LÉVY SYSTEMS FOR TIME-CHANGED PROCESSES

BY HENRYK GZYL

Universidad Central de Venezuela

After a study of the process Y, obtained from a right process X by time-changing it with respect to a continuous additive functional A, we relate the jumps of Y in $\Phi = \text{supp } A$ to the excursions of X out of Φ and to the jumps of X inside Φ .

1. Introduction. Let $X = (\Omega, \mathbf{F}, \mathbf{F}_t, X_t, \Theta_t, P^x)$ be a right process (see [4]) with state space $(E_{\Delta}, \mathbf{E}_{\Delta})$, where $E_{\Delta} = E \cup \{\Delta\}$, E being a universally measurable subset of a compact metric space, and Δ is isolated in E_{Δ} . \mathbf{E}_{Δ} denotes the Borel subsets of E_{Δ} . \mathbf{E}_{Δ}^* will denote the universally measurable subsets of E_{Δ} .

Let $A=(A_t)_{t\geq 0}$ be a continuous additive functional of X, and let $(\tau_t)_{t\geq 0}$ be its right continuous inverse. We shall assume that $A_t<\infty$ for all t. We shall put $\Phi=\sup A=\{x\in E\colon P^x(\tau_0=0)=1\}$. From the hypotheses on X it follows that Φ is a universally measurable subset of E.

If we put $Y_t = X_{\tau_t}$, $G_t = F_{\tau_t}$, $\hat{\Theta}_t = \Theta_{\tau_t}$, and if $f \in b\Phi^*$ ($\Phi^* = E^*|_{\Phi}$), then $Q_t f(x) = E^x f(Y_t)$ provides us with a semigroup of kernels on (Φ, Φ^*) which makes of $(Y_t)_{t \ge 0}$ a right process in a sense that we explain below.

The main result of this work concerns the study of the jumps of the process Y. If $f \in (\Phi^* \times \Phi^*)_+$, $x \in \Phi$, then Theorem 3.3 below asserts that $E^x\{\sum_{0 < s \le t} f(Y_{s-}, Y_s)1_R(s)\}$, where $R = \{(t, \omega): Y_{t-}(\omega) \text{ exists}, Y_{t-}(\omega) \ne Y_t(\omega)\}$, can be expressed in terms of the excursions of X out of Φ and in terms of the jumps of X inside Φ .

Since the family (\mathbf{F}_t) may not satisfy the usual hypotheses (see [3]), we will say that a process Z is previsible (resp. well-measurable, progressively measurable) with respect to (\mathbf{F}_t) , if for every law μ on E, there exists a process Z^{μ} previsible (resp. well-measurable, progressively measurable) with respect to $(\Omega, \mathbf{F}^{\mu}, \mathbf{F}_{t}^{\mu}, P^{\mu})$ which is P^{μ} -indistinguishable from Z.

For later use we state without proof the following lemmas whose proofs are easy.

LEMMA 1.1. Let μ be a probability on E. If T is a $\{G_t^{\mu}\}$ stopping time, then τ_t is an $\{F_t^{\mu}\}$ stopping time.

LEMMA 1.2. Let μ be a probability on E. If Z is previsible with respect to $\{G_t^{\mu}\}$, then Z_A is previsible with respect to $\{F_t^{\mu}\}$.

Also, to the given continuous additive functional A we will associate a Markov set (see [5]) $M = \{(t, \omega) : t > 0, A_{t+\varepsilon}(\omega) - A_{t-\varepsilon}(\omega) > 0, \forall \varepsilon > 0\}$. It is easy to

Received November 17, 1975; revised August 16, 1976.

AMS 1970 subject classifications. Primary 60J25, 60G17; Secondary 60J55.

Key words and phrases. Right process, time-changed process, continuous additive functional, Lévy system, exit system.

see that the contiguous intervals to M are the random sets of the form $((\tau_{s-}, \tau_s)) = \{(t, \omega) : \tau_{s-}(\omega) < t < \tau_s(\omega)\}$ and therefore that the set of left endpoints of the contiguous intervals is given by $\vec{M} = \{(\tau_{s-}(\omega), \omega) : s > 0, \omega \in \Omega, \tau_{s-}(\omega) \neq \tau_s(\omega)\}$.

