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SUPERCRITICAL MULTITYPE BRANCHING PROCESSES!

By FrRep M. HopPE
Princeton University

We show that there always exists a sequence of normalizing constants
for the supercritical multitype Galton-Watson process so that the normal-
ized sequence converges in probability to a limit which is proper and not
identically zero. The Laplace-Stieltjes transform of the limit random
variable is characterized as the unique solution under certain conditions

of a vector Poincaré functional equation.
\

1. Introduction. Let {Z, = (Z,“, ---,Z,¥)} denote a positively regular,
supercritical, d-type Galton—-Watson process. The matrix M of offspring expec-
tations has maximal eigenvalue p, 1 < p < oo, with corresponding positive left
and right eigenvectors v and u respectively. A generic point in R¢ will be
denoted by a = (a,, - - -, a;), with 0 the zero point, 1 = (1, ..., 1) the unit
element, and {e},* the basis vectors, e, having 1 in the ith place and zeros

elsewhere. The following normalization which uniquely determines v and u.

will hold throughout the paper: v.u =1, u-.1= 1. An inequality or limit
relation between two vectors or matrices is always to be interpreted as holding
componentwise. .

In what follows, F denotes the offspring probability generating function
(p-g-f.), that is F(x) = (F®(x), ..., F¥(x)) where F* is the p.g.f. of Z, given
that Z, = e,. The equation F(x) = x has two and only two roots in the unit
cube [0, 1], x =1 and x = q < 1. The root q is called the extinction pro-
bability vector because ¢, = Pr[Z, — 0|Z, = e;,]. R denotes the matrix with
components R;; = u,v; and equals lim, _,, o~"M".

By F, we denote the nth functional iterate of F. It is well-known that F,®
is the p.g.f. of Z, give'n Z,=-¢e, Ifx =#1then lim@m F,(x) = q. Proofs of all
preceding assertions can be found in the treatise of Harris (1963), to which the
reader is referred for supplementary background material.

We shall be making heavy use of an expansion for F due to Joffe and Spitzer
(1967),

(1.1) 1 - F(x) = (M — Ex))(1 — x)
where 0 < E(x) < M, E(x) is nonincréasing in x (with respect to the partial
order induced by <) and tends to zero as x — 1.
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Kesten and Stigum (1966) have shown that the limit p="Z, as n — oo always
exists and is not identically zero iff

(1.2) E[Z/®log Z, |Z, =€) < co  forall 1<a,p<d.

In case (1.2) is satisfied then the limiting random variable is proper, has all its
mass concentrated along the direction v and its mean is finite.

What then if (1.2) is broken? Seneta (1968) has shown for d = 1, that
there always exists a positive sequence {c,}, essentially unique, such that
lim, . c,Z, = W always exists in distribution, where W is proper and not
identically zero. (This result was subsequently strengthened by Heyde (1970)
to a.s. convergence.) The purpose of this paper is to show that analogous results
hold for multitype processes. Our approach is considerably simpler than that
of Kesten and Stigum who relied on a difficult truncation argument but we
prove convergence in probability rather than a.s. convergence, although we do
prove a.s. convergence for the associated scalar process {u - Z,} properly normal-
ized, and obtain the more general norming constants. The technique we use
combines the functional equation approach of Seneta with the exponential
martingale of Heyde.

2. Main results.

THEOREM 2.1. There exist positive sequences {c,} of vectors and related scalars
{7.} such that for each i, if Z, = e, then:

2.1) lim,_.¢c, - Z,= W% a.s.;

(2.2) lim, o 70/Tnsr = 0

(2.3) lim, ... €,/7, = u;

2.4 lim, ,7,u-Z, = W% as.;

(2.5) lim, . 7,Z, = Wy in probability; and
(2.6) Priv® < oo]=1, Pr[Ww® =0]=g,.

THEOREM 2.2.
2.7) ¢, ~ p~*L(p™")u (n— oo)
where L(s) varies slowly as s — 0.
(2.8) lim,_, o"r, = m exists for some 0 < m< oo,
and m < oo iff (1.2) holds, equivalently iff E[W'“] < oo for one (and then all) i.

