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LEVY SYSTEMS FOR TIME-CHANGED PROCESSES

By HENRYK GZYL
Universidad Central de Venezuela

After a study of the process Y, obtained from a right process X by time-
changing it with respect to a continuous additive functional 4, we relate
the jumps of Y in ® = supp 4 to the excursions of X out of @ and to the
jumps of X inside ®@.

1. Introduction. Let X = (Q,F,F,, X,, ©,, P*) be a right process (see [4]) with
state space (E,, E,), where E, = EU {A}, E being a universally measurable subset
of a compact metric space, and A is isolated in E,. E, denotes the Borel subsets
of E,. E,* will denote the universally measurable subsets of E,.

Let A = (A4,),s, be a continuous additive functional of X, and let (z,),3, be its
right continuous inverse. We shall assume that 4, < co for all 7. We shall put

=supp A = {xe E: P*(r, = 0) = 1}. From the hypotheses on X it follows
that @ is a universally measurable subset of E.

If we put ¥, =X, , G, =F_ , 0,=0, ,» and if feb®* (®* = E*|,), then
0, f(x) = E*f(Y,) prov1des us w1th a semlgroup of kernels on (@, ®*) which
makes of (Y,),5, @ right process in a sense that we explain below.

The main result of this work concerns the study of the jumps of the process
Y. If fe (®* x ®*),, x € @, then Theorem 3.3 below asserts that E*{ }],c,<. f(¥,-»
Y,)1(5)}, where R = {(t, 0): Y,_() exists, Y,_(®) # Y, ()}, can be expressed in
terms of the excursions of X out of @ and in terms of the jumps of X inside
.

Since the family (F,) may not satisfy the usual hypotheses (see [3]), we will say
that a process Z is previsible (resp. well-measurable, progressively measurable)
with respect to (F,), if for every law ;2 on E, there exists a process Z* previsible
(resp. well-measurable, progressively measurable) with respect to (Q, F#, F#, P)
which is P#-indistinguishable from Z.

For later use we state without proof the following lemmas whose proofs are
easy.

LemMA 1.1. Let p be a probability on E. If T is a {G#} stopping time, then t,
is an {F*} stopping time.

LemMma 1.2. Let p be a probability on E. If Z is previsible with respect to {G "},
then Z,, is previsible with respect to {F+}.

Also, to the given continuous additive functional 4 we will associate a Markov
set (see [S]) M = {(t, 0): t > 0, 4,, (0) — A,_(®0) > 0,Ve >0} Itiseasy to
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see that the contiguous intervals to Mare the random sets of the form ((z,_, 7)) =
{(t, w): 7,_(0) < t < ()} and therefore that the set of left endpoints of the
contiguous intervals is given by M = {(ri(@), 0): 5> 0,0eQ, 7, (0) # 7,(w)}.

The description of the jumps of a right process X can be given through the
Ray-Knight compactification method. The method consists of introducing a new
state space £ and a metric p on E which makes it a compact space, such that £
sits in E as a p-dense, universally measurable subset. E will denote the Borel
subsets of E.

Also, there is a unique Ray resolvent (see [4]) (U%),,, on (E, E), such that for
any f e C(E), U*f|; = U*(f|s). Wealsohave U*: C(E) — C(E) and there exists
a unique semigroup (P,),., on (E, E) whose resolvent is (J%). The relationship
between the process X and the process constructed with the aid of (P, as the
details of the Ray-Knight compactification method are well explained in [4].

Let d denote the original metric on E. Let Q represent the set of all maps
®: R, — E which are right continuous in the original metric d and which are
right continuous in p and have left limits in p. Now one can construct all the
associated c-algebras F,°, F,~, F,, etc. in the usual way; then Theorem 11.8 and

Theorem 13.4 of [4] apply to give us the main results that we shall need below. ‘

2. Study of the process Y. It is easy to verify that 7, is an {F,} stopping time
for every s. From Proposition 6.7 ([2], Chapter 1) it follows that Y, e G,, t = 0,
and that {G,} is a right continuous family of o-algebras. It is also easy to see
that ¢t — Y, is right continuous.

