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The function ¢(k) = h/|log h| is shown to be an exact Hausdorff measure
function for the range of all strictly asymmetric Cauchy processes in R¥,
k = 2. The same function is also shown to correctly measure the graph of
any strictly asymmetric Cauchy process.

1. Introduction. The strictly asymmetric Cauchy processes in R* have many
properties which distinguish them from other stable processes. These differences
are usually related to the fact that these processes are not strictly stable, i.e.,
they do not satisfy the simple “scaling” property that is so useful in obtaining
estimates which lead to various sample path properties. For this reason, these
processes have usually been specifically excluded from general arguments. In
particular, the correct measure function for the graph was not obtained in [2]
or [6] nor was it obtained in [10] for the range.

Let X(7) be a strictly asymmetric Cauchy process in R*. (This class of pro-
cesses is defined in the next section.) Let

@(h) = h/|log A for O<h<e?,
=h for h=e?,

and write the corresponding Hausdorff measure as ¢ — m( ). Denote the graph
of the process up to time ¢ by

G0, ) = {y e R¥*': y = (X(s), 5) for some s¢[O0, ]}
and the range by
R(0, ) = {yeR": y = X(5) for some s5¢[O0, ]}.
Our main object in the present note is to prove the following

THEOREM. If X(?) is a strictly asymmetric Cauchy process in R*, then

(a) for all k, there is a positive finite ¢ such that ¢ — m(G(0, f)) = ct for all
t=0a.s.;

(b) for k = 2, there is a positive finite C such that ¢ — m(R(0, {)) = Ct for all
t=0a.s.

i

Note that for k = 1, there is no Hausdorff measure problem for R(O, 7) since
the range has positive Lebesgue measure [1]. We did obtain information about
the distribution of |R(0, #)| for large ¢ in [8].
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The proof of the theorem does not follow the pattern of the previous proofs
about the correct measure functions for the graph and range of Lévy processes.
In all cases previously studied, more economical fine coverings resulted from
using covering sets of very different sizes, whereas in both problems considered
in this paper, bounded ¢-covers can be found using spheres all having the same
radius.

In Section 2 we collect the necessary detailed estimates; in Section 3 we com-
plete the proof of the part of the theorem about the graph and the result about
the range is proved in Section 4.

2. Preliminaries. A Cauchy process in R* is a Markov process with stationary
independent increments and continuous transition density p(¢, y — x) defined by
its characteristic function

$rrexpli(z, u)}p(t, u) du = exp{—1tf(2)},

where

(1) P(2) = || §er w(z, O)m(db)
and m is a probability measure on C*, the unit sphere in R*, such that the sup-
port of m is not contained in any proper subspace. In (1), w is given by

Wz, 0) = I(2.0)] + 2 (2,0) log |z, 0)

where 2 = z/|z|]. Note that, for convenience, we have omitted a linear term
i(z, z,) in (1) which corresponds to a deterministic linear drift. The inclusion
of such a term would necessitate minor adjustments in our arguments but would
not affect any of the results for the strictly asymmetric case. We have also
omitted the arbitrary multiplicative factor in (1) which clearly makes no differ-
ence in the results. We will assume that X(#) is a Hunt process so that it satisfies
the strong Markov property and has sample paths that are right continuous with
left limits.

In (1), if m is the uniform measure on C*, the resulting process is called the
symmetric Cauchy process. In this case the correct measure function for R(0, 7)
is given in [10] and for G(0, #) in [2] or [6]. In fact, the results for the sym-
metric processes remain valid provided

Vo Om(df) = 0

and only minor modifications in the existing proofs are required to establish
this. In the present paper, therefore, we shall only concern ourselves with the
strictly asymmetric Cauchy processes, i.e., those for which m satisfies

) Yor Om(df) = € + 0.

For k = 1, any asymmetric Cauchy process is strictly asymmetric, while for
k = 2, § is a point in the open unit ball of R*. It turns out that the line through
0 and ¢ is, in a sense, the “preferred direction” for X(z) both for small ¢ and
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large +—but we do not need to make this precise in the present paper. We shall,
however, need to use the modified scaling property which can be proved directly
from the definition (1), i.e., forr > 0, >0

PX(t)  and  X(rf) — (% rtlog r) ¢
have the same distribution. We will frequently use the special case of this that
3) X and  eX(1) + (% tlog t) ¢
have the same distribution, or equivalently
) Pt %) = p <1, Xt — (% log r) s) -k

We will now prove some lemmas which give the necessary preliminary esti-
mates. Here and in the rest of the paper we adopt the convenient practice of
letting ¢ and C denote finite positive constants whose values are not important
and depend only on the specific process X(7) being considered. The values of
these constants may even change from line to line within a proof.