The description of the jumps of a right process X can be given through the Ray-Knight compactification method. The method consists of introducing a new state space \bar{E} and a metric ρ on \bar{E} which makes it a compact space, such that E sits in \bar{E} as a ρ -dense, universally measurable subset. \bar{E} will denote the Borel subsets of \bar{E} .

Also, there is a unique Ray resolvent (see [4]) $(\bar{U}^{\alpha})_{\alpha>0}$ on (\bar{E}, \bar{E}) , such that for any $f \in C(\bar{E})$, $\bar{U}^{\alpha}f|_{\bar{E}} = U^{\alpha}(f|_{\bar{E}})$. We also have $\bar{U}^{\alpha}: C(\bar{E}) \to C(\bar{E})$ and there exists a unique semigroup $(\bar{P}_t)_{t\geq 0}$ on (\bar{E}, \bar{E}) whose resolvent is (\bar{U}^{α}) . The relationship between the process X and the process constructed with the aid of (\bar{P}_t) as the details of the Ray-Knight compactification method are well explained in [4].

Let d denote the original metric on E. Let Ω represent the set of all maps $\omega \colon \mathbb{R}_+ \to E$ which are right continuous in the original metric d and which are right continuous in ρ and have left limits in ρ . Now one can construct all the associated σ -algebras F_t^0 , F_t^μ , F_t , etc. in the usual way; then Theorem 11.8 and Theorem 13.4 of [4] apply to give us the main results that we shall need below.

2. Study of the process Y. It is easy to verify that τ_s is an $\{F_t\}$ stopping time for every s. From Proposition 6.7 ([2], Chapter 1) it follows that $Y_t \in G_t$, $t \ge 0$, and that $\{G_t\}$ is a right continuous family of σ -algebras. It is also easy to see that $t \to Y_t$ is right continuous.

We will now prove that a.s. $(P^x)u \to Y_u \in \Phi$ for u in $[0, A_\zeta)$. From Proposition 2.3 ([2], Chapter 5) it follows that $Y_{u+v} = Y_u \circ \hat{\theta}_v$ on $\{\tau_u < \zeta\}$ and that $\tau_0 \circ \theta_{\tau_u} = 0$ on $\{\tau_u < \zeta\} = \{u < A_\zeta\}$. This implies that $P^x\{\tau_u < \zeta\} = P^x\{\tau_0 \circ \theta_{\tau_u} = 0, \tau_u < \zeta\} = E^x\{P^{X(\tau_u)}(\tau_0 = 0); \tau_u < \zeta\}$ which implies that a.s. (P^x) , $P^{X(\tau_u)}(\tau_0 = 0) = 1$ if $u < A_\zeta$. Using the right continuity of $u \to Y_u$ and the fact that X is a right process, one can verify that for every x there exists a set N_x with $P^x(N_x) = 0$ and such that $Y_u(\omega) \in \Phi \ \forall \ \omega \notin N_x \ \forall \ u < A_\zeta$.

We will write Φ_{Δ} instead of Φ $U\{\Delta\}$ and we will have $\Phi^* = \mathbf{E}^*|_{\Phi}$ and $\Phi_{\Delta}^* = \mathbf{E}_{\Delta}^*|_{\Phi}$. When we have $f \in \Phi^*$ we will extend it to Φ_{Δ}^* by putting $f(\Delta) = 0$. If we put $Q_t f(x) = E^x f(Y_t)$ for $f \in \Phi_+$ and $x \in \Phi$, it can be seen easily that $(Q_t)_{t \geq 0}$ defines a semigroup of transition kernels on (Φ, Φ^*) , which can be made Markov by extending the Q_t 's to $(\Phi_{\Delta}, \Phi_{\Delta}^*)$ in the usual way.