THEOREM 2.3. Up to a scale factor, there is a unique strictly decreasing and
convex (componentwise) solution with ¢(0+) = 1 to the vector Poincaré equation

(2.9) P(ps) = F(9(s)) , s€[0, c0),
given by @(s) = (PV(s), - - -, 9'(s)), where ¢V(s) = E[exp(—sWD)]. Furthermore

v (1= g(is) _
(2.10) llm,ﬂov—.(l—-:m =2, all 2>0,
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and
(2.11) lim, ., (1 — @(s))/v - (1 — @(s)) = u.
3. Preliminary lemmas.
LEMMA 3.1. There exists a sequence {X,}v_, with X, # q or 1 for all n, such that
F(X,.1) = X, n=20,1,....

Proor. Let Q denote the closed hypercube {x:q < x < 1}. By the mono-
tonicity of F(.) and the fact that q is a fixed point it follows that the successive
images F,(Q) are nested, i.e., Q 2 F(Q)2F,(Q)=2 .- F,(Q) 2 ---. Since
F(.) is continuous, the compactness of Q implies that of F(Q), and then by
induction F,(Q) is compact for all n. Similarly, since Q is connected, so is
F,(Q) for all n. Let {F,(Q), ---,F, (Q)} be an arbitrary finite set of images.
Set n = max {n,, ---, n,}. Then by the nested property, N%_, F,(Q) = F.(Q)
and hence arbitrary finite intersections of members of the sequence {Q, F,(Q),
F,(Q), - - -}are connected. Let Sdenote M, F,(Q). Then by a result in Kelley
((1967), page 163) S must also be connected. But q e S and 1¢S. Hence there
exists a third point x, in S. Consequently, for each integer n = 1, there exists
an x, such that x, = F(x,). Now define foreachj (0 <j < n — 1), x, =
F(x{*,). None of the x; equals 1 or q, for induction yields x, = F;(x;) and
clearly x,;™ equals q or 1 iff x, equals q or 1 respectively, but our choice of x,
precludes this.

Next consider the lower triangular array {x,”,n=20,1,2...;i=0,1,
2, ..., n}. By the Bolzano-Weierstrass theorem we may extract from the second
column a convergent subsequence, say {x,™’, x,, ...}, tending to a limit
denoted by x,. Since F(x,"") = X, for all superscripts (n;) and F(.) is continu-
ous, it follows that F(x,) = X, and thus the assertion of the previous paragraph
also applies, namely X, equals neither q nor 1. Next from the third column
extract a convergent subsequence {x, ™, x,(™”, . ..} tending to a limit x,. (Note
that the sequence of integers {m,, m,, - --} is chosen from {n, n,, --.}.) Thus
F(x,) = lim;_, F(x,”#) = lim;_,, X, = X, and as before X, equals neither q
nor 1. By this method we inductively generate the required sequence. []

DerFINITION. We call a sequence such as {x,} a sequence of backward iterates
under F.

REMARKS. (1) It is relevant to note that in case d = 1, the sequence of
backward iterates may be chosen as the successive iterates of the inverse function
of F for any initial point chosen in the open interval (g, 1).

(2) We do not give a proof, but it will readily follow from Theorem 2.3 that
the intersection set S is in fact, a simple curve, connecting the points q and 1,
which is invariant under the mapping F, and is also given as

S=1{g(s):s =0} U {q}
where ¢ is defined by (2.9). Any point on § excepting the end points is a valid
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starting point for backward iteration and conversely all backward iterates must
lie on S. Moreover S is the unique invariant curve for F.

LemMMA 3.2. lim x, = 1.

n—00

Proor. Suppose the contrary and let {x, } denote any subsequence remaining
bounded away from 1. Thus we may find C # 1 such that q < X,, = ¢ for all
J. Henceq < F,(x,) <F, () and since F, ({) — q as j — oo, we . obtain X, =
q, a contradlctlon [I

Lemma 3.3. lim, v - (1 —x,)/v-(1 —X,,,) = p.