We will now prove that a.s. (P*)u — Y, ¢ @ for  in [0, A;). From Proposi-
tion 2.3 ([2], Chapter 5) it follows that Y,,, = Y, ¢ 0, on {r, < ¢} and that
%o 0., =0o0n{r, <{} ={u < A4;}. Thisimpliesthat P*{r, < {}=P*ry00,, =0,
7y < &} = E*{P¥"¥(¢, = 0); 7, < {} which implies that a.s. (P?), PXw(7, = 0) = 1
if u < A,. Using the right continuity of # — Y, and the fact that X is a right
process, one can verify that for every x there exists a set N, with P*(N,) = 0and
such that Y (w)e® Vo g N, Vu < A,.

We will write @, instead of ® U{A} and we will have ®* = E*|, and ®,* =
E,*lo. When we have fe @* we will extend it to @,* by putting f(A) = 0. If
we put Q, f(x) = E*f(Y,) for fe @, and x ¢ @, it can be seen easily that (Q,),s,
defines a semigroup of transition kernels on (®, ®*), which can be made Markov
by extending the Q,’s to (®,, ®,*) in the usual way.

If y1is carried by @, then PX(Y, € A) = p(A) for all 4 e ®*. We can also define
Wef(x) = (& e='Q, f(x) dt for f ¢ ®* and x ¢ ®. Then certainly W= : b®* — p®*
and W* — W = (B — a)W*W?; a, 8 >'0. Since E*f(X.,) makes sense for any
febE* and x e E, it follows that Wef(x) = (o e~*E*f(X.,) dt makes sense for
febE* and x ¢ E.

We will say that fe @ * is a — Y-excessive if fW=+f(x) 1 f(x) for all xe @
as 8 — oo, or equivalently if e=**Q, f(x) 1 f(x) forallxe @ as ¢ | 0. Given fe @_*
we can extend it to E by putting f(x) = E*f(X. ). It can be easily verified that
BWettf(x) 1 f(x) for all xe E as f — oo.



LEVY SYSTEMS FOR TIME-CHANGED PROCESSES 567

Let us now prove

PROPOSITION 2.1. Let fbe a — Y-excessive. Then forall xe ®, 1 — f(Y,) isa.s.
(P®) right continuous.

Proor. There exists (Proposition 2:9, [4]) a sequence {f.} € b®@* such that
wef, 1 f, on ® as n — co. Extending f, and f as indicated above, it follows that
wef, 1 fasn— co.

Put A,* = {{e % dA,. Then (4,%), is a continuous additive functional of
(X, N®) (see Definition 1.1, [2], Chapter 4) where N,* = e~*4t is a multiplicative
functional of X. Rewrite Wef,(x) as U, af,(x) = E* {§ f(X,) d4,, which is then
(X, N?)-excessive and therefore is 8 — (X, N*)-excessive for all 8 > 0.

If we put V?g(x) = E* {7 e *g(X,)N* dt, then there is a sequence {g,} € bE,
such that V?g,(x) 1 f(x). It is easy to see that k,(x) = UPg,(x) — V*g.(x) is B-
excessive. Since X is a right process, ¢ — h,(X,) and r — U?g,(X,) are right con-
tinuous and a fortiori so is t — V?g,(X,).

Since Vfg, is B — (X, N*)-excessive, it follows that {e-#*N,*V?g,(X,), F, P} is
a right continuous supermartingale for all x € E. It follows from Theorem 4.1
of [4] that {e~*!N,*f(X,), F,, P} is a right continuous supermartingale. From
our assumptions on 4 it follows that 7 — f(Y,) is right continuous a.s. (P*) for
all xe @.

From these facts we see that the process Y satisfies the following versions of
the Hypothéses Droites.

HD l'. For any probability 1 on ®,, the process Y with state space (D, @,*)is
Markov with transition semigroup (Q,).z» and has right continuous trajectories and
u as initial measure.

HD 2'. If f is a — Y-excessive, then for any probability p on @, t — f(Y,) is
almost surely right continuous.