If μ is carried by Φ , then $P^{\mu}(Y_0 \in A) = \mu(A)$ for all $A \in \Phi^*$. We can also define $W^{\alpha}f(x) = \int_0^{\infty} e^{-\alpha t}Q_t f(x) dt$ for $f \in \Phi^*$ and $x \in \Phi$. Then certainly $W^{\alpha} : b\Phi^* \to b\Phi^*$ and $W^{\alpha} - W^{\beta} = (\beta - \alpha)W^{\alpha}W^{\beta}$; $\alpha, \beta > 0$. Since $E^x f(X_{\tau_t})$ makes sense for any $f \in bE^*$ and $x \in E$, it follows that $W^{\alpha}f(x) = \int_0^{\infty} e^{-\alpha t}E^x f(X_{\tau_t}) dt$ makes sense for $f \in bE^*$ and $x \in E$.

We will say that $f \in \Phi_+^*$ is $\alpha - Y$ -excessive if $\beta W^{\alpha+\beta}f(x) \uparrow f(x)$ for all $x \in \Phi$ as $\beta \to \infty$, or equivalently if $e^{-\alpha t}Q_t f(x) \uparrow f(x)$ for all $x \in \Phi$ as $t \downarrow 0$. Given $f \in \Phi_+^*$ we can extend it to E by putting $\bar{f}(x) = E^x f(X_{\tau_0})$. It can be easily verified that $\beta W^{\alpha+\beta}\bar{f}(x) \uparrow \bar{f}(x)$ for all $x \in E$ as $\beta \to \infty$.

Let us now prove

PROPOSITION 2.1. Let f be $\alpha = Y$ -excessive. Then for all $x \in \Phi$, $t \to f(Y_t)$ is a.s. (P^x) right continuous.

PROOF. There exists (Proposition 2.9, [4]) a sequence $\{f_n\} \in b\mathbf{\Phi}^*$ such that $W^{\alpha}f_n \uparrow f_n$ on Φ as $n \to \infty$. Extending f_n and f as indicated above, it follows that $W^{\alpha}\bar{f}_n \uparrow \bar{f}$ as $n \to \infty$.

Put $A_t^{\alpha} = \int_0^t e^{-A_s} dA_s$. Then $(A_t^{\alpha})_{t\geq 0}$ is a continuous additive functional of (X, N^{α}) (see Definition 1.1, [2], Chapter 4) where $N_t^{\alpha} = e^{-\alpha A_t}$ is a multiplicative functional of X. Rewrite $W^{\alpha} \bar{f}_n(x)$ as $U_A \alpha \bar{f}_n(x) = E^x \int_0^{\infty} \bar{f}(X_t) dA_t^{\alpha}$, which is then (X, N^{α}) -excessive and therefore is $\beta - (X, N^{\alpha})$ -excessive for all $\beta > 0$.

If we put $V^{\beta}g(x)=E^{x}\int_{0}^{\infty}e^{-\beta t}g(X_{t})N_{t}^{\alpha}dt$, then there is a sequence $\{g_{n}\}\in b\mathbf{E}_{+}$ such that $V^{\beta}g_{n}(x)\uparrow \bar{f}(x)$. It is easy to see that $h_{n}(x)=U^{\beta}g_{n}(x)-V^{\beta}g_{n}(x)$ is β -excessive. Since X is a right process, $t\to h_{n}(X_{t})$ and $t\to U^{\beta}g_{n}(X_{t})$ are right continuous and a fortiori so is $t\to V^{\beta}g_{n}(X_{t})$.

Since $V^{\beta}g_n$ is $\beta - (X, N^{\alpha})$ -excessive, it follows that $\{e^{-\beta t}N_t^{\alpha}V^{\beta}g_n(X_t), F_t, P^x\}$ is a right continuous supermartingale for all $x \in E$. It follows from Theorem 4.1 of [4] that $\{e^{-\alpha t}N_t^{\alpha}\bar{f}(X_t), F_t, P^x\}$ is a right continuous supermartingale. From our assumptions on A it follows that $t \to f(Y_t)$ is right continuous a.s. (P^x) for all $x \in \Phi$.

From these facts we see that the process Y satisfies the following versions of the Hypothéses Droites.