First we need a rather crude estimate for the large tail of a Cauchy distribu-
tion in R*.

Lemma 1. If X = X(1) is a random vector in R* having a Cauchy distribution,
there are constants ¢ and C such that for 2 = 1,

AT PlIX| =z A< G

Proor. For k = 1, the exact asymptotic expansion for the tails of the distri-
bution is known [9]. The general result follows by considering the individual
coordinates of X each of which has a 1-dimensional Cauchy distribution.

We can now use (3) to deduce estimates for both tails of the distribution of
X(#) when ¢ is small.

LemMmA 2. If X(¢) is a strictly asymmetric Cauchy process in R, there are positive
constants a,, ¢, and t, such that

(a) f0< t< a|loga|™and 0 < a < a,, then
PX(1)| = @} < cta~';
(b) if calloga|™ < t < 1, then

PX(1)| < a} = -2

tlog*t )

Proor. (a) By (3), we have
P{|X(1)| = a} = P{IX(I) + (% tog 1) E‘ . %}

< p{x) z (1- 2 Aeed) 2}

and the result follows from Lemma 1,



HAUSDORFF MEASURE PROPERTIES 611

(b) Let Y(7) be the projection of X(¢) on the line through 0 and §&. Then Y(7)
is a 1-dimensional asymmetric Cauchy process which satisfies the scaling prop-
erty (3) with & replaced by some 4 € R', k = 0. The density of Y(), p,(¢, x), has
a known asymptotic expansion for large x but all we need to know is that
®)] max, <, Pi(1, X) < cu? for uz=zu,.

Then
P{lX(1)| = a} = P{|Y(1)| £ a}
_ P{]Y(l) + <_2_log t)h' < ar—l}
T
< 2ar' max, g, <, pi(1, X)

where u = 2n~'|h log #| — ar~' = n~'|h log ¢| provided that t > r|k|~'a|log a|~* and
a is sufficiently small. An application of (5) now completes the proof.

LemMA 3. If X(¢) is a strictly asymmetric Cauchy process in R*, there is a positive
constant a, such that if 0 < a < a,and 0 < f — a < alloga|™, then
Plinf,., |X(7)| < a} < 2P{|X(P)| < 24} .

Proor. Let
' t=inf{t = a: |X(1)| < @},

E = {infogq, [X()| < a} = {z <},
F={X(8) < 2a}.
Then since |X(B)| = 2a implies |X(8) — X()| = a, we have
P(E N F) = Plr < B, |X(B) — X(2)| = a}
< c|log a|~'P(E)
where the last inequality is a consequence of the strong Markov property and
Lemma 2(a). But this is sufficient to prove the lemma since then
P(E) = P(E 0 F) + P(E n F?)
= P(F) + 3P(E)
for a sufficiently small.
3. The graph. We note that Hawkes [1] has already proved that ¢ —

m(G(0, r)) < co a.s. when k =1 and his methods extend with only trivial
changes to general k. Part (a) of the theorem will therefore be established if

we can show that ‘
(6) ¢ — m(G(0, 1) >0 a.s.

since the method of Section 7 of [11] then shows that the measure must equal
ct for some ¢ > 0. The graph can be thought of as a process in R¥*+! with stable
components so we can use the methods of [6]. Let S(a) be the ball {x: x| < a}
in R* and I, its indicator function. Then

T(a, ) = \& L(X(2)) dt
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is the time spent in S(a) up to time a. If we can prove that
™) lim sup,_, ,T_(a_"i)_ <c as.,

¢(a)

then (6) will follow as in [6] by the application of a density theorem. We will
prove a somewhat stronger statement than (7) in the next lemma.

REMARK. ¢ gives the right normalization in (7). This can be seen by ob-
taining the lim inf behavior of the maximum process as in Theorem 4 of [3].
Inverting this gives the lim sup behavior of the first passage process which in
turn gives the appropriate lower bound for the lim sup of T'(a, a).

LeMMA 4. If X(¢) is a strictly asymmetric Cauchy process in R*, then there is a
Jfinite constant ¢ such that
T@ allogal) _ . 4.