Proor. This follows from Lemma 3.2, since, from (1.1), v - (1 — F(z))/v -
l—-z)—-pasz—1—. ]

LemMA 3.4. Let {E;} be a sequence of matrices satisfying 0 < E; < M and
0 < E; < B;0R for all j, the inequalities holding componentwise, and {8;} being a
positive sequence. Then there exists a positive null sequence {0,} such that for all
n=1
(3.1 (1 =0, — D3P IR < 0 [I5m (M — Ej) < (1 + 5,)R

The reader may find a proof in Theorem 3.5 of Seneta ((1973a), page 75)
where the result appears in a more general context. This lemma will play a
fundamental role in the sequel in obtaining Perron-Frobénius type projection
theorems for inhomogeneous products of nonnegative matrices.

Note that in (3.1) and in later occurrences of matrix products, the order of
matrix multiplication is immaterial for the purpose at hand.

Lemma 3.5. lim, . (1 —x,)/v-(1 —x,) =u.
Proor. Iteration of (1.1) gives us
1 —x, = (I35 (M — Ex;)(1 — X,.) -

The sequence {E(x;)} fulfills the conditions of Lemma 3.4, and the sequence {3,}
may be chosen so as to decrease to zero. As a consequence

1—6 Zgn+1181u<(1—-xn)/V’(1_xn)— 1+5N
1-]—5 1—5 ?:ﬁlﬂj

for all sufficiently large N and all sufficiently large n (depending on N), where
we have used the fact that Rz/vRz = u for all z # 0. By letting first » and then
N tend to infinity we see that the lemma is true. []

4. The normalizing constants. We define the constants

4.1 ¢, = —logx, ,

where by this we mean that ¢, = —log x,” (1 £i<d). Similarly x, =
exp(—c,) = (exp(—c,”, - - -, exp(—c,?))), and since x,, = F(x,,,,) we conclude
that

4.2) ¢, = —log F(exp(—c¢,,,)) .
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In case d = 1 these constants reduce to those used by Seneta (1968). Employing
a first order multivariate Taylor expansion for the logarithm, and Lemmas 3.3
and 3.5, it is easily verified that
(4.3) lim, ,v-c,/v.c,.,=p, and
4.4 lim, . c,/(v.c,)=mu.

5. A martingale. Let &, denote the s-algebra generated by the set {Z,,

Z,---,Z,}. Define W,=c¢,-Z,and Y, = exp(—W,). Let 2 denote all d-
tuples of nonnegative integers.

THEOREM 5.1. The sequence {Y,, & ,} is a martingale.

Proor. E[|Y,|] < o obviously so that it only remains to show that
E[Y,.,| % ,] =7, a.s. The g-algebra & is generated by sets of the form
z,=1iy -, 2, ,=1i,,,Z, =K}, (i, -- -, i,_;, ke ¥7), on each of which the
conditional expectation is constant and assumes the value E[Y,,|Z, = iy, -- -,
Z, = k], which by the Markov property equals E[Y,,,|Z, = k]. We decom-
pose the (n 4 1)th generation as

Z,,= Z,Z'é‘;l) Vj(l) + -0+ Zgz'é‘;d) Vj(d)
where V;® denotes the offspring in the (n 4 1)th generation of the jth parent
of type a in the nth generation (with appropriate convention for the summation

sign if no parents of the type « exist). Recalling the independence of offspring
reproduction we have

ElY,.|Z, = k]
= E[IL4-1 I15%: eXp(—Cppy - V)] = TLacs I15%1 E[eXP(—Cppy - V)]
= T4 I15% F(exp(—¢,.1)) = exp(—c, - k).
Thus E[Y,,,| % ,] = exp(—c¢, - Z,) = Y,a.s. []
6. Proofs.

Proor oF THEOREM 2.1. Initiating the process with Z, = e,, we then have by

the martingale convergence theorem, the existence of
lim, ¢, -Z, = W® a.s., proving (2.1).

Defining y, = v - c,, the assertions (2.2) and (2.3) are just restatements of (4.3)
and (4.4), and then (2.4) is immediate.

If ¢,'9(s) = E[exp(—¢, - Z,5)|Z, = ¢;]and ¢V(s) = E[exp(—sW?)], then by
the continuity theorem for Laplace-Stieltjes transforms,

limnaw ¢n(i)(s) = ¢(i)(s) 4 ' s > 0.