- HD 1'. For any probability μ on Φ_{Δ} , the process Y with state space $(\Phi_{\Delta}, \Phi_{\Delta}^*)$ is Markov with transition semigroup $(Q_t)_{t\geq 0}$, and has right continuous trajectories and μ as initial measure.
- HD 2'. If f is αY -excessive, then for any probability μ on Φ , $t \to f(Y_t)$ is almost surely right continuous.
- 3. Lévy system of the time-changed process. Let us begin by describing the jumps of X. We will say that ω has a jump at t if $X_{t-}^*(\omega) = d \lim_{s \uparrow t} X_s$ exists and $X_{t-}^*(\omega) \neq X_t(\omega)$ ($d \lim$ means limit with respect to the d metric on E). By $X_{t-}(\omega)$ we shall mean $\rho \lim_{s \uparrow t} X_s(\omega)$ (which always exists in \bar{E}).

With very simple modifications, Theorem 3.1 in [1] can be restated as follows.

THEOREM 3.1. If X is a Ray process with state space $E_{\Delta} \subset \bar{E}$, there exists a continuous additive functional H with supp $H \subset E$, a kernel N on (\bar{E}, \bar{E}^*) which can be taken to satisfy $N(x, \cdot) = 0$ for $x \notin E_{\Delta}$ and $N(x, \{x\}) = 0$ for all $x \in E_{\Delta}$, such that for all $f \in (\bar{E} \times \bar{E})_+$, all positive Z, previsible with respect to $\{F_t\}$, one has

(3.1)
$$E^{x}\left\{\sum_{t} Z_{t} f(X_{t-}, X_{t}) \mathbf{1}_{\{X_{t-} \neq X_{t}, X_{t-} \in E_{\Delta}\}}\right\} \\ = E^{x}\left\{\left\{\sum_{s}^{\infty} Z_{s} dH_{s} \right\}_{E_{\Delta}} N(X_{s}, dy) f(X_{s}, y)\right\}.$$

Let us define the following sets: $S = \{(t, \omega) : X_{t-}(\omega) \in E_{\Delta}, X_{t-}(\omega) \neq X_{t}(\omega)\},$ $J = \{(t, \omega) : X_{t-}^*(\omega) \text{ exists}, X_{t-}^*(\omega) \neq X_{t}(\omega)\}$ and $\Gamma = \{(t, \omega) : X_{t-}^*(\omega) \text{ does not exist}\}$ or $X_{t-}^*(\omega) \neq X_t(\omega)$. With the aid of Proposition 13.4, [4], one can see that for any law μ on E, $S = J \cap \Gamma^{\circ}$ a.s. (P^{μ}) .

This gives us Theorem 1.1 of [1] if we take $f \in b(\mathbf{E}_{\Delta} \times \mathbf{E}_{\Delta})_{+}$ and extend it to $\bar{E}_{\Delta} \times \bar{E}_{\Delta}$, putting f = 0 off $\bar{E}_{\Delta} \times \bar{E}_{\Delta}$, since the left-hand side of 3.1 can now be written as

$$E^{x}\left\{\sum_{t} Z_{t} f(X_{t-}, X_{t}) 1_{s}(t)\right\} = E^{x}\left\{\sum_{t} Z_{t} f(X_{t-}^{*}, X_{t}) 1_{s}(t)\right\}.$$

Let us now restate Theorem 1.1 of [1], with obvious modifications, for the sake of later reference.

THEOREM 3.2. If X is a right process, there exists a Lévy system (N, H), consisting of a positive kernel N on $(E_{\Delta}, E_{\Delta}^*)$ such that $N(x, \{x\}) = 0$ for all $x \in E_{\Delta}$, and a continuous additive functional H such that $E^x(H_t) < \infty$ for all $x \in E_{\Delta}$, for all $t \ge 0$, with the property that for all $f \in (E_{\Delta} \times E_{\Delta})_+$ and all positive previsible Z one has

(3.2)
$$E^{x}\{\sum_{t} Z_{t} f(X_{t-}^{*}, X_{t}) 1_{s}(t)\} = E^{x} \int_{0}^{\infty} Z_{s} dH_{s} \int_{E_{\Lambda}} N(X_{s}, dy) f(X_{s}, y) .$$