¢(a)

Proor. Let a = 6callog a|~! where ¢ is as in Lemma 2 and then a; = a +
ia|log a|~*. Let ’

lim sup,_,

7, =inf{t = a: |X(?)| < a}.
Then :
Plr, < d|log a'} < XI5 P(E,)
where
E, = {infai_1§t<ai |X(7)| = a} .

By Lemmas 3 and 2(b), we have for a sufficiently small
P(E)) < c|loga|~%!
so that for small a

1
P{r, < allogal’} = O < lo[glclgozal ) .

Now if 7, < oo, we define
,=inf{t = 7, + a: |X(?)| < a}
and note that by the strong Markov property
®) P{r, < a|log a|’} = P{r, < a|log af’, 7, < allog a|*}
—0 (( log |log a| >2> )
log a]
The only times in [0, 7,] for which it is possible to have |X(7)| < a are in [0, a]
and [z}, 7; + a]. Therefore
P{T(a, a|log a|’) > 2a} < P{r, < allogal’}.
Letting a, = 27" and using (8) we then have for r sufficiently large and a,, <
a é ar’
T(a, a|log a|’) < T(a,, a,|log a,’) < 12¢¢(a,) < 48cep(a) .
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This completes the proof of the lemma and thus the proof of part (a) of the
theorem.

RemARk. For k = 1, it is worth noting that the sections of G(0, ?) are the

level sets
Z(x, 1) = {s < t: X(5) = x}.

Millar [4] showed that the correct measure function for Z(x, t) is

f(h) = log log |log k|/|log A| .

This would lead one to expect that the correct measure function for G(0, ?)
would be

Hf(k) = (k) log log [log |

rather than (k). This means that we have shown that the Hausdorff measure
of G(0, 7) is not obtained by “integrating” the measure of sections. This is re-
lated to the fact that f — m(Z(x, 1)) is essentially the local time at x and Millar
and Tran [5] have shown that this is unbounded.

4. The range for k > 2. The upper bound for ¢ — m(R(0, 7)) is implicit in
[1] since R(0, ¢) is a projection of G(0, ) and so cannot have larger p-measure.
Thus we only need to prove the lower bound. This will follow by the standard
arguments if we can show that

T(a)

lim sup, _, =c a.s.,

where T(a) = T(a, o) is the total time spent in S(a). By Lemma 4, it will be
sufficient to show that for all sufficiently small a

©) T(a) = T(a, a|log a*) .

To do this we modify an argument used in [7] to estimate hitting probabilities.
Let U(a) denote the time spent in S(3a) after time allog al®. Then

EU(a) = S:cilogalfﬁ‘ Slx|§3a P(t’ X) dx dt
(10) = §rorcs0 A% {Srogars P ( 1, xtt — (i log r) s) * dt
T
< callog a|~?,

using the scaling property (4), the fact that p(1, x) is bounded, and that k > 2.
Now consider ¢ < 7/8|¢| and ¢ < callog a|~*. Then

P{|X(1)| < a} = P”X(l) + <% ‘°g")5‘ - %}

will be near one for a small since X(1) satisfies this inequality whenever X(1) is
in S(|log a|/2¢). Thus

(11) ET(a) Z §°=*™ P{|X(1) < a} di = jcallog al-*
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for small a. Now let
E(a) = {|X(1)] < 2a for some ¢ > a|logal?},
t = inf{tr = allog a]’: |X(1)| < 24} .

If we restart the process at z, X(f) will be in S(3a) whenever it is within a of
X(z). Thus by the strong Markov property

EU(a) = P(E(a))ET(a) ,
and (10) and (11) lead to
P(E(a)) = O(|log a|-?) .

Letting a, = 2", we have E(a,) does not occur for all sufficiently large r. Then,
if r is large and a,,, < a < a,, we have

T(a, allog af’) = T(a, a,,,|log a,,.f) = T(a) .
This completes the proof of (9) and hence of part (b) of the theorem.

REMARK. This last argument is really a crude estimate of the “rate of escape”’
of X(z) from the starting point. Making the obvious improvements yields

CoroLLARY. If X(t) is a strictly asymmetric Cauchy process then fore >0
I’Ytﬂ [log f)*** — o a.s. as t—0.

However, the actual rate of escape is faster than this and will probably depend
on the dimension k. In order to obtain precise results we would require better
estimates for delayed hitting probabilities, which would in turn require detailed
information about the potential kernel of the process.
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