a,, b,)) > O for all n. Let us denote 1, = M((a,, b,)) > 0. Then let
fa(¥) = 2,7 M'(x) if x € (a,, b,) and = 0 if x ¢ (a,, b,); f, is clearly a probability
density of a distribution function which we denote by F,. By Lemma 2 there is
an interval (u,, v,) C (2a,, 2b,) such that f, « f,(x) > 0 for all x € (,, v,). Ob-
serve that 0 < u, < v, and v, — 0 as n — co. We prove the following

CramM. Given x > 0, there exist positive integers ky, k,, n,, n, (n, # n,) such
that kyu, + kyu, < x < kv, + k, v,,- Indeed, let n, be large enough so that
4, < x. Then there exists k, such that ku, < x < (k, + Du, . If kv, = x,
the claim is proved, since we can select k, = 1 and n, such that u, < x—ku,.
In case k,v, < x, let n, be such that u,, < min {x — k,v,, v, — u,}. Then
select k, such that k,u, + k, u,, < x but kyu, + (k, + Du,, = x. Then x <
ko, + kyu, + v, —u, <0, + (ks — Du, + k, u,, < kw, + k,v,, which
proves the Claim. Now for two distinct positive integers n, and n, we may write
F = K x L, where K and L are distribution functions with corresponding charac-
teristic functions

exp{§ort + §a1 (e — 1)M(dx)}

%n1 Cng

EXP{ X jtnymy S (67 — 1)M(dx)} .

As noted before, L € A and L((0, o)) = 1. But for every pair of positive
integers k, and k, we may write

and

k

_a, A2 . _a, Ak
K= (Zi%"e " —jTIF:11> * <Zk;oe tny g F::)

k!
=U+7V,
where
_ 22/612215
U = e *mtiny .—151'7(22’— F;’:lakl * F;‘::kz
1° 2°
and

V =CF*sH, + CFi « Hy + C,H, « H,;

in the expression for V, C,, C, and C, are constants, and H, and H, are distri-
bution functions which give zero mass to (— oo, 0), positive mass to {0} and
are absolutely continuous with respect to A over (0, o). Now by Lemma 1,
F¥a*1« F* has a positive density over (k, U, + kg, kyv, + kyv,); itis clear,
by Lemma 1 and remarks above, that ¥ is absolutely continuous over this same
interval, and hence K has a positive density over this interval. Since sup{x:
L(x) = 0} = 0, it follows from Lemma 1 that F has a positive density over
(kyu,, + kyu,, kv, + kyv,). The Claim above insures that

(0’ OO) = Ukl,kz,nl,n2 (kl unl + kzunz’ klvnl + kalvna) .
Thus F has a positive density over (0, o), i.e., F ~ A over (0, c0). []

THEOREM 2. If F is an infinitely divisible distribution function with characteristic
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function exp {3, (e™* — 1 — iux/(1 + x*))M(dx), where M & A over (0, co) and
6+ xM(dx) = oo, then F ~ A over R.
Proor. Let us define
M,((x, o0)) = M((x, 0)) if x=1
= M((1, o)) + §% tM(dt) if 0<x<1.

One easily verifies that M, is a Lévy spectral measure for which {j, xM,(dx) < oo.
We also observe that M — M, is a Lévy spectral measure, since 0 < x < 1 im-
plies M((x, 00)) = M((1, c0)) + §& M(df) = M((1, o0)) + {3 tM(dr) = M((x, ),
and since by a similar calculation (M — M)){(x’, x")} = 0for0 < x’' < x" < 1,
and §§x*(M — M,)(dx) < oo. Because {j, xM(dx) < co, we may consider a
distribution function F, with characteristic function

fl(u) = €Xp §or (e — 1)M (dx) .
For every n > 2 we consider distribution functions H,, I, and A, with charac-

teristic functions

CXP S(O,l/'n] <eiua: -1 - 1 l_lll_xx2> (M - Ml)(dx) ’

eXp Yo/m, (€ — 1) (M — M,)(dx)

and exp{iua,} respectively, where

x x
Ay = — § 1m0 5 M(dX) — §0,1) 7——— Mi(dx) .
1 4+ x 1+ x

Then F = (A, « F)) x (H, x T',). We next observe the following:

(i) a, > —oc0 as n — oo,
(i) H, —,E where E(x) =0ifx<land =1ifx> 1,
(iii) for all large n, I",,({0}) > O (since I, ({0}) = exp{—(M — M,)((1/n, 1])} > O
for all ), and
(iv) F; ~ A over (0, o) (by Theorem 1).