Note that (3.2) does not describe all the jumps of X, for $J=J\cap\Gamma+J\cap\Gamma^c$, which for all x is P^x -indistinguishable from $J\cap\Gamma+S$. In the course of the proof of Proposition 13.4 of [4], it is proved that $J\cap\Gamma$ is accessible and from Theorem 13.1 of [4] it follows that S is the totally inaccessible part of the jumps. With the help of Proposition 13.8 of [4], if f vanishes off $E\times E$ it follows that $E^x\{\sum_t f(X_{t-}^*, X_t)1_{J\cap\Gamma}(t)\}$ vanishes when X is standard.

We will work under the following assumption.

Assumption. For any probability μ on E and any $f \in (\mathbf{E} \times \mathbf{E})_+$ $E^{\mu}\{\sum_t f(X_{t-}, X_t) \mathbf{1}_{J \cap \Gamma}(t)\} = 0$.

Now, let us say a few words about the jumps at time $\zeta=\inf\{t>0: X_t=\Delta\}$. When using the Ray-Knight compactification method, it may happen that Δ is not isolated in E_Δ in the metric ρ , and the jump at ζ may be lost when taken in the ρ -metric. Some information about what happens at ζ can be obtained from 3.2 as follows. Let $f \in (E_\Delta \times E_\Delta)_+$ such that f(x,y)=0 if $y \neq \Delta$ and $Z=e^{-\alpha s}$. Since $X_{\zeta^-}^* \neq \Delta$ if it exists and since Δ is isolated in E_Δ ,

$$E^{x}\lbrace e^{-\alpha\zeta}f(X_{\zeta_{-}}^{*},\Delta); X_{\zeta_{-}}^{*} \text{ exists}\rbrace = E^{x}\lbrace e^{-\alpha\zeta}Af(X_{\zeta_{A}}^{*},A); X_{\zeta_{-}A}^{*} \text{ exists}\rbrace + E^{x} \int_{0}^{\infty} e^{-\alpha s} dH_{s}N(X_{s},\Delta)f(X_{s},\Delta)$$

where ζ_A is the accessible part of ζ .

Let us now proceed to the study of the jumps of Y. We will say that ω has a jump at t if $Y_{t-}(\omega)=d-\lim_{\uparrow}Y_{s}(\omega)\neq Y_{t}(\omega)$. In order to get rid of an excess of minus signs we will put $\bar{X}_{t}=X_{t-}^{*}$ and $\tau_{t-}=\bar{\tau}_{t}$. With this $Y_{t-}=\bar{X}_{\bar{\tau}_{t}}=\bar{X}_{\tau_{t-}}$. Let us also put $R=\{(t,\omega)\colon Y_{t-}(\omega)\text{ exists},\ Y_{t-}(\omega)\neq Y_{t}(\omega)\}$. Let us recall that the set \vec{M} introduced in Section 1 can be written as $\vec{M}=\vec{M}_{w}\cup\vec{M}_{\pi}$, where \vec{M} is a well-measurable, homogeneous, closed set, which can be written as a countable union of graphs of stopping times; and \vec{M}_{π} is a progressively measurable homogeneous, closed set, which contains the graph of no stopping time (see [5]).

It can be proved (Theorem 4.1, [6]) that there exists a couple (K, \hat{P}) (the exit system for M_{π}), K is a continuous additive functional of X and \hat{P} is a kernel from (Ω, \mathbf{F}) to (E, \mathbf{E}^*) such that supp $K \subset \Phi$ and $\hat{P}^x(\tau_0 = 0) = 0$ for all $x \in E$. Also, for any positive \mathbf{F}° or \mathbf{F}^* -measurable function h and any positive $\{\mathbf{F}_t\}$ -well-measurable process ξ one has

$$E^x\{\sum_{s\in \overrightarrow{M}_\pi} \xi_s h \circ \theta_s\} = E^x\{\int_0^\infty \xi_s \hat{P}^{X_s}(h) dK_s\}$$
.

The result we are after is contained in the following theorem.