Introduce the vectors

(6.1) B(s) = ($7(s), - -+, $“(s))  and
Bu(s) = (8.7(5), -+ +» $.7(s)), n= 1,
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so that
6.2) $.(5) = F(exp(—sc,)) .
Given any ¢ > 0, for all sufficiently large n,
Cos(l — &)f0 S €, < €y (1 + )fp by (2.2) and (2.3),
which implies by (6.2) that

F(@.1(5(1 4 ¢)/0)) < Bu(s) < F(B,-i(s(1 — €)/p)) ,

giving in the limit equation (2.9). Next, observe that ¢(0+) and @(co) are fixed
points of F(+) which we now show cannot be equal. For if so, then ¢(1) is also
a fixed point of F(.), but ¢(1) = lim,_., ¢,(1) = lim,__, F,(exp(—c,)) = X,, a
contradiction. The remaining possibility is that ¢(0+) = 1 and ¢(c0) = q
which is exactly (2.6). Thus ¢; = Pr[W® = 0] = Pr[Z, - 0|Z, = ¢] = q; O
that the set of nonextinction of the process {Z,} differs from the set where
W s 0 by a null set. An easy application of Theorem V.6.3 of Athreya and
Ney (1972) then proves (2.5) and we are done. [J

PrOOF oF THEOREM 2.3. Let ¢(s) be any strictly decreasing, convex solution
of (2.9) satisfying ¢(0+) = 1. The existence of at least one such solution is
assured by the construction of ¢(s) above.

For each s > 0, the sequence {x,(s) = ¢(so~™)}z_, is a sequence of backward
iterates for F(+). Thus (2.3) and (2.4) hold if we replace ¢, by d,(s) = —log x,(s)
and r, by v-d,(s). Applying Khinchine’s theorem on positive types to the
scalar sequence {u - Z,} we deduce that

(6.3) v.d,(s) ~K(s)v - ¢, and d.(s) ~ K(s)c, (n — o)

for some K(s), 0 < K(s) < co. We next show that K(s) has the form Ks for some
constant K.

Introducing r(s) = 1 — ¢(s) and f(x) = 1 — F(1 — x) gives us r(os) = f(r(s)).
Letting r,(s) denote the right-hand derivative of r(+) (componentwise) and M(x)
the differential mapping of F(+) at x we obtain

(6.4) or,(ps) = M(1 — K(s))r,(s) .

For 1 <2< p, r,(os) < 1,(A) < 1,(s), and so pv - r,(ps) < pv - 1, (As) <
PV - T.(s). Substituting (6.4) and noting that M(x) — M as x — 1 and vM = pvy
we find lim,_, v - r,(2s5)/v - r,(s) = 1 which result is easily extended to all 2 >
0. Using the integral representation of a convex function and a standard result
of Karamata on slowly varying functions,

(6.5) lim,_, v - r(s)/v - ¥(s) = 2.

Let a, b be given positive numbers. A Taylor expansion shows that i'(ap‘”) =
1 — ¢(ap™) ~ —log ¢(ap=") as n — o, the latter equaling d,(a). On putting
4 = b/a and letting s tend to O through the values ap—", we obtain from (6.5)

(6.6) lim, ., v - d,(b)/v - d,(a) = bJa
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which together with (6.3) shows that K(-) is linear and the constant K is given
by K(1). Lete > 0 be given. For all sufficiently large n

(1 — ¢)Ksc, < d,(5) < (1 + ¢)Ksc,, .
Therefore
F,(exp(—(1 + 9)Kse,)) < F(exp(—d,(s))) = $(s) < F(exp(—(1 — 9)Kse,)) -
Upon taking limits we obtain

P(Ks) = ¢(s)

proving uniqueness up to scale factors. In addition, notice that (6.5) is precisely
(2.10).