Now let 4 be any Borel set such that F(4) =0. For N=1,2, ..., let 4, =
A N [—N, oo); it is sufficient to prove A(4y) = 0 for arbitrary N to obtain
A (F. By (i) above, for fixed N, a, < —N — 1 for all large n. Next, (ii) and
(iii) above imply

@) H, « Ty((— o0, 1) = Hy((— o0, INL,({0}) > 0

for all large n. The formula F(A) = =, (A, * F\)(Ay — x)(H, « T, )(dx) =0
yields A, « Fi(Ay — x) = 0 a.e. in x with respect to the measure H, « I',. But
(2) implies that for every n sufficiently large there exists an x, < 1 such that
A, x F(Ay — x,) = 0. Thus for each such n, 4y — x, C [—N — 1, ). By
(iv) and the fact that @, < —N — 1 for large n we obtain A, « F; ~ A over
[-N—1, ). ThusA(A4, — x,) = 0, implying A(4,) = 0, which proves A  F.
The relation F ¢ A is known in this case; see [13]. []
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THEOREM 3. If F is an infinitely divisible distribution function without Gaussian
component, if M & A over R\{0}, if M(R"\{0}) = oo, and if M((—c0, 0)) >0
and M((0, o0)) > 0, then F ~ A over R'.

Proor. If {-§ 4 {%,|x|M(dx) = oo, then by Theorem 2, F is the convolution
of two distribution functions of which at least one is equivalent to A over R?,
and thus in this case F ~ A over R'. Now suppose §% 4 %, |x|M(dx) < co.
Then we may write F = G x H, where G and H have characteristic functions of the
form exp{iup + §=¢ (e®** — 1)M(dx)} and exp{§%, (¢"* — 1)M(dx)} respectively.
If M((0, o0)) = oo, then by Theorem 1, H ~ A over (0, o) and H((0, o)) = 1.
In this case, M((— oo, 0)) can be finite or infinite. If it is infinite, then by
Theorem 1, G ~ A over (—oo, ), and hence by Lemma 1, F =G« H ~ A
over R'. If M((— o0, 0)) < oo, then define a distribution function L by L(4) =
A*M((— o0, 0) N A) for every Borel set 4 C R*, where 2 = M((—o0, 0)) > 0
by hypothesis. Then G may be written G(4 — B) = >},5, e *(A*/k!)L**(A). Now
L ¢ A, and hence L** ¢ A for all k = 1. By Lemma 2, there is an open inter-
val (u, v), where u < v < 0, over which L*? has a positive derivative. For every
positive integer n, we have by Lemma 1 that L**" has a positive derivative over
(nu, nv). By the above representation, G has a positive derivative over
Ug, (nu — B, nv — ). Applying Lemma 1, we obtain that G « H has a positive
derivative over R?, i.e., F ~ A over R*. A similar argument holds in the case
M((— o0, 0)) = co. []

3. Equivalence of infinitely divisible distributions. Any distribution func-
tion convolved with a nondegenerate Gaussian distribution will have a positive
density everywhere. Thus, it is equivalent to Lebesgue measure over R*, and
any two such probability measures are equivalent. As in the previous section,
we are forced by the above observation to consider only infinitely divisible dis-
tribution functions without Gaussian components. Sufficient conditions are
obtained in order that two such distribution functions are equivalent. Forj =
1,2, let F; be an infinitely divisible distribution function with characteristic
function

B) i) = exp fiur + 520+ §50 (e — 1 - $HE) M@

where 7 and M are as in (1).
THEOREM 4. If F, and F, are as in (3) and satisfy the following hypotheses,