3. Lévy system of the time-changed process. Let us begin by describing the
jumps of X. We will say that » has a jump at if X} (0) = d — lim,;, X, exists
and X* (o) # X,() (d — lim means limit with respect to the d metric on E). By
X,_(o) we shall mean p — lim,;, X,(») (which always exists in E).

With very simple modifications, Theorem 3.1 in [1] can be restated as follows.

TueoreM 3.1. If X is a Ray process with state space E, C E, there exists a con-
tinuous additive functional H with supp H C E, a kernel N on (E, E*) which can be
taken to satisfy N(x, +) = 0 for x ¢ E, and N(x, {x}) = 0 for all x € E,, such that
for all fe (E x E),, all positive Z, previsible with respect to {F,}, one has

(3'1) EA{2, th(Xt—’ Xt)l(xt_an,,X,_eEA)}
= ‘Ea’:{S(o)° Zs st SEA N(Xt’ dy)f(Xs’ )’)} *

Let us define the following sets: S = {(t, w): X, () € E,, X,_(®) # Xy(w)},
J = {(t, ®): X} () exists, X} (0) # X (0)}and I' = {(z, o) : X} (w) does not exist
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or Xi (0) # X,(w)}. With the aid of Proposition 13.4, [4], one can see that for
any law g on E, § = J n I a.s. (P¥).

This gives us Theorem 1.1 of [1] if we take fe b(E, x E,), and extend it to
E, x E,, putting f = 0 off E, x E,, since the left-hand side of 3.1 can now be
written as

EN X Zf(X, X)1s(0)) = B3, Z, fIXE, X,)1()} .

Let us now restate Theorem 1.1 of [1], with obvious modifications, for the
sake of later reference.

THEOREM 3.2. If Xisaright process, there exists a Lévy system (N, H), consisting
of a positive kernel N on (E,, E,*) such that N(x, {x}) = 0 for all xe E,, and a
continuous additive functional H such that E*(H,) < oo for all x ¢ E,, forallt = 0,
with the property that for all fe (E, x E,), and all positive previsible Z one has

(3-2)  E{X Z XL, X))} = E* ¢ Z,dH, § 5, N(X,, d))f(X,, y) -

Note that (3.2) does not describe all the jumps of X, forJ = J n T' + J n T,
which for all x is P*-indistinguishable from J n " 4 S. In the course of the
proof of Proposition 13.4 of [4], it is proved that J n T is accessible and from
Theorem 13.1 of [4] it follows that S is the totally inaccessible part of the jumps.
With the help of Proposition 13.8 of [4], if f vanishes off E x E it follows that
E*{ 3, f(X}E, X)1,, (1)} vanishes when X is standard.

We w1ll work under the following assumption.

AssUMPTION. For any probability x on E and any fe (E x E), E{Y, f(X,_,
X)1,00(0)} = 0.

Now, let us say a few words about the jumps at time { = inf {r > 0: X, = A}.
When using the Ray-Knight compactification method, it may happen that A is
not isolated in E, in the metric p, and the jump at { may be lost when taken in
the p-metric. Some information about what happens at { can be obtained from
3.2 as follows. Let fe (E, x E,), such that f(x, y) = 0if y = A and Z = e~
Since X} = A if it exists and since A is isolated in E,,

Ef{em=f(XE, A); XE_ exists} = E*{e-Af(X¥,_, A); X¢_, exists}
+ E* (¢ e~* dH,N(X,, A)f(X,, A)

where {, is the accessible part of .

Let us now proceed to the study of the jumps of Y. We will say that o has
a jump at 1 if Y, (o) = d — lim, Y (w) # Y,(®). Inorderto get rid of an excess
of minus signs we will put X, = X} and ¢,_ = #,. With this Y, = X = X,t_
Let us also put R = {(t, ®): Y,_(o) exists, Y,_(0) # Y,(0)}. Let us recall that
the set M introduced in Section 1 can be written as M — M U M where M is
a well-measurable, homogeneous, closed set, which can be written as a countable
union of graphs of stopping times; and M, is a progressively measurable homo-

geneous, closed set, which contains the graph of no stopping time (see [5]).
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It can be proved (Theorem 4.1, [6]) that there exists a couple (K, B) (the exit
system for M,), K is a continuous additive functional of Xand Pis a kernel from
(2, F) to (E, E*) such that supp K C @ and P(z, = 0) = 0 for all x ¢ E. Also,
for any positive F° or F*-measurable function % and any positive {F,}-well-
measurable process £ one has

B oeni, 1 0 0,) = E*{\5 &, PXy(h) dK,} .