To conclude the proof of this theorem, it remains only to show (2.11). To
this end write 1 — @(s) = 1 — F(¢(sp™")). Repeated application of (1.1) yields

1 — @(s) = (II5=: [M — E(S(se)D(A — (s07™)) -

Let {s,} be an arbitrary sequence decreasing to zero. Since ¢(0+) = 1 and E(-)
decreases to zero, we may find a positive null sequence {a,} such that 0 <
E($(s,)) < a,pR for all k. Moreover, it is apparent by the monotonicity of ¢(-)
that 0 < E(@(s,0~7)) < a,pR uniformly in j for each k. Applying Lemma 3.4
we conclude that

(1 — by — NapR < o~ T[¥s [M — E(@(s,0~)] < (1 + )R -
The same argument as in Lemma 3.5 shows that for each sufficiently large N
and all sufficiently large k (depending on choice of N)
1 —0y — Na, u
1+ 0y
Let k — oo followed by N — co; then since {s,} has been chosen arbitrarily we
are done. []

< 1— gl - (1— () < T:%%NN_J "

PRrOOF OF THEOREM 2.2. A first order Taylor expansion together with (2.10)
and (2.11) permits us to write —log @(s) = s£°(s) where £(s) varies slowly in
each component and £(s)/v - Z°(s) - u as s — 0. It can be shown that the
backward iterates x, have the form x, = @(o~") for each n. This implies that
c, = p "L (p") ~ p"L(p~™)u(n — o) ‘where we have put L(s) = v . £(s).
This takes care of (2.7), and in addition shows that y, = p="L(p™").

Next, by (1.1), 1 —x,=1—F(X,,,) = (M — E(X,,))(1 — X,,,) and so
v - (1 —x,) = "' - (1 = X,py) — O"VE(X, 1 )(1 — X,p0) < 0" - (1 — X,4).
The monotone sequence {0"v - (1 — x,)} thus tends to a limit 0 < m < oo, and
therefore —p™logv - x, = p"v - ¢, = p"r, tends to the same limit.

Finally it remains only to prove the circle of implications regarding the
finiteness of m. Suppose m < oo. Iterate (1.1) to obtain

1 — ¢(1) = [IiL [07'M — o7 E($(0~ )" (1 — $(0™))] -
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It follows that

limy o, [T [07"M — o7 E($(0~)]u = (1 — $(1))/m
and the right side being nonzero we may apply Lemma 1 of Joffe and Spitzer
and mimic the proof of their Theorem 4 to conclude that (1.2) must hold.

If (1.2) holds then by Khinchine’s theorem on positive types applied to the
sequence {u - Z,} and the result of Kesten and Stigum, it follows that E[W®] <
oo for all i. But since lim,_ (1 — ¢(s))/s = E[W¥] < oo this implies that
v . Z(0+4) < oo which implies that lim,_, o"r, = v - S (0+) is finite and so
m < oco. This latter argument, incidentally, also shows that if EW is finite
for some i then it is finite for all i. []

7. Concluding remarks. When (1.2) is satisfied, E[W®] = Cu,;, 1 < i < d,
for some positive constant C. If (1.2) is not fulfilled, then while the expectations
of the limit variables are infinite, the vector u still appears in a similar fashion
since, from Section 6, 1 — ¢¥(s) ~ sL(s)u,(s — 0), so by Karamata’s Tauberian
theorem

§¢ Pr[W® > t]dt ~ u,L(x7") as x— oo .

Thus lim,_, §§ Pr [W® > ¢] dt/(i Pr [W' > f]dt = u,f/u;. (When (1.2) is satis-
fied the left side of this equation equals E[ W ]/E[W].)
We may also apply a density version of this Tauberian theorem due to Seneta
(1973b) to obtain
Pr[W® > x] = o(x7L(x7?)) (x > ),
and consequently

E[(WP)] < 0o forall 0<a<1.

In one dimension these results are contained in Seneta (1974).

It is also possible to show, along the lines of Theorem 1.10.4 of Athreya and
Ney, that the limit random variable W has an absolutely continuous distri-
bution on the positive reals but the details are too technical to be included here;
a proof is contained in the author’s doctoral dissertation.

Although we have proved the almost sure convergence of the normalized
u - Z, we have only managed to get convergence in probability of the individual
components. It is inconceivable that a.s. convergence would fail, but a proof
under no further assumptions appears formidable.

In a sequel to this paper we treat the supercritical immigration process by
similar techniques, extending other work of Seneta (1970). The approach
generalizes to the case where the immigration distribution is allowed to vary
from generation to generation according to a (possibly infinite) ergodic Markov
chain. We shall also consider decomposable Galton-Watson processes when
the assumptions of Kesten and Stigum (1967) are not met.
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