(i) M;R\{0}) = oo forj=1,2,

(i) M, < M,
(iii) §ruyo ( 1 — (dM,[dM,)})* dM, < oo, and
(1Av) 71— 72 = e /(1 + XH))(M, — M,)(dx),

then F, & F,. On the other hand, if (i), (i) and (iv) hold, and if F, | F,, then
§rno (1 — (dMy/dM,)t)* dM, = oo.
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PROOF. Let co = ¢, > & > ¢, > - .- besuch thate, | 0asn — oo, and denote
S, ={x:¢en S |x| < ep_y}form=1,2.... Because of (i) we may assume with-
out loss of generality that M(S,) > 0 for j = 1,2 and for all m > 1. Let us
denote (S,,)* as the Cartesian product of S, with itself k times. Considering the
sequence of Cartesian products {{k} x (S,)* k = D, 1,2, ...} as disjoint sets,
we denote Q,, = Uz, ({k} x (S,)¥). We define a sigma-algebra 2[,, of subsets of
Q,, as the class of all sets of the form 5., ({k} x 4,), where A, is a Borel subset
of (S,)*. Let2,, = §s, M,;(dx) > 0forj =1, 2, and define probability measures
G, and H, over the Borel subsets 4 of S, by G,(4) = A:M(A) and H,(A4) =
A;My(A). Define measures p,, and v,, over (Q,,, 2,,) as follows: for 4, any Borel
subset Of (S k = 1,2, -+, pn(Uso () X A) = T 5o0 e im(Zn/k1)(G)H(4L),
and v, (U5 (k) x 4,) = Yivo, e am(Ak, [k!)(H,)¥(A4,), where (G,)* denotes the
product measure of G,, with itself k times over (S,,)* and (H,)" is the same for
H, LetQ = Xz_,9,,andlet 2, p, v be the product sigma-algebra of {2}
and the product measures of {z,,} and {v,,} respectively. With this notation estab-
lished we proceed with the computation of the inner product §o_(dp,/dv,)t dv,,.

Since M, € M,, then G,, € H,, over S, form = 1,2, ..., and thus
dp _ Aim \¥ dG
S (ky Xgy Xgy v 005 X =e(llm"12m)<_ﬁ"_> f____m_xs
dv,, (k% % t) Zom ='dH,, (<)
at the point (k, x,, ---, x,) € Q,,. Hence
sa.m(d/'tm/dum)* dvm

= Xi=0 S(k)x(s,”)k (dptmldvy)t dv,
A, A, )2 dG. \}
=z G fanl™ x4 + 2} §is ¢ (1151 20=) T4 e
k! dH,

= exp{_%(llm + 22,,,)} Z?=0 {('zlm sz)* SSm (dGm/dI{m)i de}k/k! °
dG, <£1ﬂ>“‘ dM,
dH, \X,,/ dM,

over S, we have §s (dG,/dH,)} dH,, = (A1 A3n)7* s, (dM,[dM,)} dM,. Hence

$a,, (Aitm/dvn)t dvy = eXp{—3(4im + 4im) + s, (dM,|dM,)} dM,}

o {45, (422 + )

- oo {1~ (22 .

According to Kakutani’s theorem (see [5] page 453) p « v if and only if
Iz Sa, (dptm/dv,)t dvy > 0; otherwise # | v. According to the above calcu-
lation, this condition says that 4 « v if and only if

o 431 (2 ) >o.
dM,

i.e., if and only if (1_-<
i.e., if and only if § i

2

Since

>i>2 dM, < oo .
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Now define the random variable Z,, on Q as follows: if (y,, y,, - --) € Q, where
Im = (ks Xy -y %) €k} x (S,)E C Q,ythen Z, (yy, -+« Yoo+ +) = Xy + -+ -+ Xy
It is clear that the random variables {Z,, Z,, - - .} are independent over (Q, 2, z)
and over (Q,%,v). The characteristic functions of Z, are E(e™%m)=
exp{ls, (¢ — 1)M,(dx)} and E (¢"*?n) = exp{{s (e™* — 1)My(dx)}, where E,,
E, are understood to mean expectations with respect to the probabilities s, v
respectively. Now define T, = 7, + 2%-1(Z; — {5, (x/(1 + x*))M,(dx)). Then

E, (e"Ta) = exp {iu;f‘ + Sioize, (em —1— 1 l_'lixx2> Ml(a’x)}

and

E, (€Ts) = exp {iurl Vieize, - ’_:fx M, (dx)

+ Siaize, (€™ — 1)M2(dx)} .