The result we are after is contained in the following theorem.

THEOREM 3.3. Let i be a measure carried by ®, Z a bounded {G,}-previsible
process and fe (@ x ®),. Then

B ZfY o Y) (0} = 3, B2, f(X,, X, o 6,))
(3.3) + EA\; Z, Prf(X,, X, ) dK,}
+ E\§ Z,, dH, 5, N(X,, dy)f(X,, y)} .

Here f(x, V) =f(p)if x £ yand 0 if x = Y- AT.}oo1 is a collection of Stopping
times with disjoint graphs suck that M, = |, [T,], and (K, P) is an exit system for

M, as mentioned above, N(x, dy) = b(x, y)N(x, dy) for some appropriate b e (E* x
E*),, and (N, H) is a Lévy system for the original process.

Proor. By writing R, x Q = B, U B, with B, = B’ and B, = {(1, »): 7,_(w) #
ti(®)}, the left-hand side of (3.3) can be written as E, + E, where E, =
E3 Z, (Y, Y)1,(0)1 5(?)} and E, is the obvious complement. Taking into
account the description of M we gave in Section 1, the fact that A, =ton
{r. < £}, and the definitions of Y and X, E, can be written as follows:

L= B Y.i Z, f(X,, X, 00,)}.

By writing M = M, U M., and using the fact about M, and M, mentioned above
together with Maisonneuve’s result (Theorem 4.1, [6]), it can be seen rather
easily that

G4 B= N EZy [(Xr, X,y o 00)) + B Z,, dK,PTf(X,, X, )] .
Let us turn our attention to
E, = E{ %, Zf(Y,os Yt)ln(t)le(’)} .
From the definitions it is easy to see that
E2 = E#{Zs ZATsf(er’ XT‘,)I(X’Tsexlts, X%#X,s) 1(1'8=z'8) .

When s ranges over R,, z, ranges over {t < co: 35,7, = 1}, which coincides
with the set {r: 4,,, — 4, > 0; Ve > 0}. Making use of our assumption to re-
place J by S and putting G = {(s, @) 4 (0) — A(0) > 0,V e > 0}, we can
write

(3.5) Ey = B3, Z,, f(%, X) (1)1, (A) 14(0)}
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In [1] it is shown how meaning can be given to expressions of the form C, =
Lo<sst 1s(8)15,(4,)1¢(s). We can quote [1] provided we can prove that each sum-
mand is homogeneous and adapted. It is easy to see that 15(s)15,(4,)14(5) < 0, =

(s + 015,(A4,0)1e(s + 7) for s > 0, £ = 0~.

Let us now prove that 1, (4,)14(r) € F, for # = 0. This will make C, ¢ F,. Put
W = 1;,. Then fors = 0, W, € G,* and therefore W, € G4. From Lemma 1.1
it follows that r,, = 7 4 7, 0 0, is an F,*-stopping time and then W, e Ff, .
By definition this means that forany s = 0 {1, (4,) = 1} e Ff;,_ 5, 0r {15(4,) =1}n
{t + 7,0 0,_s} e F 2. Therefore

{1a,(4)16(5) = 1} = {15,(4) = 1} n {14(1) = 1}
={15(4) = 1} n {w: te G(w)}
= {1,,(4) = 1} N {z, 0 6, = 0}
={lgd) =1 n{t+700,=1) which isin F,x.

Now, from Theorem 1.2 in [1] it follows that there exists a b (E* x E*),
such that C, is indistinguishable from Y}, .., b(X}, X;)14(s), which allows us to
rewrite (3.5) as

B3 Za X, X)B(XE, X)1s(0)} -
From this (3.3) drops out if we take Theorem 3.2 into account.
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