Theorem 3.3. Let μ be a measure carried by Φ , Z a bounded $\{G_t\}$ -previsible process and $f \in (\Phi \times \Phi)_+$. Then

(3.3)
$$E^{\mu}\{\sum_{t} Z_{t} f(Y_{t-}, Y_{t}) \mathbf{1}_{R}(t)\} = \sum_{n} E^{\mu}\{Z_{A_{T_{n}}} \hat{f}(X_{T_{n}}, X_{\tau_{0}} \circ \theta_{T_{n}})\} + E^{\mu}\{\sum_{0}^{\infty} Z_{A_{s}} \hat{P}^{X_{s}} \hat{f}(X_{0}, X_{\tau_{0}}) dK_{s}\} + E^{\mu}\{\sum_{0}^{\infty} Z_{A_{s}} dH_{s} \sum_{E_{\Delta}} \bar{N}(X_{s}, dy) f(X_{s}, y)\}.$$

Here $\hat{f}(x, y) = f(x, y)$ if $x \neq y$ and 0 if x = y. $\{T_n\}_{n=1}^{\infty}$ is a collection of stopping times with disjoint graphs such that $\vec{M}_w = \bigcup_n [T_n]$, and (K, \hat{P}) is an exit system for \vec{M}_π as mentioned above, $\vec{N}(x, dy) = b(x, y)N(x, dy)$ for some appropriate $b \in (E^* \times E^*)_+$, and (N, H) is a Lévy system for the original process.

PROOF. By writing $\mathbb{R}_+ \times \Omega = B_1 \cup B_2$ with $B_2 = B_1^c$ and $B_1 = \{(t, \omega) : \tau_{t-}(\omega) \neq \tau_t(\omega)\}$, the left-hand side of (3.3) can be written as $E_1 + E_2$ where $E_1 = E^t\{\sum_t Z_t f(Y_{t-}, Y_t) 1_R(t) 1_{B_1}(t)\}$ and E_2 is the obvious complement. Taking into account the description of \vec{M} we gave in Section 1, the fact that $A_{\tau_t} = t$ on $\{\tau_t < \zeta\}$, and the definitions of Y and \vec{X} , E_1 can be written as follows:

$$E_1 = E^\mu \{ \sum_{s \, \in \, \overrightarrow{M}} Z_{A_s} \hat{f}(\vec{X}_s, \, X_{ au_0} \circ \, heta_s) \}$$
 .

By writing $\vec{M} = \vec{M}_w \cup \vec{M}_\pi$, and using the fact about \vec{M}_w and \vec{M}_π mentioned above together with Maisonneuve's result (Theorem 4.1, [6]), it can be seen rather easily that

(3.4)
$$E_1 = \sum_n E^{\mu} \{ Z_{A_{T_n}} \hat{f}(X_{T_n}, X_{\tau_0} \circ \theta_{T_n}) \} + E^{\mu} \int_0^{\infty} Z_{A_s} dK_s \hat{P}^{X_s} f(X_0, X_{\tau_0}) \} .$$

Let us turn our attention to

$$E_2 = E^{\mu} \{ \sum_t Z_t f(Y_{t-}, Y_t) 1_R(t) 1_{B_2}(t) \}$$
.

From the definitions it is easy to see that,

$$E_2 = E^\mu \{\sum_s Z_{A_{\tau_s}} f(\bar{X}_{\tau_s},\, X_{\tau_s}) \mathbf{1}_{\{\overline{X}_{\tau_s} \in \mathrm{xits},\, X_{\tau_s} \neq X_{\tau_s}\}} \, \mathbf{1}_{\{\tau_s = \tau_s\}} \, .$$

When s ranges over \mathbb{R}_+ , τ_s ranges over $\{t < \infty : \exists s, \tau_s = t\}$, which coincides with the set $\{t : A_{t+\varepsilon} - A_t > 0; \forall \varepsilon > 0\}$. Making use of our assumption to replace J by S and putting $G = \{(t, \omega) : A_{t+\varepsilon}(\omega) - A_t(\omega) > 0, \forall \varepsilon > 0\}$, we can write