Since {E,(e**"»)} converges as n — co to exp{iuy, + § (e™* — 1 — (iux/(1 + x*)) x
M,(dx)}, then {T,} coverges in law. Since {7} is a sequence of partial sums of
independent random variables, it follows that {T,} converges a.e. [¢]. Now by
hypothesis (iv),

iux

lim,_, exp {iu(r, - }’1) Slwlaen 1+ x

(M, — M, )(dx)}
and

E,(e"T») exp {i”(Tz = 7)) = Veize, ——— 1o + - (M, — Ml)(dx)}

= exp {iur, + Sm;s,, (e““‘ -1 - i l_'ljxﬁ) M,(dx)} .

These last two computations imply

lim, ., E (e""n) = exp {iurz + (e““‘ -1 - i i’x ) z(dx)}
and that {7} converges a.e. [v]. Define T = lim,_,, T, over the intersection of
the two sets of convergence, and T = 0 otherwise. It is readily observed that
pT~' = F, and vT~* = F,. Since under our hypotheses we obtained p < v, it
follows by Lemma 1 that u7T-! ¢ vT-1, i.e., F, € F,. On the other hand, if
F, 1 F,, then p | v, which implies

(1= () o= -

REMARK 1. It should be noted that hypothesis (i) in Theorem 4 is used only
in the second sentence of the proof, and not in its full strength. It should be
remarked however that if M;(R"\{0}) < co for both j = 1, 2, then all that is
needed is (ii), namely M, € M,, in order to obtain F, £ F,; the proof for this
is very easy and may be found at the end of the proof of Theorem 6.3 in [2].
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If M,(R"\{0}) < o but M,(R"\{0}) = oo, then the conclusion F, € F, is not
true. This follows from a theorem by Blum and Rosenblatt [1] and also by
Hartman and Wintner [3] which states that F, is continuous but F, is not.
If M,(R"\{0}) = oo and M,(R"\{0}) < oo, then we can show that condition (iv)
is never satisfied. Indeed, since x?/2 < (1 — x)* for x = 4, we obtain, letting
p = dM,/dM,,
Srvo (1 — 2 M, = §ppzin (1 — 08) dM, 2 §ipzin 30 dM, -
But
M(R\O0}) = Stozia1 0 dM; + §ppsi p dMy = o0,

and
S[pgm] pdM, < 16M,[p < 16] < 16M2(R1\{0}) < oo.

Hence §;,.,4 p dM, = oo, and consequently {g1, (1 — p*)? dM, = oco.

REMARK 2. We present here for the sake of completeness a proof that con-
dition (iii) of our Theorem 4 is equivalent to the condition

dM, )
M,

4 ng =D g =
“4) SR\(O)I—{—lp—ll s < 0 (P

which occurs in Theorem 6.3 in the paper by Gikhman and Skorokhod [2]; this
fact has been noted without proof at the end of Section 2 in [8]. In order to
prove this, one first observes that by applying the mean value theorem to the
function (1 4 y)! one obtains the inequality

©) L+ -1rs

for all ye[—4, 4]. Replacing y by p — 1 in (4), we obtain

3 Sto-uen (0 — 1AM, < §pmyeyn (1 — p2) dM,
= ¥ Suo-u<uy (0 — 1)*dM, .
Hence we have:
(@) Sipenen (1 — 1) dM, < oo if and only if §;, 4 (0 — 1)*dM, < oo,
which is easily seen to be equivalent to

=1 M
Sto-1<11 T+ = 1| g < 0

Now, since (1 — (x + 1)})?* ~ x?¥/(1 + |x|]) (as x — o), we have, upon replacing
xbyp—1:
(b) for T sufficiently large, §;,_y>r (1 — p*)?dM, < oo if and only if

=1 M
Sto-1>m T+ ]o =1 y < 00

Since over [§ < |o — 1| £ T], both (1 — p?)* and (p — 1)*/(1 4 |p — 1]) are
bounded above and bounded away from zero, we obtain:
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©) Susio—usm (1 — p)?*dM, < oo if and only if

(o — 1) aM.
< oo,
Tlo—1

(Note: Both conditions are equivalent to M,({x: } < |p(x) — 1| £ T}) < o0.)
The statements (a), (b) and (c) yield the remark.

S[&Slﬁ—lléT]

REMARK 3. It should be pointed out that hypothesis (iv) of Theorem 4 is an
assumption on 7, and 7, and not on M, and M,. More precisely, hypothesis (iii)
implies that

x
Srivor 1 _I'_|x2 |M; — M,|(dx) < oo .

This is noted by Charles M. Newman [7] and proved by him in [8].
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