(3.5)
$$E_2 = E^{\mu} \{ \sum_t Z_{A_t} f(\bar{X}_t, X_t) 1_S(t) 1_{B_2}(A_t) 1_G(t) \}.$$

In [1] it is shown how meaning can be given to expressions of the form $C_t = \sum_{0 < s \le t} 1_S(s) 1_{B_2}(A_s) 1_G(s)$. We can quote [1] provided we can prove that each summand is homogeneous and adapted. It is easy to see that $1_S(s) 1_{B_2}(A_s) 1_G(s) \circ \theta_t = 1_S(s+t) 1_{B_2}(A_{s+t}) 1_G(s+t)$ for s > 0, $t \ge 0^{\sim}$.

Let us now prove that $1_{B_2}(A_t)1_G(t)\in \mathbf{F}_t$ for $t\geq 0$. This will make $C_t\in \mathbf{F}_t$. Put $W=1_{B_2}$. Then for $s\geq 0$, $W_s\in \mathbf{G}_s^{\ \mu}$ and therefore $W_{A_t}\in \mathbf{G}_{A_t}^{\mu}$. From Lemma 1.1 it follows that $\tau_{A_t}=t+\tau_0\circ\theta_t$ is an \mathbf{F}_t^{μ} -stopping time and then $W_{A_t}\in \mathbf{F}_{t+\tau_0\circ\theta_t}^{\mu}$. By definition this means that for any $s\geq 0$ $\{1_{B_2}(A_t)=1\}\in \mathbf{F}_{t+\tau_0\circ\theta_t}^{\mu}$ or $\{1_{B_2}(A_t)=1\}\cap\{t+\tau_0\circ\theta_{t-s}\}\in \mathbf{F}_s^{\mu}$. Therefore

$$\begin{split} \{1_{B_2}(A_t)1_G(t) &= 1\} = \{1_{B_2}(A_t) = 1\} \, \cap \, \{1_G(t) = 1\} \\ &= \{1_B(A_t) = 1\} \, \cap \, \{\omega \colon t \in G(\omega)\} \\ &= \{1_{B_2}(A_t) = 1\} \, \cap \, \{\tau_0 \circ \theta_t = 0\} \\ &= \{1_{B_2}(A_t) = 1\} \, \cap \, \{t + \tau_0 \circ \theta_t \leqq t\} \quad \text{ which is in } \quad \mathbf{F}_{t}^{\mu} \, . \end{split}$$

Now, from Theorem 1.2 in [1] it follows that there exists a $b \in (\mathbf{E}^* \times \mathbf{E}^*)_+$ such that C_t is indistinguishable from $\sum_{0 < s \le t} b(X_{s-}^*, X_s) 1_S(s)$, which allows us to rewrite (3.5) as

$$E^{\mu} \{ \sum_{t} Z_{A_{t}} f(X_{t-}^{*}, X_{t}) b(X_{t-}^{*}, X_{t}) 1_{S}(t) \}$$
.

From this (3.3) drops out if we take Theorem 3.2 into account.

Acknowledgments. I want to thank Professor R. K. Getoor for suggesting this problem to me. It was part of my Ph.D. thesis.

I also want to thank the referee for his comments which improved the second version considerably.

REFERENCES

- [1] Benveniste, A. and Jacod, J. (1973). Systèmes de Lévy des processus de Markov. *Invent.* Math. 21 183-198.
- [2] BLUMENTHAL, R. and Getoor, R. (1968). *Markov Processes and Potential Theory*. Academic Press, New York.
- [3] Dellacherie, C. (1972). Capacités et Processus Stochastiques. Springer-Verlag, Berlin.
- [4] Getoor, R. K. (1975). Lectures on Markov processes. Lecture Notes in Mathematics 440. Springer-Verlag, Berlin.
- [5] Getoor, R. K. and Sharpe, M. J. (1974). Balayage and multiplicative functionals. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28 139-169.
- [6] MAISONNEUVE, B. (1975). Exit systems. Ann. Probability 3 399-411.

Universidad Central de Venezuela Facultad de Ciencias Departamento de Fisica Apartado 10098 Caracas, Venezuela